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Abstract Discrete network design problem (DNDP) is generally formulated as a bi-
level programming. Because of non-convexity of bi-level formulation of DNDP
which stems from the equilibrium conditions, finding global optimal solutions are
very demanding. In this paper, a new branch and bound algorithm being able to find
exact solution of the problem is presented. A lower bound for the upper-level
objective and its computation method are developed. Numerical experiments show
that our algorithm is superior to previous algorithms in terms of both computation
time and solution quality. The conducted experiments indicate that in most cases the
first incumbent solution which is obtained within a few seconds is superior to the
final solution of some of previous algorithms.

Keywords Network design problem . Bi-level programming . Branch and bound .

Outer approximation

1 Introduction

The network design problem (NDP) concerns with modifying a transportation net-
work (infrastructure) configuration by adding new links or improving existing ones,
so that certain social welfare objectives (e.g. total travel time over the network) are
maximized. How to locate new links and how to increase the capacity of existing
links are motivating problems. The overall objective is to minimize the total system
costs under limited budget, while accounting for the route choice behavior of network
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users. NDP can be roughly classified into three categories: the discrete network
design problem (DNDP) dealing with adding new links or road-way segments to an
existing road network; the continuous network design problem (CNDP) dealing with
the optimal capacity expansion of a subset of existing links; and the mixed network
design problem (MNDP) combining both CNDP and DNDP in a network (Yang and
Bell 1998). The importance of the NDP problem has been highlighted in both
academic and practical literature. From a practical view, NDP becomes more impor-
tant as increasing populations coupled with economic growth produce travel demand
exceeding the existing capacity of transportation infrastructures. Meanwhile, resources
available to enhance capacity remain limited. Therefore, enhancing capacity needs a
great deal of investments that could be hardly met in developing countries. Accordingly,
it is urgent to study how to efficiently allocate limited investment to improve transport
efficiency and maximize the social and economic benefits.

From an optimization point of view, the NDP can be viewed as a hierarchical
decision making problem that includes system planners in the upper-level and users
in the lower-level. System planners try to influence users’ choices by adding or
expanding some links to minimize total system costs. Total costs of the system are
affected by decision variables of both system planners and users (LeBlanc and Boyce
1986). The partition of the control over the decision variables between two hierar-
chical levels requires the formulation of the NDP as a bi-level programming problem
(BLPP). In the resulted BLPP the system planner makes decisions about network
configuration to improve the performance of the system, and the network users make
choices about the routes of their travel in response to the upper-level decision. Since
users are assumed to make their choices to maximize their individual utility functions,
their choices do not necessarily align, and often conflict, with the choices that are
optimal for the system planners. Lower-level problem is generally described by a user
equilibrium model.

Previous studies give practical evidence implying that even small and experimen-
tal scale NDPs are difficult to solve (Gao et al. 2005; Magnanti and Wong 1984).
There is also theoretical evidence supporting these observations since the BLPP is
NP-hard even in its linear form. Because of the intrinsic complexity of NDP in the
form of bi-level formulation, the problem has been recognized as one of the most
difficult ones, yet challenging problems for global optimality in transportation. This
often leads to computation times too high for practical purposes. Due to the practical
importance of NDP, many heuristic/meta-heuristic algorithms to tackle it have been
employed. Meta-heuristic algorithms have enjoyed a considerable popularity in the
last decades (Poorzahedy and Abulghasemi 2005; Poorzahedy and Rouhani 2007).
The guarantee of finding an optimal solution in heuristic/meta-heuristic algorithms
is sacrificed for the sake of a good solution in a significantly reduced amount
of time.

Although good progress and algorithms have been achieved during past decades,
currently the most promising solution methods dealing with realistic scale problems
are heuristics/meta-heuristics which do not guarantee the optimality or near-
optimality of the solution. On the other hand, some global optimization approaches
have been proposed based on converting the bi-level form to a single-level one and
exploiting decomposition methods (Gao et al. 2005; LeBlanc 1975). These
approaches need a lot of computation time.
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This paper proposes a new branch and bound algorithm for the bi-level DNDP
being able to provide an optimal solution for the real-scale network design problems.
To cope with explicit or implicit path enumeration, the link-node network represen-
tation with multicommodity flows is employed. The main motivation is presenting an
algorithm being able to find a global optimal solution for medium to large-scale
DNDP while guarding against Braess’ paradox.

The remainder of this paper is organized as follows: Section 2 reviews the
literature on network design problems. The proposed formulation is then described
in Section 3. In Section 4, the numerical results on four test problems are reported.
Finally, concluding remarks are offered in Section 5.

2 Literature review

LeBlanc (1975) made a pioneer study and proposed a branch-and-bound algorithm
for solving DNDP. The bounding step was designed so that the Braess’ paradox could
not occur. This algorithm is relatively inefficient and becomes computationally
prohibitive, even for small networks, in cases where there is a relatively large number
of new links to add to the network. Our algorithm could be considered as an
improvement of LeBlanc’s B&B algorithm whose most building blocks including
bounding, branching, fathoming, first incumbent, and some other minor parts have
been improved. Poorzahedy and Turnquist (1982) developed a branch and bound
algorithm for solving the integer programming model of the DNDP by replacing the
objective function with another well-behaved function, which makes the problem a
convex nonlinear mixed-integer program. They argued that since a strong linear
relationship between the system and user optimal objective function exists, the
system optimal objective function could be approximately replaced with the user
optimal one. However, in situations where severe traffic congestion exists in the
network, a significant gap appears between the mentioned functions. In addition, in
mathematical programming, even in the presence of exact linear relationships be-
tween two objective functions, there is no guarantee that both objective functions lead
to the same solution even if their objective values are very close to each other.

Steinbrink (1974a), Boyce (1984), Freisz (1985), and Magnanti and Wong (1984)
conducted surveys on the modeling and algorithmic development for mathematical
programming based NDP. Specifically, Steenbrink (1974a) reviewed the branch-and-
bound techniques for solving DNDP. He presented an introduction to modeling
DNDP and discussed techniques for the traffic assignment and Braess’ paradox. He
proposed a method to approximate user equilibrium flows by the system optimal
flows using an iterative decomposition algorithm. In their comprehensive survey
paper, Magnanti and Wong (1984) presented a unified framework of modeling DNDP
and described a number of algorithms including Benders’ decomposition and some of
its accelerated versions, Lagrange relaxation, and dual ascent procedures as success-
ful algorithms in providing a solution for the special cases of DNDP. As a more recent
review, Yang and Bell (1998) presented a review analysis of the models and algo-
rithms based on bi-level formulation for NDP in which MNDP was also mentioned.
They classified the models based on the characteristics of the lower-level problem
(deterministic or stochastic user equilibrium), the type of the decision variables at the
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upper-level, the objective function of the upper-level, and the type of the solution
algorithm.

As previously mentioned, the bi-level programming program is very difficult to
solve. Thus, designing efficient algorithms for NDP in the bi-level formulation is
recognized as one of the most challenging problems in transportation (Meng et al.
2001). Therefore, many researchers used some simplifying assumptions and devel-
oped algorithms to the simplified problem. The rationale for this is mathematical
tractability at the expense of realism of assumptions which, in turn, limits the
applicability of the algorithms. Some of the simplifying assumptions are as follows
(Poorzahedy and Rouhani 2007): (a) replacing user equilibrium flows by system
equilibrium flows in the lower-level and obtaining a convex mixed integer nonlinear
programming (Dantzig et al. 1979); (b) using linear functions for user travel time and
make the problem less complex by assuming constant link travel time function
(Boyce et al. 1973; Holmberg and Hellstrand 1998). This assumption is more suitable
for intercity transportation networks owing to the fact that intercity roads are rarely
congested. By assuming no congestion, there is no difference between SO and UE
flows. Therefore, the objective function of the lower-level becomes like the upper-
level one and this, in turn, leads to a single-level problem which is much easier to
solve; (c) constraint relaxation, mostly the integrality of decision variables which may
lead to an impractical solution in case of DNDP (Abdulaal and LeBlanc 1979;
Dantzig et al. 1979; Steenbrink 1974b), and (d) aggregation of the network at
different levels by link and node extraction procedure to make network simpler
(Haghani and Daskin 1983).

Up to date, studies have mostly focused on the developing heuristics/meta-heuristics
algorithm. Within the last two decades, meta-heuristic algorithms for optimization
problems generally, and NDP specially, have been increasingly exploited. Meta-
heuristics such as simulated annealing (Friesz et al. 1992; Lee and Yang 1994) and
ant colony (Poorzahedy and Abulghasemi 2005; Poorzahedy and Rouhani 2007),
have been previously used to solve NDP under deterministic conditions. Xiong and
Schneider (1995) combined genetic algorithm with neural networks to solve NDP
with special constraints such as mutually exclusive projects. Drezner and Salhi (2002)
compared the performance of heuristics/meta-heuristics, such as descent algorithm,
tabu search, simulated annealing, and genetic algorithm, for one-way and two-way
network design problems. They found that genetic algorithm is superior in finding the
best solution, while needing longer computation time to achieve such solutions.
Karoonsoontawong and Waller (2006) used genetic algorithm, simulated annealing,
and random search to solve CNDP when it is modeled as a linear bi-level program-
ming with a lower-level of dynamic user-optimal traffic assignment model. Their
study shows that genetic algorithm outperforms other algorithms. Lin et al. (2011)
employed the cell transmission model to formulate CNDP as a bi-level linear
program. They proposed a heuristic algorithm based on Dantzig-Wolf decomposition
to solve the resulted problem. Their algorithm can obtain a local optimal solution for
large-scale CNDP. However, the scope of their work was limited to single destination
network.

Gao et al. (2005) presented an algorithm by using the support function concept
(Floudas 1995) which in turn helps to express the relationship between user flows
(the lower-level) and the new additional links in the existing urban network (the
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upper-level). They compared the performance of the proposed algorithm with
LeBlanc’s Branch and Bound (B&B) (LeBlanc 1975) on the well-known Sioux-
Falls test problem with 5 projects. It should be noted that although LeBlanc’s B&B is
not efficient in solving real scale problems due to its loose lower bound, it guards
against Braess’ paradox. However, we show by a counterexample that the algorithm
proposed by Gao et al. (2005) cannot guarantee the optimality of the solution. It
especially does not guard against Braess’ paradox. More specifically, their algorithm
offers solutions, which really make system-level objective worse although the algo-
rithm converges to a specious solution with a better objective. Zhang et al. (2009)
formulated DNDP as a mathematical program with complementarity constraints
where UE was represented in the form of a variational inequality problem. They
proposed an active set algorithm to solve the problem. Conducted numerical experi-
ments on three networks showed the effectiveness of their algorithm. However, they
have not provided any comparative results with previous algorithms. Chung et al.
(2011) formulated a single-level CNDP as a robust optimization problem explicitly
incorporating traffic dynamics and demand uncertainty. They used cell transmission
model and a box uncertainty set for modeling uncertain demands to have a tractable
linear programming based CNDP. They considered a single-destination network.

Wang and Lo (2010) formulated CNDP as a single-level optimization problem.
The main deficiency of their work is that the path set between all OD pairs should be
known in advance and explicitly imported to the model. This feature prohibits
employing their formulation to DNDP because adding new links changes the path
set of many OD pairs. In addition, enumerating all paths between all OD pairs in a
graph is an intractable problem by itself. They also used piece-wise linear regression
to linearize the nonlinear travel time. Their experimental results show that because of
the adopted linearization scheme, the presented formulation is not efficient in dealing
even with small to medium CNDP problems. Farvaresh and Sepehri (2011) trans-
formed the bi-level DNDP into a single-level MILP using representing UE condition
as KKT conditions and employing an efficient linearization scheme to linearizing
non-linear terms. They generate two sets of valid inequality which significantly
strengthen the formulation. The performance of their formulation having generated
valid inequalities when it solved by CPLEX on small networks, even with a relatively
large number of new links, is acceptable; but it cannot deal with real problems.
Luathep et al. (2011) formulated MNDP as a mathematical programming with
equilibrium constraints and proposed a global optimization algorithm. They trans-
formed the problem into a MILP problem using piecewise-linear approximation.
They proposed a global optimization algorithm based on a cutting constraint method
to solve the resulted MILP problem. Numerical results show the superior efficiency of
the proposed method in comparison with the previous algorithms. An interesting
result of their work is that solving MNDP on a given budget level most likely makes
the system-level objective better than solving DNDP or CNDP separately on the same
budget level. As they demonstrated, solving DNDP, CNDP, and MNDP for Sioux
Falls network takes around 20, 27, and 35 min. Nevertheless, it seems that their
algorithm is not efficient in dealing with large-scale real NDP problems, because it
requires one relatively large MILP to be solved in each iteration.

Kim and Kim (2006) proposed a DNDP model in which total travel time was
replaced by a comprehensive social cost. Their suggestion for such a social cost
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function seems rational since the upper-level decision maker (mostly government)
should consider all issues of social costs. However, neglecting the Braess’ paradox is
a practical limitation of their model. They used a genetic algorithm to solve
their model and presented some numerical results based on a small network.
Like Poorzahedy and Rouhani (2007), a small network was used to evaluate the
performance of the suggested algorithm. Both studies compared the their best-found
solutions with the global one obtained by full enumeration. Nevertheless, evaluation
of the computational efficiency and the solution quality of a meta-heuristic algorithm
by a test problem, whose all feasible solutions can be easily enumerated, is not
without its pitfalls. Xu et al. (2009) employed genetic algorithm and simulated
annealing to solve CNDP. They showed that simulated annealing algorithm outper-
forms genetic algorithm in solution quality in a shorter time. Sun et al. (2009)
introduced an immune clone annealing algorithm, which is designed by combining
annealing tactic of the simulated annealing and the immune clone algorithm to solve
the MNDP problem. They provide some numerical results on a small network
problem. Zhang and Gao (2009) transformed the bi-level MNDP to a single-level
MNDP and proposed a locally convergent algorithm using penalty function method.
Miandoabchi et al. (2011) formulated a bi-modal multi-objective DNDP considering
the concurrent urban road and bus network design. They developed a hybrid genetic
algorithm and a hybrid clonal selection algorithm to solve the resulted problem.

Most of the heuristics/meta-heuristics based studies used the well-known Sioux-
Falls test problem to evaluate the computational aspects of their algorithms. However,
due to the small number of projects (5 or 10 projects) which implies that the solution
space of the NDP is small, using such a simple problem could not be a good
examination. Because it is more likely a stochastic search method finds the optimal
solution in a small solution space. It should be noted that due to budget constraint all
subsets of projects do not need to be enumerated. In fact, meta-heuristics with well-
tuned parameters probably enumerate all feasible solutions in such problems.

3 Problem formulation

In this section, used notations and definitions are presented, and following that the bi-
level formulation of DNDP is introduced.

The following is a summary of the notes and symbols used in this paper.

G(N, A) a connected transportation network, with N and A being the sets of
nodes and links, respectively. Here, N0O ∪ D ∪ T where O, D and T
are the set of all origin, destination, and transition nodes respectively.
A 0 A1 ∪ A2 where A1 is the set of all existing links and A2 is the set
of all proposed new links (projects) which the model decides to be
built or not

(i, j) link designation (i, j) ∈ A
Aþ
i set of links originating from node i ∈ N

A�
i set of links pointing to node i ∈ N

(r, s) origin–destination (OD) pairs where r ∈ O and s ∈ D are origin
and destination nodes, respectively
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W the set of all OD pairs where W ⊆ N × N
dsr the demand between OD pair (r, s) ∈ W which is assumed to be

nonnegative constant
xa the link flow on link a ∈ A
x vector of xa’s with dimention equal to |A|, x 0 (…, xa, …)T
xsa flow along link a ∈ A with destination s ∈ D
ya a binary decision variable related to project link a ∈ A2, taking value 1

or 0 depending on acceptance or rejection of project link a ∈ A2

y vector of ya’s with dimension equal to |A2|, y 0 (…, ya, …)T

ta(xa) the travel cost on link a ∈ A defined as a positive and continuous
function of link flow xa which is often representing average travel
time on link a ∈ A

ga cost of establishing link a ∈ A2

B total available budget

Based on the above notations, the DNDP problem under the deterministic
user equilibrium can be formulated as the following bi-level programming
model:

min
y

ZU ¼
X
a2A

xataðxaÞ; ð1Þ

s:t:
X
a2A2

yaga � B; ð2Þ

ya 2 0; 1f g; 8a 2 A2 ð3Þ

Where ZU and ZL in (1) and (4) are the upper and lower-level objective functions,
respectively. The upper-level decision maker decides which links should be estab-
lished considering the response of users to resulted changes in the form of user
optimum equilibrium. Constraint (2) indicates budget limitation; constraints (4)–(9)
assert UE conditions; constraints (5) prohibit flow on non-constructed new links;
constraints (6) are flow conservation and assure that the demands of all commodities
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will be satisfied and the balance of receive and delivery is held in each node;
constraints (7) are flow aggregators so that the total flow on each link is the sum of
the flows of all commodities on that link; and Constraints (3) and (8) show the
positiveness and binary mode of decision variables. In constraint (5), M is an
arbitrarily large positive number. Formulation (1)–(9) is based on the link-node flows
such that the lower-level problem is formulated as a multicommodity network flow
problem in a link-node representation. A commodity is associated with each desti-
nation node s ∈ D, and the demand of commodity s in node i is represented by dsi .

As can be seen, in the multicommodity formulation the path information is not
needed. It should be noted that, based on the definitions and assumptions stated
before, the optimality conditions of the link-node formulation is equivalent to the UE
condition (Patriksson 1994). The lower-level problem is a convex mathematical
program which, because of the strict convexity of the objective function with respect
to the link flows, has a unique optimal solution in terms of link flows (Sheffi 1985).

4 Branch and bound (B&B) for DNDP

The general B&B method for DNDP of the form (1)–(9) is based on the key ideas of
branching (separating), bounding, and fathoming which are explained in the following
(For more information on B&B terminology and technical details, the interested readers
are referred to (Floudas and Pardalos 2009; Ibaraki 1987):

4.1 Branching

Let formulation (1)–(9) be denoted as (P) and let its set of feasible solutions be
denoted as FS(P). A set of sub-problems (SP1), (SP2), …, (SPn) of (P) is defined as a
separation of (P) if (a) A feasible solution of any of the sub-problems (SP1), (SP2),…,
(SPn) is a feasible solution of (P); and (b) Every feasible solution of (P) is a feasible
solution of exactly one of the sub-problems. In fact, conditions (a) and (b) imply that
the feasible solutions of sub-problems FS(SP1), FS(SP2),…, FS(SPn) are a partition of
the feasible solutions of problem (P). In B&B terminology, the original problem (P) is
called a root (parent) node problem while sub-problems are called the child node
problems (Floudas 1995). The relationships of the parent and child nodes in DNDP
could be represented by a binary tree. In this binary tree, each node corresponds to a
sub-problem; and from each non-leaf node two new nodes (sub-problem) are pro-
duced by branching on one of the binary decision variables ya, a ∈ A2; that is, in the
right child node ya01, while in the left child node ya00. The original problem P could
be considered as sub-problem (SP0) in root node. Sub-problem (SPn) based on its
local position in the tree is a restricted version of the original problem (P):

min
y

ZU ¼
X
a2A

xataðxaÞ; ð10aÞ

s:t:
X

a2A2nΛn

yaga � Bn ð10bÞ
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SPnð Þ : ya 2 0; 1f g; 8a 2 A2nΦn ð10cÞ

ya is fixed; 8a 2 Φn ð10dÞ
(5), (6), (7), (8), and (9)

where Φn is the set of fixed variables ya from root node to node n along with their
values; Bn is the budget available at node n which is obtained from subtracting the
summation of the cost of constructed projects from root node to node n. That is,

Bn ¼ B�
X
a2Φn

yaga ð11Þ

4.2 Bounding

A key issue in every B&B is its bounding scheme. Due to the Braess’ paradox
bounding in bi-level formulated DNDP has its special difficulties. More specifically,
in node n, for example, one cannot set all unfixed variables ya, ∀a ∈ A2\Φn equal to
one and find user equilibrium flows on the resulted network, because there is no
guarantee that the system level objective is improved by adding new links to the
network. Therefore, to avoid invalid lower-bounds, the bounding scheme should be
carefully designed. The following lemma is used to compute a lower bound in node n
of B&B search tree:

Lemma For any node n in the B&B tree, the optimal solution of sub-problem (SPn) is
greater than or equal to the optimal value of ðSP0

nÞ , which gives the least possible
congestion at the system optimal flows:

min
y;x

X
a2A

xataðxaÞ; ð12aÞ

s:t :
X

a2A2nΦn

yaga � Bn ð12bÞ

ðSP0
nÞ : ya 2 0; 1f g; 8a 2 A2nΦn ð12cÞ

ya is fixed; 8a 2 Φn ð12dÞ
(5), (6), (7), (8), and (9)

Proof See (LeBlanc 1975).
Sub-problem ðSP0

nÞ is a single-level mixed integer non-linear programming
(MINLP). In other words, it is a network design problem with system optimal flows.
LeBlanc (1975) did not solve sub-problem ðSP0

nÞ and in turn, used a more relaxed
problem for bounding in which all unfixed variables are set equal to 1. In fact, fixing
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all unfixed variables at 1 and computing system optimal flows underestimate the
upper-level objective with a high gap. This leads to inefficient lower bounds. More
details and computational implications of his work will be presented in the next
section. Sub-problem ðSP0

nÞ can be optimally solved by an algorithm which will be
outlined in the Section 4.5. In each node, the optimal value of corresponding sub-
problem’s objective function should be obtained. As will be discussed later, in the
presented B&B, solving only one of two resulted sub-problems (left and right child
nodes) is needed, because the solution of one of the two resulted child nodes’ sub-
problems equals to the solution of the parent node’s sub-problem. This property
significantly decreases the computation efforts in B&B search algorithm. Based on
the bound of a node, in order to decide to expand or to stop expanding of the node,
some tests are done in the fathoming step.

4.3 Fathoming

The fathoming criteria are checked in each resulted node. In fact, in each node n it is
checked if the feasible solution of the sub-problem (SPn) can contain an optimal
solution of the problem (P). If the response to this question is no, then the node is
fathomed; and if the response is yes, then the solution should be found and the node is
fathomed. If no certain decision is made, then the node must be considered as a
candidate to more expansion in the continuation of the searching B&B tree. More
specifically, in each node n these criteria are evaluated: (a) Is there any unfixed
variable? If not, then the user optimal flows of the resulted network are computed; the
upper-level objective is determined, and the node is fathomed; (b) Is there enough
budget to construct more projects, or equally to set more ya 01, ∀ a ∈ A2\Φn? If not,
then all unfixed variables are fixed at 0, and user optimal flows of the resulted
network are computed; the upper-level objective is determined, and the node is
fathomed; and (c) Is the lower bound larger than or equal to the current incumbent?
If yes, the node is fathomed. The criterion (b) is satisfied if Bn < min{ga | a ∈ A2\Φn}.
In cases (a) and (b) where a new solution with a better upper-level objective is
obtained, it is kept as incumbent; and the search tree is scanned and all nodes having
lower bounds higher than or equal to the resulted incumbent are fathomed.

The pseudo-code of the proposed B&B algorithm is depicted in Fig. 1.

4.4 Algorithm description

The key steps of the algorithm are shortly explained in the following.
The proposed algorithm starts from the root node where no decision has

been made on building or not building new projects. The algorithm iteratively
selects a node from the list of active nodes based on the node selection
strategy. There are three main strategies to select a node from the active node
list L: depth first search, breathe first search, and best first search. There is a vector of
decision variables associated with each active node n indicating the status of the all
projects from the root node to node n. The elements of this vector, each of which
corresponds to one project, take three values 1, 0, and −1 which, in turn, indicate
fixed at 1 (build), fixed at 0 (not to build), and unfixed (no decision made yet),
respectively. The status of decision variables in each node is shown by a column
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Fig. 1 Pseudo-code of proposed branch and bound for DNDP
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vector of size |A2| in column n of matrix Λ. Matrix Λ is a matrix of dimension |A2|×
Nmax where Nmax is the maximum number of active nodes in the B&B search tree. It
could be approximately set to a fixed number and in cases where more active nodes
appear in the tree, the matrix is rescaled. In our conducted experiments, it was set to
100, and it was not violated by the algorithm. It does not seem to be so memory
restrictive in today’s computers.

First, the sub-problemðSP0
0Þ ,ðSP

0
nÞ at root node (n00), is solved, and this leads to

the lowest lower-bound for the original problem P because all sub-problems ðSP0
nÞ ,

n≠0, are the restricted versions of sub-problem ðSP0
0Þ . The optimal solution of sub-

problem ðSP0
0Þ which is indicated by ŷ in pseudo-code is stored in the column n of

matrix yso. Matrix yso, like matrix Λ, is of dimension |A2|×Nmax. It is obvious that the
optimal solution of sub-problem ðSP0

0Þ is also a feasible solution for the original
problem P. Therefore, if the user optimal flows of the resulted network are computed
and put into the objective function of problem P, a solution is obtained in the root
node. This solution (incumbent in the root node) is an upper-bound (UB) for problem
P. In the pseudo-code, the current incumbent, its associated solution, and user optimal
flows are stored in UB and y*, x*, respectively. In most cases, the gap between the
resulted incumbent and the optimal solution of problem P is small and, hence, the
incumbent in root node is very useful in the fathoming step.

In each iteration, one node from active nodes is selected; and in the selected
node, one unfixed variable is fixed, or simply the decision on building a project
is separated. This leads to two new active nodes, namely, right and left child
nodes. Once a node is created, it is checked to see if all variables are fixed (the
created node is a leaf node) or not. In the case of arriving at a leaf node, user
optimal flows are computed, and the corresponding upper-level objective is
compared with the current UB. If the upper-level objective is lower than UB,
then UB and y* are updated. If the node is not a leaf node, then the bounding step is
performed. Since the lower bound of one of the child nodes equals to that of the
parent node, only one lower bound is computed in each iteration. This is because the
value of the branching variable in the solution of the sub-problem corresponding to
the parent node is either 0 or 1. In the former case, it does not need to compute the
lower bound for the left child node, and in the latter case this holds for the right child
node. This property improves computation costs significantly. Once a right child node
is added to the search tree, the level of available budget at that node is checked. If the
available budget does not suffice to build any other project, all unfixed variables are
fixed at 0, and user optimal flows are computed, and the corresponding upper-level
objective is compared with the current UB. If the upper-level objective is lower than
UB, UB and y* are updated, and the node is fathomed. Since the available budget of
the left child node is the same as that of the parent node, the available budget is not
checked when a left child node is added to the search tree.

4.5 Computing lower bounds

The method of computing the lower bounds in the search tree is the main
concern of any B&B algorithm. In each iteration, two new nodes are added to
the search tree, but only one lower bound needs to be computed through
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solving problem (SP′). For the ease of reference, let rewrite the formulation of
ðSP0

nÞ in node n as follows:

min
y;x

f ðx; yÞ; ð13aÞ

s:t: g x; yð Þ � 0; ð13bÞ

ðSP0
nÞ : x 2 X; ð13cÞ

y 2 Y: ð13dÞ
where,

f x; yð Þ ¼
X
a2A

xataðxaÞ; ð14Þ

g x; yð Þ ¼ xa �M ya; 8a 2 A2; ð15Þ

X ¼ fxa ¼
X
s2D

xsa; 8a 2 A;
X
a2Aþ

i

xsa �
X
a2A�

i

xsa ¼ dsi ; 8i 2 N ; 8s 2 D; xsa � 0; 8a

2 A; 8s 2 Dg � RjAj; ð16Þ

Y ¼ f
X

a2A2nΛn

yaga � Bn; ya 2 0; 1f g; 8a 2 A2nΦn; ya is fixed; 8a 2 Φng ¼ f1; 0gjA2j; ð17Þ

Problem ðSP0
nÞ is a MINLP formulation such that: (a) objective function is convex

and differentiable, (b) constraints are linear, X is a compact convex set, and Y is a
finite set of binary elements and (c) for any fixed y, the resulted NLP, which is a
system optimal equilibrium problem, has an optimal solution. Therefore, this problem
can be optimally solved by algorithms like generalized Benders’ decomposition
(GBD) (Floudas 1995; Geoffrion 1972), and outer approximation (OA) (Duran and
Grossmann 1986; Fletcher and Leyffer 1994). The key idea underlying these algo-
rithms is that in each iteration they generate an upper-bound and a lower-bound on the
MINLP optimal solution. They alternate between solving a nonlinear programming
(sub-problem) and solving a mixed integer linear programming (master-problem). The
sub-problems of both methods for ðSP0

nÞ are similar, and the major difference between
them lies in the different derivations of the master problem. Both algorithms were
experimentally tested; however, since OA had superior performance, only the OA
related formulation is presented. Problem ðSP0

nÞ can be written as:

min
y

inf
x
f ðx; yÞ; ð18aÞ

s:t: g x; yð Þ � 0; ð18bÞ

x 2 X; ð18cÞ

y 2 Y: ð18dÞ
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Since the inner problem is bounded (it is a parametric in y system optimal
equilibrium), infimum could be replaced by minimum. Let

V ¼ fy 2 Yjthere exists x 2 X such that g x; yð Þ � 0g: ð19Þ
For any y ∈ V, Let υ(y) be the optimal value of the following nonlinear sub-

problem:

min
x

f x; yð Þ; ð20aÞ

NLPðyÞ : s:t:g x; yð Þ � 0; ð20bÞ

x 2 X : ð20cÞ
NLP(y) is the system optimal equilibrium flow problem for the network

corresponding to the y ∈ V. In fact, NLP(y) is a restricted version of problem ðSP0
nÞ

because only a specific feasible y out of all y ∈ V has been chosen. Therefore, the
optimal solution of the NLP(y) is a feasible solution for problem ðSP0

nÞ and more

importantly, υ(y) is an upper bound to the optimal value of problemðSP0
nÞ .

Then problem ðSP0
nÞ is equivalent to the following problem:

min
y

uðyÞ; ð21aÞ

s:t:y 2 Y \ V ð21bÞ
Note that Y∩V represents the projection of the feasible space of problem ðSP0

nÞ
onto the y-space. Problem (21a, 21b) is difficult to solve because both V and υ(y) are
known implicitly (Duan and Xiaoling 2006; Floudas 1995). To cope with this
difficulty, Duran and Grossmann (1986) used the outer linearization of υ(y) and a
particular representation of V. Then based on Duran and Grossmann’s (1986) argu-
ments for the general formulation of MINLP, it is concluded that problem ðSP0

nÞ is
equal to the following problem:

min
ðx;yÞ2Ω

f ðx; yÞ ¼ min
yk2V

min
x2X

f ðx; yÞjgðx; ykÞ � 0
� � ð22Þ

¼ min
yk2V

min f ðxk ; ykÞ þ rT f ðxk ; ykÞ x� xk

0

� �
; ð23aÞ

s:t: gðxk ; ykÞ þ rTgðxk ; ykÞ x� xk

0

� �
� 0; ð23bÞ

x 2 X: ð23cÞ
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¼ min
yk2V

min η ð24aÞ

s:t: η � f ðxk ; ykÞ þ rT f ðxk ; ykÞ x� xk

0

� �
; ð24bÞ

0 � gðxk ; ykÞ þ rTgðxk ; ykÞ x� xk

0

� �
; ð24cÞ

x 2 X; ð24dÞ

η 2 R1: ð24eÞ

Inviewof thefact thatg(x, y) is linear, constraints (24c) is simplified to 0 � gðx; ykÞ .
Now, let

K* ¼ fkjyk 2 V and xk are system optimal equilibrium flows corresponding toNLP yk
� �g:
ð25Þ

Then the following master problem is equivalent to problem ðSP0
nÞ (Duran and

Grossmann 1986).

min η ð26aÞ

s:t: η � f ðxk ; ykÞ þ rT f ðxk ; ykÞ x� xk

y� yk

� �
; k 2 K; ð26bÞ

0 � gðxk ; yÞ; k 2 K�; ð26cÞ

M � OA : y 2 V ; ð26dÞ

(24d) and (24e).
Note that since the function f(x, y) is convex and g(x, y) is linear, the linearizations

in M-OA correspond to outer approximations of the nonlinear feasible space of
problem ðSP0

nÞ . It is assumed that the current transportation network is a connected
network and, hence, for any yk ∈ V there exist system optimal equilibrium flows xk, or
equally, NLP(yk) sub-problem is always feasible. Therefore, constraint yk ∈ V can be
replaced by yk ∈ Y. Nevertheless, if NLP(yk) sub-problem is infeasible, the algorithm
can solve the problem by adding one infeasible cut to the master problem. In addition,
since solving the master problem M-OA requires enumerating all feasible binary
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variables yk, another relaxed version of M-OA is considered in which the solution of
previous NLP(yk) sub-problems, k01,2, …,K, is employed and thus:

min η ð27aÞ

s:t: η � f ðxk ; ykÞ þ rT f ðxk ; ykÞ x� xk

y� yk

� �
; k 2 K; ð27bÞ

RM � OA : 0 � gðxk ; yÞ; k 2 K; ð27cÞ

(26d), (24d) and (24e).
Since problem RM-OA is a relaxed version of M-OA, the solution of problem RM-

OA is a lower-bound for problem ðSP0
nÞ . Furthermore, since function linearizations

are accumulated as iterations k proceed, the sequence of the lower-bounds resulting
from solving the master problem RM-OA is non-decreasing. Adding the following
integer cut can improve convergence time because it prevents master problem from
choosing the previous 0–1 values examined at the previous K iteration (Duran and
Grossmann 1986).

X
a2Bk

ya �
X
a2Nk

ya � Bk
�� ��� 1; k ¼ 1; . . . ;K: ð28Þ

where Bk ¼ ajyka ¼ 1
� �

and Nk ¼ ajyka ¼ 0
� �

}.
As the iterations proceed, two sequences of updated upper-bounds and lower-

bounds are obtained, which are shown to be non-increasing and non-decreasing,
respectively. Duran and Grossmann (1986), have shown that these two sequences
converge in a finite number of iterations. The pseudo-code of OA based algorithm to
solve problem ðSP0

nÞ is presented in Fig. 2.
When the network is not small, solving NLP(yk) sub-problems and computing

system optimal equilibrium flows xk at iteration k using off-the-shelf NLP optimiza-
tion softwares is very difficult. This is not prohibitive because there are efficient
algorithms to compute system optimal flows for large networks (e.g. Frank-Wolf
(LeBlanc et al. 1975) and Bush-based algorithms like DBA (Nie 2010)). In all
conducted experiments, Frank-Wolf was used to solve NLP sub-problems.

Remark 1 In each node of the B&B search tree, variables have been partitioned in
two disjoint sub-sets, namely fixed variables and unfixed variables. While the search
proceeds to deeper nodes, the number of unfixed variables decreases, and number of
fixed variables increases. This leads to a simpler master problem of ðSP0

nÞ . Therefore,
solving problem ðSP0

nÞ by OA is more likely to be easier in deeper nodes of B&B
search tree -in order to obtain the lower-bound- than it is in shallow nodes of the tree.
In other words, while the search visits deeper nodes, the computation time of
bounding potentially decreases or at least does not increase.
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4.6 Variable selection for branching

Variable selection for branching on the selected node can have a significant influence
on the performance of the B&B algorithm. Because robust techniques for identifying
branching variables have not been established yet, a common way of choosing a
branching variable is using heuristics. In the proposed algorithm, the bounding step
provides useful information to guide the choice of a high-impact branching variable.
A heuristic impact index is assigned to unfixed variables based on the solution of
problem ðSP0

nÞ in the node n. This index reflects branching priority of unfixed

variables. First, unfixed variables are sorted based on the solution of problem ðSP0
nÞ

such that variables having value 1 are put at the higher level comparing to the
variables having value 0. Then, variables are sorted decreasingly based on the total
travel cost of their associated links, namely, xat(xa). Therefore, the branching variable
is one which has value 1 in the solution of ðSP0

nÞ and has the highest associated total
travel cost in the resulted network.

5 Numerical results

In this section, the validity of the proposed algorithm is evaluated, and the results are
compared with those of the previous works. To this end, four test problems are
presented. The first test problem is a small network with a low number of new links.
The first test problem is a case in which Braess’ paradox may occur; the second one is
the well-known Sioux-Falls network with 5 new links; the third problem is a small
network with a relatively large number of proposed new links; and the fourth one is a
relatively large network with a moderate number of new links. The details of the
tested problems are reported in Table 1.

All experiments were carried out on a HP Pavilion dv3 with 4 GB RAM and a
2.26 GHz Core2Duo CPU. The main body of B&B was coded in MATLAB. CPLEX
12.2 was used to solve MIP master problems in the lower bounding step. The parallel
optimization mode of CPLEX has been set to deterministic mode. In all conducted

// Initialization: 
A feasible y0 is given. 

Select a small positive number  as convergence tolerance.

k  0, UBD = LBD = -

While (UBD - LBD) do
Solve NLP(yk) and compute system optimal flows xk

(yk) f(xk, yk) 
if (yk) < UBD   Then 
UBD (yk) 

y* yk, x* xk

End if
Solve RM-OA, store the solution in yk+1, LBD

k k+1 
End while 

Fig. 2 Pseudo-code of OA based algorithm to solve problem ðSP0
nÞ in bounding step
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experiments, Frank-Wolf algorithm coded in C++ language with convergence rate
0.01 or maximum 20 iterations was used to solve NLP sub-problems. Hereafter, we
abbreviate our proposed algorithm as FS-B&B. In all experiments, a column vector of
size |A2| with zero elements is given as initial solution to G-GBD.

5.1 Comparative results

To validate the efficiency of the proposed algorithm, the performance of the proposed
algorithm is compared with those of the previous ones proposed for DNDP including
LeBlanc’s B&B (LeBlanc 1975) (hereafter abbreviated as L-B&B), Gao et al.’s GBD
based algorithm (Gao et al. 2005) (hereafter abbreviated as G-GBD), and Poorzahedy
and Abulghasemi (2005) and Poorzahedy and Rouhani’s ( 2007) ant system based
meta-heuristics (hereafter abbreviated as PAR-AS). LeBlanc’s B&B is an exact
algorithm guarding against Braess’ paradox. G-GBD algorithm is an exact algorithm
(as claimed in the published paper) which uses GBD main concepts as well as the
relationship between user and system optimal flows. However, we experimentally
show that the algorithm proposed by Gao et al. (2005) cannot guarantee the optimal-
ity of the solution. It especially does not guard against the Braess’ paradox. More
specifically, their algorithm offers solutions, which really make the system-level
objective worse, although the algorithm converges to a specious solution with a
better objective. PAR-AS is an ant system based meta-heuristics which was introduced
in (Poorzahedy and Abulghasemi 2005) and was later improved in (Poorzahedy and
Rouhani 2007) through being hybridized with genetic algorithm, simulated anneal-
ing, and tabu search. We only report the best results obtained from the base ant
system in their earlier work (Poorzahedy and Abulghasemi 2005) and its improve-
ment 1 in their later work (Poorzahedy and Rouhani 2007).

Test problem 1 The network of the first test problem is shown in Fig. 3. This problem is
a modified network of the one which has been reported in (LeBlanc 1975). The travel
time function of each link is depicted close to the link. There are three new links (3,
2), (5, 6), and (6, 7) with construction cost 8, 5, and 4 units of money, respectively.
The decision variables corresponding to these new links are denoted by vector (y1, y2,
y3)

T. There are three OD pairs (1, 7), (5, 1), (3, 8) with demand 2, 5, and 5,
respectively. The problem is solved in two budget scenarios 9 and 17 units of money.

The detailed results of all four mentioned algorithms on test problem 1 are
presented in Table 2. Column 1 and 2 show the ratio of available budget to the total

Table 1 Detail of test problems

Test problem |N| |A| |A1| |A2| one/two-way
new projects

OD pairs

1 8 14 11 3 1 3

2 24 76 66 10 2 528

3 16 42 17 25 1 2

4 100 317 287 30 2 817
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cost needed to build all projects (B/C), and the absolute value of available budget,
respectively. Column 3 contains the optimal value of the system-level objective of
each scenario. Column 4 includes the names of the algorithms. Column 5 and 6 show
the objective value corresponding to each algorithm and the final solution they
provide, respectively. As shown in Table 1, all algorithms except G-GBD converge
to the optimal solution in both budget scenarios. The solution (y1, y2, y3)

T0(0, 0, 0)T

is given to G-GBD as the initial solution. G-GBD converges to solutions with the
system level objective 2554.964 and 2514.028 in budget levels 9 and 17, respectively.
In budget level 9 the new link (3, 2) is suggested to be established, and in budget level

t(x
) =

40
+ 0.

5·
(x)

4

t(x
) =

40
 +

0.4
5·

(x)
4

t(x) =
150 + 0.9·(x) 4

t(x) = 160 + 0.75·(x) 4

t(
x)

=
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+
1.

1·
(x

)4

t(x)
=

20
+

1.1·(x) 4

t(x
) =

 40
 +

 0.
5·

(x)
4

t(x) =
20 + 0.2·(x) 4

t(x)
=

20
+

1·(x) 4

t(x
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 0.
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Fig. 3 Test network 1. A hypothetical network for Braess’ paradox

Table 2 Results for test problem 1: Braess’ paradox

B/C Budget optimal objective
value

Algorithm Objective
Value

Solution (y1, y2, y3)
T

0.53 9 2686.516 L-B&B 2686.516 (0, 0, 0)T

PAR-AS 2686.516 (0, 0, 0)T

G-GBD 2895.925 (1, 0, 0)T

FS-B&B 2686.516 (0, 0, 0)T

1 17 2686.516 L-B&B 2686.516 (0, 0, 0)T

PAR-AS 2686.516 (0, 0, 0)T

G-GBD 2946.683 (1, 1, 1)T

FS-B&B 2686.516 (0, 0, 0)T

“L-B&B” 0 LeBlanc B&B, “G-GBD” 0 Gao et al. Generalized
Benders Decomposition,

“FS-B&B” 0 The proposed B&B “PAR-AS” 0 Poorzahedy, Abulghasemi
and Rouhani’s Ant System
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17 all the three new links (3, 2), (5, 6) and (6, 7) are suggested to be established as
well. However, if the user equilibrium flows and the associated system-level objec-
tive of the resulted network are computed, it is found that the true value of the system-
level objective equals 2895.925 and 2946.683 for budget levels 9 and 17, respectively.
In fact, the algorithm converges to a point different form the true objective value. But the
main fault of G-GBD is that it suggests the worst solution (y1, y2, y3)

T0(1, 1, 1)T,
because the optimal solution is (y1, y2, y3)

T0(0, 0, 0)T with system-level objective
value 2686.516. As a matter of fact, the algorithm falls in the trap of Braess’ paradox.
This shows that G-GBD may converge to a point whose value is not the true system-
level objective. By inspecting the generated bounds in each iteration, one can find
that the provided upper bounds are not valid and this, in turn, makes the algorithm
converge to a non-optimal solution. Therefore, the G-GBD algorithm should be
considered as a local optimal algorithm unless it is explicitly assumed that conditions
like the Braess’ paradox do not happen. There is no guarantee for PAR-AS to guard
against the Braess’ paradox, although in this specific case it found the optimal
solution.

Test problem 2 Sioux-Falls network is a well-known test problem for both DNDP and
CNDP. We use almost the same data as reported in (LeBlanc 1975).1 Here, we assume
that all the proposed projects are new links, and that their associated head and tail
nodes are not directly connected. This test problem is somewhat different from that of
(LeBlanc 1975) where the proposed projects are links which should be upgraded to a
specific level. Briefly, in this test problem |N|024, |A|076, |A1|066, |A2|010, and the
available budget B03000,000. It is assumed that the proposed projects are two-way
streets and, hence, the total binary variables decreased to 5 variables each of which
corresponds to a new two-way street. Due to the network’s low number of new
projects, all the above-mentioned algorithms obtain the optimal solution. Set A2 and
cost of projects are assumed to be as follows:

A2 ¼ fP1 ¼ fð6; 8Þ; ð8; 6Þg; P2 ¼ fð7; 8Þ; ð8; 7Þg; P3 ¼ fð9; 10Þ; ð10; 9Þg;
P4 ¼ fð10; 16Þ; ð16; 10Þg; P5 ¼ fð13; 24Þ; ð24; 13Þgg;
g1 ¼ 650000; g2 ¼ 1000000; g3 ¼ 625000; g4 ¼ 1200000; g5 ¼ 850000:

The detailed results of employing all algorithms are presented in Table 3. Column
1 and 2 are the same as those of Table 2. Column 3–5 show the algorithm abbrevi-
ation, objective value, and the solution provided by each algorithm, respectively.
Column 6 shows either the total iteration to converge (for G-GBD) or the total
number of lower bound computations (for FS-B&B and L-B&B). These two indices
are the main indicators of computational costs of the mentioned algorithms. No index
is reported for PAR-AS because, firstly, there is no guarantee to obtain an optimal
solution, and secondly, the number of runs or ants is usually chosen by the user.
Column 7 shows the total CPU time of algorithms to terminate. As can be seen from
Table 3, all algorithms successfully obtain the optimal solution in a reasonable time.
In fact, there is no significant difference between the computational costs of G-GBD,
PAR-AS, and FS-B&B in any of the budget levels. Algorithm L-B&B needs more

1 Sioux-Falls network data are those that available on-line at: http://www.bgu.ac.il/bargera/tntp/.
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time in low budget levels and less time in high budget levels to find the optimal
solution or optimal confirmation of the found solution. As a result, reviewing
previous studies reveals that the performance of the developed algorithms has been
evaluated by small to medium-scale networks having a low number of projects being
the candidate to be added to the network. Since the computational efficiency of these
algorithms is mostly affected by the number of candidate projects, such test problems
could not be a good examination to evaluate the performance of algorithms dealing
with DNDP. Therefore, we devise a simple test problem with a relatively high number
of new projects and a large network with a medium number of new projects to
evaluate and compare the computational efficiency of the proposed and the previous
algorithms. These networks are presented in test problems 3 and 4.

Test problem 3 This problem has 16 nodes, 17 existing links, and 25 new links (see
Fig. 4.). The link travel time function is assumed as tðxaÞ ¼ T 0

a þ Bax4a , where T 0
a

and Ba are free flow travel time and constant of link a, respectively. The values of T 0
a

are depicted on links, and the values of Ba are assumed to be 10−6×T0
ij : There are two

OD pairs (1, 16) and (4, 13) each of which with demand 100.
In this test problem, there are totally more than 33×106 solutions in the solution

space when budget constraint is relaxed; This number of points is much larger than 32
solutions in case of 5 new projects and 1024 solutions in case of having 10 new
projects. The performance of previous algorithms and our proposed algorithm on this
test problem are compared. Table 4 shows the results of employing G-GBD, PAR-AS,
L-B&B, and FS-B&B on test problem 3. The results reported for PAR-AS algorithm

Table 3 Results for test problem 2: Sioux-Falls network

B/C Budget Algorithm Objective Value Solution Iteration/ bounding CPU time (s)

0.46 2×106 L-B&B 1.5839×107 3, 5 12 11

PAR-AS 1.5839×107, (8/10)a 3, 5 – 8b

G-GBD 1.5839×107 3, 5 9 7

FS-B&B 1.5839×107 3, 5 2 7

0.63 3×106 L-B&B 1.1320×107 3, 4, 5 13 13

PAR-AS 1.1320×107, (10/10)a 3, 4, 5 – 7b

G-GBD 1.1320×107 3, 4, 5 10 7

FS-B&B 1.1320×107 3, 4, 5 3 6

0.92 4×106 L-B&B 9.4208×106 1, 3, 4, 5 5 4

PAR-AS 9.4208×106, (10/10)a 1, 3, 4, 5 – 7b

G-GBD 9.4208×106 1, 3, 4, 5 11 9

FS-B&B 9.4208×106 1, 3, 4, 5 6 9

“L-B&B” 0 LeBlanc B&B, “G-GBD” 0 Gao et al. Generalized
Benders Decomposition,

“FS-B&B” 0 The proposed B&B “PAR-AS” 0 Poorzahedy, Abulghasemi
and Rouhani’s Ant System

a Frequency of finding optimal solution in 10 runs
b Average time for each run
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are the best obtained results from the base ant system and its improvement 1. Column
1 and 2 are the same as those of Table 2. Column 3 shows algorithms by their
abbreviations; and column 4 and 5 show their corresponding objective values as well
as the relative deviation of the resulted objective from optimal objective values
(relative deviation from optimal) in each scenario, correspondingly. The frequency
of finding the optimal solution by PAR-AS is shown next to its associate objective
value in column 4. Column 6 indicates the solution of each method in each scenario
in terms of selected projects to be built. Column 7 reflects the consumed budget
which is a portion of the available budget. This column was deliberately inserted to
show how each algorithm effectively consumes the available budget. Column 8 shows
the total CPU time for each method to solve related DNDP in each scenario. A limit
of 10 h of CPU time is imposed for L-B&B algorithm in each budget level. The total
number of nodes that L-B&B and FS-B&B need to compute lower bound, and the
total number of iterations that G-GBD needs to converge are the main factors of their
computational efficiency. Therefore, the number of computed lower bounds (L-B&B
and FS-B&B) or iterations (G-GBD) is shown in column 9. The best value for the
metric of each column in each budget scenario on the condition that the optimal
solution is obtained in the shortest time, is printed in bold.

Examining the PAR-AS by the provided simple test problem reveals that
unlike the reported results on small test problems of previous studies (Poorzahedy and
Abulghasemi 2005; Poorzahedy and Rouhani 2007), the algorithm is not able to find
the optimal solution in most budget levels. The algorithm was carried out over 50
runs in each budget level. It only finds the optimal solution in budget levels 100 in 4
runs out of 50 runs. Furthermore, in cases where the budget level is moderately tight,
and by implication, where there are enough combinations of projects satisfying
budget constraint, the gap between the solutions of PAR-AS and the optimal solution
is significant. G-GBD finds the optimal solution in budget levels 100, 200, 300, and
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400 in a time much longer than that of FS-H&B. It is worthy to note that in all four
budget scenarios, the convergent point of G-GBD is different from the system-level
objective, although the solution in terms of the selected projects was optimal. Hence,
to compute the objective value, the user optimal flows corresponding to the resulted
network is obtained and put in the system-level objective. This algorithm cannot
converge to the optimal solution in the next three budget levels. As mentioned in test
problem 1, G-GBD does not guarantee to obtain the optimal solution due to its invalid
upper-bound. In budget levels 500, 600, and 700, there relative deviation of G-GBD
objective value from the optimal solution is 12.48 %, 3.93 %, and 1.69 %,
respectively.

L-B&B can find global solutions in all cases in a CPU time much longer than that
of FS-B&B. In budget level 700 where the budget constraint is not so restrictive, L-
B&B terminates in a reasonable time. However, it is evident that in most practical
cases, the budget constraint is very restrictive. In cases with moderate budget level L-
B&B finds the optimal solution within 3 to 6 h. The number of computed bounds in
L-B&B is high. This is due to the significant gap between the lower bounds of
predecessor nodes and the incumbent solution. In fact, the lower bounds are not
effective. This has also been previously pointed by (Poorzahedy and Turnquist 1982).
In contrast, FS-B&B, due to its tight lower bounds, explores fewer nodes and
computes fewer lower-bounds.

As Table 4 shows, FS-B&B finds the optimal solution of the test problem 3 in all
cases in the shortest CPU time. Briefly, it outperforms all other algorithms in both
computational cost and solution quality. The time FS-B&B needs to compute lower
bounds varies around 0.5 to 2 s in different budget scenarios. The total number of
computed lower-bounds is small. This is partly due to effective branching variable
selection and node selection, and partly due to relatively tight lower bounds in
predecessor nodes.

Based on the above comparisons, test problem 3 reveals some drawbacks of the
existing algorithms, including disability of finding optimal or near optimal solution in
many cases in a reasonable time. This simple test problem, the key feature of which is
having enough number of new projects to challenge enumerative algorithms, exhibits
the shortcomings of the previous algorithms.

Test problem 4 This test problem is designed so that the network has enough nodes,
links, and OD pairs to challenge the proposed algorithm (Fig. 5). We arranged 4
copies of Sioux-Falls network in a 4-cell layout and connected some adjacent nodes.
We also added some new nodes and links to the network. The parameters of the links
are similar to those of Sioux-Falls network. The results of employing all above-
mentioned algorithms have been presented in Table 5. Columns of Table 5 are same
as those of Table 4. This problem is challenging for all algorithms due to the number
of links and OD pairs.

The results show that G-GBD does not find the optimal solution in any budget
level. Since the user optimal flows are very different from the system optimal ones,
the computed Lagrangian multipliers from the lower-level problem are not valid for
the upper-level problem and this, in turn, leads G-GBD to generate invalid upper-
bounds. It should be noted that computing optimal Lagrangian multipliers in the
lower-level problem has its own computational costs. G-GBD does not converge
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even in 3000 iterations in budget levels 500 and 600. The gap between the objective
value resulted from G-GBD and the optimal one, considering the system-level costs,
is significant. It is worthy to note that even 1 % improvement in system-level costs in
the network for real cases is remarkable. Algorithm PAR-AS provides the worst
quality solutions. By considering solutions of PAR-AS in test problem 3 and 4 over
various budget levels, it is implied that this algorithm tends to select more projects
than other algorithms. Comparing the performance of L-B&B with G-GBD and PAR-
AS indicates that this algorithm outperforms both other algorithms in terms of CPU
time and solution quality. In test problem 4 and in the budget level 700, L-B&B has
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Table 5 The results of the proposed algorithm on test problem 4 in comparison with the previous study

B/C Budget Algorithm Objective
Value

RDO
(%)

Solution Consumed
budget

Iteration/
bounding

CPU
time (s)

0.10 100 L-B&B 3.1652×106 0 6,11 94 95 106

PAR-AS 3.1652×106,
(2/50)a

0 6,11 94 – 267b

G-GBD 3.1814×106 0.51 2 97 15 118

FS-B&B 3.1652×106 0 6,11 94 13 89

0.20 200 L-B&B 2.9175×106 0 6,9 163 264 293

PAR-AS 2.9698×106,
(0/50)a

1.79 8,14 168 – 267b

G-GBD 2.9594×106 1.44 8,12 176 233 1934

FS-B&B 2.9175×106 0 6,9 163 9 98

0.29 300 L-B&B 2.8500×106 0 6,8,9 267 782 887

PAR-AS 2.9029×107,
(0/50)a

1.85 3,5,9,14 286 – 268b

G-GBD 2.8992×106 1.73 2,8,12 273 1081 9296

FS-B&B 2.8500×106 0 6,8,9 267 29 329

0.39 400 L-B&B 2.7842×106 0 2,6,8,9 364 938 1116

PAR-AS 2.9028×106,
(0/50)a

4.26 3,4,8,14,15 373 – 267b

G-GBD 2.8055×106 0.76 2,8,9,12 385 2649 23311

FS-B&B 2.7842×106 0 2,6,8,9 364 10 112

0.49 500 L-B&B 2.7442×106 0 1,2,6,8,9,10 488 1003 1194

PAR-AS 2.8369×106,
(0/50)a

3.38 3,5,6,7,8,10,11,14 490 – 266b

G-GBD 2.8332×106 3.24 1,4,5,7,8,10,13 465 3000c 27270

FS-B&B 2.7442×106 0 1,2,6,8,9,10 488 51 564

0.59 600 L-B&B 2.7112×106 0 1,2,6,8,9,10,11,15 600 887 1047

PAR-AS 2.7658×106,
(0/50)a

2.01 2,3,8,10,12,13,14,15 591 – 270b

G-GBD 2.8200×106 4.01 2,3,7,9,11,12,13,14 553 3000c 27390

FS-B&B 2.7112×106 0 1,2,6,8,9,10,11,15 600 84 769

0.69 700 L-B&B 2.6876×106 0 1,2,6,8,9,10,11,12,15 672 728 881

PAR-AS 2.7112×106,
(0/50)a

1.06 1,2,3,6,8,9,12,13,14 671 – 267b

G-GBD 2.7160×106 0.66 1,2,5,8,9,10,12,14,15 694 2437 22323

FS-B&B 2.6876×106 0 1,2,6,8,9,10,11,12,15 672 207 1840

“L-B&B” 0
LeBlanc B&B,

“G-GBD” 0 Gao et al.’s Generalized
Benders Decomposition,

“B/C” 0 Budget/Cost

“FS-B&B” 0 The
proposed B&B

“PAR-AS” 0 Poorzahedy, Abulghasemi
and Rouhani’s Ant System

“RDO” 0 relative deviation
from optimal

a Frequency of finding optimal solution in 50 runs
b Average time for each run
c G-GBD did not converge in 3000 iterations
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the best performance in terms of CPU time. Nonetheless, high budget levels are not
the main cases where practitioners need decision support tools for network design
purposes.

Algorithm FS-B&B solves test problem 4 in 6 budget levels having the ratio B/C
smaller than 0.6 with the best performance. The algorithm particularly works well in
budget levels ranging from small to medium (with a B/C ratio smaller than 0.4). An
interesting note about FS-B&B is its good quality first incumbent solution which is
obtained in the root node. The first incumbent solution in all budget levels for test
problem 4 and its relative deviation with the solution of FS-B&B (optimal solution),
G-GBD, and PAR-AS is presented in Table 6. Relative deviation of first incumbent
with a given algorithm X is calculated by:

relative deviation

¼ ½ðobjective value of first incumbentÞ � ðobjective value of algorithm XÞ�
objective value of algorithm X

ð29Þ
Reviewing the results shows that except budget level 100, the first incumbent of

FS-B&B was better than the solution of PAR-AS with a significant deviation. It was
also better than the solution of G-GBD in 5 budget levels out of 7 budget levels with a
considerable gap, and was the same as G-GBD’s solution in the 2 remaining budget
levels. Therefore, the first incumbent solution of FS-B&B can be a very good
heuristic solution for DNDP. This seems worthy when the CPU time of
obtaining the first incumbent is considered. The CPU time of obtaining the first
incumbent in all budget scenarios of test problem 3 and 4 was shorter than 3 and 10 s,
respectively.

Table 6 The relative deviation of the first incumbent of FS-B&B from the final solution of other algorithms

Budget First Incumbent
objective value

Relative deviation from the objective value of

FS-B&B PAR-AS G-GBD

100 3181379 −0.51 % −0.51 % 0.00 %

200 2919748 −0.08 % 1.71 % 1.36 %

300 2862726 −0.44 % 1.40 % 1.27 %

400 2805472 −0.76 % 3.47 % 0.00 %

500 2770601 −0.95 % 2.39 % 2.26 %

600 2721557 −0.38 % 1.62 % 3.62 %

700 2689721 −0.08 % 0.98 % 0.58 %

“FS-B&B” 0 The proposed B&B “PAR-AS” 0 Poorzahedy, Abulghasemi
and Rouhani’s Ant System

“G-GBD” 0 Gao et al.’s Generalized
Benders Decomposition,
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Another important point regarding the proposed algorithm is that most of its total
CPU time is spent on proving that the found incumbent solution is optimal. In other
words, a common situation in the proposed algorithm is spending a large amount of
computing time to improve the solution from a near-optimal to an optimal one. This is
also true about lower bounds such that during the search most of the nodes have a
tight lower bound which is close to the incumbent solution. If, for example, a
maximum deviation of 0.2 % from the optimum solution is tolerable for the upper-
level decision maker, the CPU time of algorithm termination in budget scenarios 6
and 7 drops from 769 and 1840 to 541 and 1283 s, respectively, while the optimal
solutions remain unchanged.

The reported results for FS-B&B on all test problems are the best solutions
obtained from the three before mentioned node selection strategies. In all test
problems, the best first search as the node selection strategy was the most
effective in terms of the number of both explored nodes and the total computed
lower-bounds. In other words, choosing nodes with the lowest lower bound in
each iteration leads to a node selection strategy with lowest computational cost.
In other words, it is more likely to have the optimal solution in nodes with the
smallest system objective under the system optimal flows. This is supported by
(Poorzahedy and Turnquist, 1982) work where they found that system-level objec-
tive under the user and system optimal flows has a high correlation in about 500
different experimental networks.

The effectiveness of the proposed heuristic for finding branching variable against
random branching variable selection was evaluated. In test problems 2–4 the average
computation time saved by using the proposed heuristic against random variable
selection was around 28 %, 39 %, and 47 %, respectively. Consequently, it is
concluded that the proposed heuristic for branching variable selection has a signifi-
cant effect on the total computation time of the algorithm.

5.2 Effects of congestion level on the performance of the algorithm

The computational cost of the proposed algorithm is strongly affected by the total
number of computed lower bounds. The number of computed lower bounds is
proportionate to the number of explored nodes of the B&B tree. The size of B&B
tree is significantly affected by the quality of the lower bounds and the incumbent
solution. The quality of the lower bounds and incumbent solution, however, is related
to the level of congestion. To examine the effect of congestion, the algorithm is
evaluated in different scenarios of congestion. To do that, Sioux-Falls network with
15 new one-way links (15 projects) is considered. It should be noted that we consider
more new links in the network to explore more aspects of the algorithm, although
these new links may not be possible to be added to the real Sioux-Falls network. The
solution space of the corresponding DNDP consists of 215 points when the budget
constraint is neglected.

We used the demand matrix of Sioux-Fall network (Poorzahedy and Rouhani
2007) as the basis. To study the congestion effect, we consider multiple demand
scenarios. These scenarios results from multiplying the basis demand matrix by a
certain factor (Demand Factor). Demand factor varies in the range [0.25, 2]. Besides,
available budget varies from 0.1 to 0.6 of the total cost of all proposed projects.
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Table 7 shows the result of applying the algorithm on all generated scenarios. Column
1 shows demand factor. Column 2 shows B/C ratio indicating the available budget
over total cost of all projects. Columns 3, 4, and 5 show computation time, the
number of solved lower bounding problems, and the optimal system-level objective
(vehicle-hour) of each scenario, respectively. Columns 6–9 show basic statistics
minimum, maximum, mean and standard deviation of volume/capacity of links of
the network corresponding to each demand factor. These columns indicate some
aspects of congestion level over the network. For example, in case of demand factor
1, the minimum and maximum of v/c ratio of all links are 0.25 and 2.78, respectively;
while the mean and standard deviation of v/c ratio of all links are 1.75 and 0.61,
respectively. These indexes show that in scenarios corresponding to demand factor 1
the level of congestion is high (level of service is low). On the other hand, these
statistics show the low level of congestion in the case of demand factor 0.25.

By reviewing the results of Table 7 some conclusions are drawn. The performance
of the algorithm is significantly related to the level of congestion. In the low to
medium congestion level (demand factor 0.25 and 0.5) algorithm converges to the
optimal solution rapidly; while it converges to the optimal solution more slowly in the
high congestion levels (demand factor 1 and 1.5). In cases where the congestion level
is extremely high (demand factor 1.75 and 2) the performance of the algorithm in
terms of both the computation time and the solved lower bounding problems is better
than cases of high congestion level. In other words, in the networks with low to
medium congestion, the quality of lower bounds is good. In highly congested net-
works, the quality of lower bounds gets worse, and it get improved again in severely
congested networks. The level of available budget affects the convergence time of the
algorithm in all demand scenarios negatively. Nevertheless, it seems that the impact
of congestion on the performance of the algorithm is higher than the available budget.
However, to scrutinize this feature of the algorithm more test problems and conditions
should be examined.

Figure 6 shows the variations of the lower and upper bounds as the algorithm
proceeds. In most cases, the algorithm finds the optimal solution in root node. In fact,
most of its search is devoted to prove the optimality of the incumbent solution
through updating the lower bound.

6 Conclusion

In this paper, a new branch and bound algorithm was proposed for the bi-level
discrete network design problem. The computational performance and the solution
quality of the proposed algorithm were evaluated on four test problems and compared
with previous relevant algorithms. The results showed that the proposed algorithm
outperforms previous algorithms in both CPU time and solution quality. It was
experimentally shown that previous simple test problems are not good exami-
nations to evaluate the performance of the existing algorithms. Therefore, two
new test problems were devised to shed light on some drawbacks of the previous
algorithms.

The main features of the proposed algorithm are: (a) it is complete, i.e. it can
provide the optimal solution if there is any, although its time complexity may be high
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in large-scale problems. As a characteristic feature, unlike some previous algorithms,
it guards against the Braess’ paradox; (b) it benefits from good strategies of node
selection and branching variable selection; (c) it benefits from a good lower-bounding
scheme, although it imposes extra computational costs to the algorithm. However, a
part of these computational costs is compensated by exploiting the lower-bounding
step through extracting effective guides to node as well as branching variable
selection.

The computational cost of the proposed algorithm is strongly affected by the total
number of computed lower bounds. Further studies can focus on different parts of the

(a) Demand Factor = 0.75, B/C = 0.3 

(c) Demand Factor = 1, B/C = 0.3  

(e) Demand Factor = 1.5, B/C = 0.3 

(b) Demand Factor = 00.75, B/C = 0.6 

(d) Demand Factor = 1, B/C = 0.6  

(f) Demand Factor = 1.5, B/C = 0.6 
Fig. 6 Upper and lower bound convergence in the different scenarios of demand and available budget
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lower bounding step. In the present work, a good algorithm was presented to compute
lower bound based on outer approximation. The algorithm is composed of two parts,
namely, master problem and sub-problem which are iteratively solved until they
converge. Sub-problems are efficiently solved by today’s traffic assignment algo-
rithms, but master problems may be difficult in cases having a high number of new
candidate links in a large network (e.g. more than 100 new links in a network with
more than 1000 links). Employing Bush-based algorithms, like OBA (Bar-Gera,
2002) and DBA (Nie 2010) for solving sub-problems can lead to faster convergence,
especially for large urban networks due to their superiority in memory usage and
computation time and also producing highly precise UE solutions. In the current
study, CPLEX solver was employed to solve master problems. Considering the
structure of the problem having a lot of multicommodity network flow constraints,
it is promising to develop specialized algorithms to solve the master problems more
efficiently. This can be studied in future works. The quality of lower bounds seems
good. By considering the fact that generally no explicit relationship has yet been
found between system and user optimal flows (Karakostas et al. 2011), lower bounds
are not expected to be improved significantly. Node selection and branching variable
selection strategies could be improved. In this research best first strategy had the best
performance comparing to depth first and breathe first search strategies. Yet, evalu-
ating a combination of these search strategies needs more investigation. The branch-
ing variable selection is also a candidate to be more studied in order to adopt more
effective variable selection strategy. In the current setting of the algorithm half of the
lower bounds of the total explored nodes need to be computed because of the
relationship between child and parent nodes of the B&B search tree. However, the
problems which are solved to compute lower bounds seem to have the potential to
reduce the computed lower bounds through finding better relationships among
downstream and upstream nodes. Finding such relations among the solutions of
lower bounding problems in different locations of the B&B search tree can be an
area which merits further research.

In the present work we focused on DNDP with deterministic traffic assignment in
the lower-level. The proposed algorithm can be easily adapted to non-deterministic
traffic assignments. In this case, the lower bounding step is affected such that the sub-
problems are non-deterministic user optimal traffic assignments. The computational
efficiency and more customization of the algorithm to such a model should be studied
in future studies. Finally, employing heuristics/meta-heuristics algorithms to have a
cooperative search seems to be good practice to make the algorithm more scalable.
The support to this idea is the feasible and near-optimal solution of DNDP in the root
node of the proposed B&B. This is appropriate for neighborhood search to move to
better solutions in a shorter time. Thus, as an area for further research, combining
heuristics/meta-heuristics algorithm with the proposed global method to exploit
advantages of both methods in order to provide a scalable method for large-scale
DNDP is suggested.
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Appendix A. The network data of test problem 4

The link parameters and OD trips data of test problem 4 are presented in Tables 8 and 9,
respectively. In Table 8 each link is shown in the form of i <0> j: (T, B, C, g), where i
and j are tail and head nodes, T is free-flow, B is the congestion factor, C is the
capacity corresponding to each link, respectively. The forth element, g, is the cost of
new projects. For existing links the value of g is left blank. The symbols <0> and ->
show two-way and one-way streets, respectively.

Table 8 Link parameters of test network 4

1<0>2: (6, 0.15, 25900.2, -) 34<0>39: (6, 0.15, 13512, -) 70<0>71: (4, 0.15, 5000, -)

1<0>3: (4, 0.15, 23403.47, -) 35<0>36: (6, 0.15, 4908.83, -) 71<0>72: (2, 0.15, 5078.51, -)

1<0>25: (4, 0.15, 14360.52, -) 35<0>38: (4, 0.15, 4876.51, -) 73<0>74: (6, 0.15, 25900.2, -)

2<0>6: (5, 0.15, 4958.18, -) 36<0>37: (3, 0.15, 25900.2, -) 73<0>75: (4, 0.15, 23403.47, -)

3<0>4: (4, 0.15, 17110.52, -) 37<0>48: (4, 0.15, 5091.26, -) 74<0>78: (5, 0.15, 4958.18, -)

3<0>12: (4, 0.15, 23403.47, -) 38<0>39: (5, 0.15, 5127.53, -) 75<0>76: (4, 0.15, 17110.52, -)

3->27: (4, 0.15, 14110.52, -) 38<0>47: (4, 0.15, 4924.79, -) 75<0>84: (4, 0.15, 23403.47, -)

4<0>5: (2, 0.15, 17782.79, -) 39<0>43: (3, 0.15, 14564.75, -) 76<0>77: (2, 0.15, 17782.79, -)

4<0>11: (6, 0.15, 4908.83, -) 39->46: (3, 0.15, 9599.18, -) 76<0>83: (6, 0.15, 4908.83, -)

5<0>6: (4, 0.15, 4948, -) 40<0>41: (2, 0.15, 5229.91, -) 77<0>81: (5, 0.15, 10000, -)

6<0>8: (2, 0.15, 4898.59, -) 41<0>43: (2, 0.15, 4823.95, -) 78<0>80: (2, 0.15, 4898.59, -)

7<0>8: (3, 0.15, 7841.81, -) 42<0>44: (4, 0.15, 23403.47, -) 79<0>80: (3, 0.15, 7841.81, -)

7<0>18: (2, 0.15, 23403.47, -) 43<0>44: (4, 0.15, 5002.61, -) 79<0>90: (2, 0.15, 23403.47, -)

8<0>9: (10, 0.15, 5050.19, -) 44<0>45: (6, 0.15, 5059.91, -) 80<0>81: (10, 0.15, 5050.19, -)

8<0>16: (5, 0.15, 5045.82, -) 44<0>50: (2, 0.15, 9560.18, -) 80<0>88: (5, 0.15, 5045.82, -)

9<0>10: (3, 0.15, 13915.79, -) 45<0>46: (2, 0.15, 5229.91, -) 82<0>83: (5, 0.15, 10000, -)

10<0>11: (5, 0.15, 10000, -) 45<0>48: (3, 0.15, 4885.36, -) 82<0>87: (6, 0.15, 13512, -)

10<0>15: (6, 0.15, 13512, -) 47<0>48: (2, 0.15, 5078.51, -) 83<0>84: (6, 0.15, 4908.83, -)

11<0>12: (6, 0.15, 4908.83, -) 48<0>49: (2, 0.15, 9560.18, -) 83<0>86: (4, 0.15, 4876.51, -)

11<0>14: (4, 0.15, 4876.51, -) 49<0>50: (6, 0.15, 25900.2, -) 84<0>98: (4, 0.15, 5824.79, -)

12<0>13: (3, 0.15, 25900.2, -) 49<0>73: (4, 0.15, 23403.47, -) 85<0>97: (4, 0.15, 4191.26, -)

12<0>36: (3, 0.15, 5891.26, -) 51<0>52: (4, 0.15, 17110.52, -) 86<0>96: (4, 0.15, 4991.26, -)

13<0>24: (4, 0.15, 5091.26, -) 51<0>60: (4, 0.15, 23403.47, -) 86<0>98: (6, 0.15, 4958.83, -)

13<0>37: (3, 0.15, 5091.26, -) 51<0>75: (4, 0.15, 6124.52, -) 87<0>91: (3, 0.15, 14564.75, -)

13<0>73: (2, 0.15, 9560.18, -) 52<0>53: (2, 0.15, 17782.79, -) 87<0>95: (3, 0.15, 8199.18, -)

14<0>15: (5, 0.15, 5127.53, -) 52<0>59: (6, 0.15, 4908.83, -) 88<0>89: (2, 0.15, 5229.91, -)

14<0>23: (4, 0.15, 4924.79, -) 53<0>54: (4, 0.15, 4948, -) 89<0>90: (2, 0.15, 12823.95, -)

15<0>22: (3, 0.15, 9599.18, -) 53<0>57: (5, 0.15, 10000, -) 89<0>91: (2, 0.15, 4823.95, -)

16<0>17: (2, 0.15, 5229.91, -) 54<0>55: (3, 0.15, 5248, -) 90<0>92: (4, 0.15, 23403.47, -)

17<0>18: (3, 0.15, 14424.75, -) 54<0>56: (2, 0.15, 4898.59, -) 91<0>93: (4, 0.15, 5002.61, -)

17<0>19: (2, 0.15, 4823.95, -) 55<0>66: (2, 0.15, 23403.47, -) 92<0>93: (6, 0.15, 5059.91, -)

18<0>20: (4, 0.15, 23403.47, -) 56<0>57: (10, 0.15, 5050.19, -) 93<0>94: (2, 0.15, 5229.91, -)

19<0>20: (4, 0.15, 5002.61, -) 56<0>64: (5, 0.15, 5045.82, -) 94<0>95: (4, 0.15, 5000, -)

20<0>21: (6, 0.15, 5059.91, -) 58<0>63: (6, 0.15, 13512, -) 94<0>97: (4, 0.15, 4924.79, -)
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Table 8 (continued)

20<0>74: (2, 0.15, 9560.18, -) 58<0>64: (4, 0.15, 4854.92, -) 96<0>97: (4, 0.15, 5100, -)

20<0>79: (5, 0.15, 22403.47, -) 59<0>60: (6, 0.15, 9908.83, -) 98<0>100: (2, 0.15, 6824.79, -)

21<0>22: (2, 0.15, 5229.91, -) 59<0>62: (4, 0.15, 4876.51, -) 99<0>100: (2, 0.15, 6824.63, -)

21<0>24: (3, 0.15, 4885.36, -) 60->84: (4, 0.15, 6900.2, -) 100->85: (4, 0.15, 5071.26, -)

23<0>24: (2, 0.15, 5078.51, -) 60<0>99: (4, 0.15, 5824.79, -) 10<0>16: (4, 0.15, 4554.92, 65)

25<0>26: (6, 0.15, 25900.2, -) 61<0>72: (4, 0.15, 5091.26, -) 13<0>14: (2, 0.15, 23523.47, 97)

25<0>27: (4, 0.15, 23403.47, -) 61<0>85: (3, 0.15, 6724.79, -) 19<0>22: (3, 0.15, 17780.81, 58)

26<0>30: (5, 0.15, 4958.18, -) 61->100: (4, 0.15, 6524.79, -) 31<0>32: (3, 0.15, 17841.81, 78)

27<0>28: (4, 0.15, 17110.52, -) 62<0>63: (5, 0.15, 5127.53, -) 34<0>40: (4, 0.15, 14854.92, 52)

27<0>36: (4, 0.15, 23403.47, -) 62<0>71: (4, 0.15, 4924.79, -) 41<0>42: (3, 0.15, 7731.81, 51)

28<0>29: (2, 0.15, 17782.79, -) 63<0>67: (3, 0.15, 14564.75, -) 46<0>47: (3, 0.15, 15000, 59)

28<0>35: (6, 0.15, 4908.83, -) 63<0>70: (3, 0.15, 9599.18, -) 49<0>52: (3, 0.15, 13898.59, 104)

29<0>30: (4, 0.15, 4948, -) 64<0>65: (2, 0.15, 5229.91, -) 50<0>55: (4, 0.15, 12057.82, 112)

29<0>33: (5, 0.15, 10000, -) 64<0>66: (3, 0.15, 19679.9, -) 57<0>58: (3, 0.15, 13915.79, 59)

30<0>31: (2, 0.15, 4898.59, -) 65<0>67: (2, 0.15, 4823.95, -) 62<0>99: (4, 0.15, 5524.79, 43)

31<0>42: (2, 0.15, 23403.47, -) 66<0>68: (4, 0.15, 23403.47, -) 77<0>78: (2, 0.15, 17782.79, 72)

32<0>33: (10, 0.15, 5050.19, -) 67<0>68: (4, 0.15, 5002.61, -) 81<0>82: (4, 0.15, 14854.92, 48)

32<0>40: (5, 0.15, 5045.82, -) 68<0>69: (6, 0.15, 5059.91, -) 82<0>88: (4, 0.15, 6124.52, 64)

33<0>34: (5, 0.15, 5345.82, -) 69<0>70: (2, 0.15, 5229.91, -) 95<0>96: (2, 0.15, 5078.51, 69)

34<0>35: (5, 0.15, 10000, -) 69<0>72: (3, 0.15, 4885.36, -)
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