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Abstract “Market Coupling” is currently seen as the most advanced market
design in the restructuring of the European electricity market. Market Cou-
pling, by construction, introduces what is generally referred to as an incom-
plete market: it leaves several constraints out of the market and hence avoids
pricing them. This may or may not have important consequences in practice
depending on the case on hand. Quasi-Variational Inequality problems and the
associated Generalized Nash Equilibrium can be used for representing incom-
plete markets. Recent papers propose methods for finding a set of solutions
of Quasi-Variational Inequality problems. We apply one of these methods to
a subproblem of market coupling namely the coordination of counter-trading.
This problem is an illustration of a more general question encountered, for
instance, in hierarchical planning in production management. We first discuss
the economic interpretation of the Quasi-Variational Inequality problem. We
then apply the algorithmic approach to a set of stylized case studies in order to
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illustrate the impact of different organizations of counter-trading. The paper
emphasizes the structuring of the problem. A companion paper considers the
full problem of Market Coupling and counter-trading and presents a more
extensive numerical analysis.

Keywords Generalized Nash Equilibrium · Quasi-Variational Inequalities ·
Market coupling · Counter-trading · European electricity market

JEL Classification D52 · D58 · Q40

1 Introduction

The restructuring of the European electricity market is a long process. The
integration of various national markets through the so called “Market Cou-
pling” (MC) is today the most advanced market design in continental Europe.
MC currently links the electricity markets of France, Germany, Belgium and
the Netherlands. It is based on the separation of the energy and transmission
markets. The energy market is subdivided into zones, each controlled by a
Power Exchange (PX1). These are interconnected by capacitated intercon-
nections, which, together with the zones, provide a simplified representation
of the grid. PXs clear the intra and inter zonal energy market taking these
limited capacities into account and assuming no limitation in the domestic grid.
Because the resulting flows may be not feasible for the real network TSOs
may have to intervene in order to eliminate overflows and restore network
feasibility. This is done by buying power injections and withdrawals at the
different nodes of the grid. This set of operations is known as counter-trading
or re-dispatching. They are the object of this paper. In contrast with the
now standard nodal US approach to restructuring that integrates the network
constraints in the energy market, MC concentrates on the energy market and
leaves it to the Transmission System Operators (TSOs2) to take care of these
network constraints by a mix of market and quantitative constructs. The result
is what economists call an incomplete market where several resources (here
network services) are not priced by the market. We concentrate on the removal
of congestion through counter-trading and look at its organization by different
TSOs through the glasses of a Generalized Nash Equilibrium (GNE), which
we show provides a natural context for modeling incomplete markets as also
explained by Smeers (2003a, b).

A Nash Equilibrium describes an equilibrium between agents interacting
through their payoffs: the action of one agent influences the payoff of another

1A Power Exchange (PX) is an operator with the mission of organizing and economically
managing (clearing) the electricity market.
2Transmission System Operator (TSO) is a company that is responsible for operating, maintaining
and developing the transmission system for a control area and its interconnections. See ENTSO
website.
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agent. A Generalized Nash Equilibrium involves agents that interact both at
the level of their payoffs, but also through their strategy sets: the action of
an agent can influence the payoff of another agent, but it can also change the
set of actions that this agent can undertake. The idea of using Generalized
Nash Equilibrium for modeling electricity transmission controlled by several
TSOs arises in a natural way: because of Kirchhoff’s laws, the actions of one
operator influence the set of possible actions of another operator. The concept
of GNE was first introduced by Arrow and Debreu (1954) and Debreu (1952)
where they refer to these problems as an abstract economy. The fundamental
paper of Rosen (1965), which introduces the notion of shared constraints and
normalized Nash Equilibrium (where the multipliers of the shared constraints
are equal among all players up to a constant factor), is also of particular
interest for this work. Apart from these pioneering contributions, only in the
nineties were GNEs recognized for their numerous applications in economics,
mathematics and engineering. In the context of electricity applications, Smeers
and Wei (1999), solve a GNE problem for an oligopolistic electricity market
where generators behave à la Cournot and transmission prices are regu-
lated. Pang and Fukushima (2005) show how a non-cooperative multi-leader-
follower game applied to the electricity market can be expressed as a GNE
problem. This latter model is an example of an Equilibrium Problem subject
to Equilibrium Constraints (EPEC) (see Ralph and Smeers 2006, for a related
example of such a problem in electricity). EPECs are more complex than the
GNE problems discussed here where we concentrate on shared constraints
problems (Rosen 1965) that arise when players share a common good (like
power, transport and telecommunication networks), but are not valued by the
market at a single price.

Generalized Nash Equilibria are related to Quasi-Variational Inequality
(QV I) models for which computational advances have recently been pro-
posed. QV Is are extensions of Variational Inequality (V I) problems (see
Facchinei and Pang 2003, 2010) They differ by both their mathematical
properties and economic interpretations. A QV I problem generally has a
plurality of solutions that include those of the underlying V I problem. This
paper uses the QV I problem and its associated V I by respectively referring to
the Generalized Nash Equilibrium (GNE) problem and one of its solutions.
The multiplicity of dual variables of the common constraints in a QV I
reflects the lack of a unique price for shared constraints and hence point
to a market incompleteness; the particular solution given by the V I gives a
unique price for each constraint and hence represents the complete market.
From a mathematical point of view, we are interested in characterizing the
market incompleteness by exploring solutions of the QV I where the dual
variables of the shared constraints differ. In his seminal paper (see Theorem
6 of Harker 1991), Harker proves that the V I solutions are the only points
in the solution set of the QV I when the dual variables associated to shared
constraints are identical for all players. This has an important implication:
solving the V I gives a solution to the QV I. Facchinei et al. (2007) and Kulkarni
and Shanbhag (2010) have pointed out the restrictive nature of Harker’s
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assumptions and proposed alternative ways to derive these results under more
general conditions. We follow Facchinei et al. (2007) presentation, which
directly applies to Rosen (1965) initial formulation of shared constraints and
hence perfectly fits our problem.

Solving the V I associated to a QV I does not say anything about the other
solutions of the QV I. Differently from V I, only few methods are available
for solving GNE problems (see Fukushima 2008 and Facchinei and Kanzow
2007 for a complete overview). This raises an interesting problem: because the
multiplicity of solutions is linked to market incompleteness, completing the
market by adding traded products should reduce the space of dual variables
and eventually lead to a single vector of dual variables, that is to a QV I for
which the solution set coincides with the one of the associated V I. This type
of problem has been studied in a different context by Kulkarni and Shanbhag
(2009). Besides their mathematical interest, we shall argue that these GNE
problems with unique solutions are of economic and policy relevance.

But, in this paper, our aim is to explore the set of solutions of the GNE
problem in order to assess possibly extreme welfare consequences of market
incompleteness. A recent paper by Fukushima in collaboration with Nabetani
and Tseng (see Nabetani et al. 2009) presents two parametrized V I approaches
respectively called “price-directed” and “resource-directed”, to capture all
GNEs. Both methods resort to a sampling of candidate V I problems to iden-
tify those that are true GNE problems. Experience shows that the sampling
can be rather inefficient in the sense that a large number of candidate problems
need to be tested in order to identify true GNE. More recently, Facchinei and
Sagratella (2010) provide an alternative “resource-directed” method that does
not suffer from the sampling problems of Nabetani et al.’s approach. Kubota
and Fukushima (2010), instead, use a regularized gap function to formulate
minimization problems equivalent to GNE problems. They prove that under
suitable assumptions any stationary point of the minimization problems solves
the given GNE problem. Solutions are computed using an algorithm based
on a barrier technique. For reason of economic intuition, we resort to the
price-directed approach, which can easily be interpreted in terms of market
incompleteness (difference of prices seen by different economic agents). We
thus explore the set of GNEs on the basis of economic intuition without
resorting to sampling.

The contribution of this paper can be summarized as follows. We formalize
a problem arising in the restructured European electricity system, namely
the organization of counter-trading by several TSOs as a GNE problem and
explore the space of GNE solutions through the price-directed parametriza-
tion algorithm proposed by Nabetani et al. (2009). This technique offers a
natural economic interpretation in terms of market incompleteness and price
multiplicity. We first discuss the economic interpretation of the variational and
quasi-variational inequality problems and some of its implications for algo-
rithmic purposes. We then apply the analysis to a set of counter-trading case
studies and report the results. Because the set of the transmission constraints
is not compact (flows and counter flows on a line can go to infinity while not
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constraining the lines or inducing losses) the question of existence of QV I
solutions is of particular relevance. A result of the paper is to give an economic
interpretation to the existence of the solution in terms of market completeness.
Specifically the solution set of the QV I boils down to the solution set of
the associated V I (that is a single solution in this case) when the market is
complete (and in that case efficient in the sense of welfare maximizing). We
also assess welfare losses in an incomplete market. The analysis is conducted
on a six node network that we assume to be subdivided into two zones (North
and South) linked by a capacitated inter-connector. Each zone is controlled by
a PX and a TSO. PXs are coordinated and operate as if they were a sole entity;
in contrast TSOs can operate with different degrees of coordination leading to
different GNE problems.

This paper concentrates on the models and their mathematical properties.
Two companion papers go in more details into the economics of the problem
(see Oggioni and Smeers 2010a, b). More specifically, we apply these models
to conduct more in depth numerical tests and illustrate the extreme cases
(loss of efficiency, loss of equilibrium, loss of counter-trading possibilities)
that these organizations can lead to. In fact, the separation of the energy
and the transmission markets typical of Market Coupling creates inefficiencies
that can be enhanced by the difficult cooperation among TSOs in managing
transmission services. In Oggioni and Smeers (2010b), we study these eco-
nomic inefficiencies by comparing two different zonal organizations of the
six node market here studied. We show that Market Coupling can be quite
vulnerable to the particular situation on hand and counter-trading can work
well or completely fail depending on the degree of TSOs’ integration and the
market zonal subdivision. The problem is that it is not clear beforehand what
will happen. These results are confirmed in Oggioni and Smeers (2010a), where
we enlarge the study to a prototype of the North-Western European electricity
market to take into account the recent evolution of this market organization.

The remainder of the paper is organized as follows. In Section 2, we recall
the mathematical background; Section 3 introduces the economic interpreta-
tion, the data and the network used for the empirical analysis. Section 4 is
devoted to the explanation of the models and some theoretical results, while
the results of the simulations are reported in Section 5. Finally, Section 6
concludes with the last observations.

2 Mathematical background

This section reviews the mathematical instruments used in the paper. The QV I
problem defined by the pair (K, F) is to find a vector x∗ ∈ K(x∗) such that:

F(x∗)T(x − x∗) ≥ 0 ∀ x ∈ K(x∗) (1)

where K(x) is a point-to-set mapping from �n into a subset of �n and F is a
point-to-point mapping from �n into itself.
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Suppose an economy where each player i ∈ I = {1, 2, . . . , N} solves a utility
maximization problem. Each player i controls the variables xi ∈ �ni . Denote by
x the vector of the decision variables x ≡ ((x1)T , (x2)T , . . . , (xN)T)T and let x−i

be the vector of the decision variables of all players −i with −i ∈ I and i �= −i.
We write the vector x as x = (xi, x−i) to emphasize decisions of player i. A
shared constraint imposes that x belongs to a set C ⊆ �n such that n = n1 +
n2 + · · · + nN . In a Generalized Nash Equilibrium with shared constrained C,
each player i sees the following optimization problem:

Maxxi ui(xi, x−i) (2)

s.t. xi ∈ Ki(x−i)

where for each i ∈ I, the set valued maps Ki : ∏
j�=i �n j → 2�ni and the map

K : �n → 2Rn
are defined as:

Ki(x−i) = {
xi ∈ �ni |(xi, x−i) ∈ C

}
and K(x) =

∏

i∈I

Ki(x−i) ∀x ∈ �n.

For any x−i, we denote the solution set of this problem as SOLGNE(x−i)

and thus solve a GNE problem that consists in finding a vector x∗ such that
x∗i ∈ SOLGNE(x∗−i) ∀i.

The QV I formulation of this GNE problem is then defined as follows: each
agent i solves

−∇xi ui(x∗i, x∗−i)T(xi − x∗i) ≥ 0 ∀ xi ∈ Ki(x∗−i) (3)

which can be restated for all agents in more compact form as:

F(x∗)T(x − x∗) ≥ 0 ∀ x ∈ K(x∗) (4)

where F(x∗)T ≡ (−∇T
x1 u1(x∗), ..., −∇T

xN uN(x∗)) and K(x∗) ≡ ∏N
i Ki(x∗−i).

Note that the variational inequality V I(K, F) associated to the given
QV I(K, F) problem is as follows:

F(x∗)T(x − x∗) ≥ 0 ∀ x ∈ K (5)

where F(x∗)T ≡ (−∇T
x1 u1(x∗), ..., −∇T

xN uN(x∗)) and K is a given closed and
convex set.

Different particularizations of the solution set of the QV I have been offered
in the literature. They are presented in the following through an example that
we complement with some economic interpretations that will be important in
the rest of the paper.

2.1 Particular cases

Consider the following market with three players (i = 1, ..., 3) with respective
cost functions θ1, θ2 and θ3 where θ1 = (x1)2 + 0.5(x2)2 + 0.5(x3)2 and similar
expressions apply to the other players. These functions are continuously
differentiable and strictly convex in the actions of each player (these are
globally strictly convex, but this will not be used in this section). The standard
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NE is obtained when each player minimizes its cost function taking the actions
of the others players as given. Player i = 1 solves the following optimization
problem:

Player i = 1:

Minx1θ1 = (x1)2 + 0.5(x2)2 + 0.5(x3)2 (6)

x1 ≥ 0 (ω1) (7)

with the other players i = 2, 3 solving similar problems. Dual variables of their
constraints are indicated at the right hand side in parenthesis.

The complementarity conditions associated to these three players’ problems
are as follows:

0 ≤ 2x1⊥x1 ≥ 0 (8)

0 ≤ 2x2⊥x2 ≥ 0 (9)

0 ≤ 2x3⊥x3 ≥ 0 (10)

The (unique) solution of this NE problem is x∗ = [0, 0, 0]T .
Introduce the following convex constraint x1 + x2 + x3 ≥ 1 that expresses

a common objective for the actions of the players,3 for instance delivering a
certain quantity of a product. Each player i solves its optimization problem
taking into account the objective expressed in the common constraint and the
action of the other agents. This gives a GNE problem with a shared constraint.
The modified first player’ s model is indicated below:

Player i = 1:

Minx1θ1 = (x1)2 + 0.5(x2)2 + 0.5(x3)2 (11)

x1 + x2 + x3 ≥ 1 (α1) (12)

x1 ≥ 0 (ω1) (13)

with similar models solved by the other players i = 2, 3.
The QV I(K, F) associated to the GNE problem indicated above is:

F(x)T(y − x) ≥ 0 ∀ y ∈ K(x) (14)

where F(x)T ≡ [2x1, 2x2, 2x3]T and K1(x2, x3) = {x1 ∈ �+| x1 + x2 + x3 ≥ 1},
K2(x1, x3) = {x2 ∈ �+| x1 + x2 + x3 ≥ 1} and K3(x1, x2) = {x3 ∈ �+| x1 + x2 +
x3 ≥ 1}.

3Note that in Facchinei et al. (2007), the non-common constraints (Eq. (13) and the analogous
variables for the other players) are assimilated to the common constraints. Those authors say:
“Note that usually there are two groups of constraints, those which depend on x and those depending
on a single player’s variables xi. For notational simplicity, and following the original paper by Rosen,
we include these latter constraints in the former ones”.
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Note that the variational inequality V I(K, F) associated to the given
QV I(K, F) problem is as follows:

F(x)T(y − x) ≥ 0 ∀ y ∈ K (15)

where F(x)T coincides with that of the corresponding QV I and K ={
x ∈ �3+| x1 + x2 + x3 ≥ 1

}
.

Theorem 3.1 of Facchinei et al. (2007) states that a solution x = (x1, x2, x3)

of this GNE problem that satisfies the KKT conditions of the players’
problems (Eqs. (11)–(13) and similar relations for the other players) with
α1 = α2 = α3, then x = (x1, x2, x3) is also a solution of the V I(K, F) problem.
We interpret this model as one where a market allocates the resources of
the common constraint through a single price α (= α1 = α2 = α3). This is
interpreted as a complete market. It corresponds to a situation where the
market players all have the same marginal cost and hence satisfy the common
constraint in an efficient way.

The solution of the QV I for which the dual variables of all players’ common
constraint are identical is obtained from the KKT conditions of the players’
problems as:

0 ≤ 2x1 − α⊥x1 ≥ 0 (16)

0 ≤ 2x2 − α⊥x2 ≥ 0 (17)

0 ≤ 2x3 − α⊥x3 ≥ 0 (18)

0 ≤ x1 + x2 + x3 − 1⊥ α ≥ 0 (19)

The solution is x∗ = [0.33, 0.33, 0.33]T , the common constraint is binding
and α amounts to 0.67.

Rosen (1965) considers another solution of the QV I problem where the
dual variables of the shared constraints are equal among all players up to
a constant exogenously given factor ri that depends on players, but not on
constraints. This is mathematically expressed as:

αi = α/ri i = 1, 2, 3 (20)

Rosen refers to this solution as normalized equilibrium. The normalized equi-
librium is based on the assumption that the set K, generated by the common
constraints, is convex and compact. In our simple example, this set K is only
convex. However, the players’ objective function are strictly convex and thus
coercivity can replace the compactness assumption to guarantee the existence
of a solution.
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The complementarity conditions of the modified problem are as follows:

0 ≤ 2x1 − α1⊥x1 ≥ 0 (21)

0 ≤ x1 + x2 + x3 − 1⊥ α1 ≥ 0 (22)

0 ≤ 2x2 − α2⊥x2 ≥ 0 (23)

0 ≤ x1 + x2 + x3 − 1⊥ α2 ≥ 0 (24)

0 ≤ 2x3 − α3⊥x3 ≥ 0 (25)

0 ≤ x1 + x2 + x3 − 1⊥ α3 ≥ 0 (26)

Rosen’s normalized equilibrium is obtained when the dual variables of the
shared constraints are equal among all players up to a constant factor ri.

We interpret this situation as one where there is an incomplete market for
driving the delivery of the good among the different players. Prices tend to
equalize, but there remains a gap. This can easily be interpreted as the bid-ask
spread found in insufficiently liquid markets. Assuming that r1 = 1.05, r2 = 1
and r3 = 0.95, the solution of the normalized Nash equilibrium becomes x∗ =
[0.32, 0.33, 0.35]T and the corresponding values of αi are as stated in Table 1.

Fukushima (2008) generalizes this notion and considers the more general
case of a restricted QV I or GNE problem by allowing that the relative values
of different resources differ among players. In order to illustrate this restricted
GNE and prepare for the next case, we slightly modify our GNE problem
by adding a new common constraint, let x1 − 2x2 − 4x3 ≥ 0, to all players’
problem. The optimization problems solved by the three players becomes:

Player i = 1:

Minx1θ1 = (x1)2 + 0.5(x2)2 + 0.5(x3)2 (27)

x1 + x2 + x3 ≥ 1 (α1) (28)

x1 − 2x2 − 4x3 ≥ 0 (β1) (29)

x1 ≥ 0 (ω1) (30)

with similar problems for the other players i = 2, 3.

Table 1 αi values in the
normalized equilibrium

αi Values

α1 0.63
α2 0.67
α3 0.70



512 G. Oggioni et al.

Table 2 αi and β i values at
equilibrium

αi Values β i Values

α1 1.04 β1 0.40
α2 0.99 β2 0.30
α3 0.94 β3 0.20

Let m = 1, 2 index the common constraints. Fukushima (2008) defines the
tuple x = (x1, x2, x3) to be a restricted GNE, if there exist Lagrange multi-
pliers λ = (λi

m) ∈ �6+ that satisfy KKTi, i = 1, 2, 3 together with the additional
conditions:

λ = (λi
m) ∈ �

where � is a nonempty cone ∈ �6+. The class of restricted GNE extends the
Rosen’s normalized equilibrium. In other words, one has a restricted GNE
when the ratio of shadow prices associated with the common resources is
neither too large nor too small for every pair of player4. Considering the new
formulation of three players’ example, this can be expressed by conditions:

δα1

r1 ≤ α2

r2 ≤ δα1

r1 and
δα2

r2 ≤ α3

r3 ≤ δα2

r2 (31)

εβ1

r1 ≤ β2

r2 ≤ εβ1

r1 and
εβ2

r2 ≤ β3

r3 ≤ εβ2

r2 (32)

where δ, δ, ε and ε are positive numbers such that δ ≤ 1 ≤ δ and ε ≤ 1 ≤ ε.
One may be interested in other solutions of the QV I. Suppose for instance

that we want to impose α1 = α + 0.05, α2 = α and α3 = α − 0.05, β1 = β + 0.1,
β2 = β and β3 = β − 0.1.

The solution of this particular GNE is x∗ = [0.72, 0.20, 0.08]T and the
corresponding values of αi are reported in Table 2.5

A particular case of the above is to impose α1 = α + 0.05, α2 = α and
α3 = α − 0.05 while β i = β. The solution to this GNE thus becomes x∗ =
[0.68, 0.29, 0.02]T with the corresponding αi and β i in Table 3. The inter-
pretation of this situation is an economic system where some resources are
effectively priced by the market (those that have identical dual variables),
but others are not or only imperfectly priced. This is the kind of GNE that
we want to tackle in this paper, when some but not all constraints have
identical multipliers (are priced by the market) and the difference between
dual variables can be interpreted as a lack of arbitrage in incomplete markets.

We motivate our interest in that problem in Section 3 where we discuss a
real world example of that situation. We now explain that the parametrized
V I approach proposed by Nabetani, Tseng, Fukushima (NTF hereafter), that
we briefly present next, provides an attractive way to handle that problem,
both numerically and in terms of its economic interpretation.

4Directly taken from Fukushima (2008).
5This relation corresponds to what we state in Proposition 1 that is presented in Section 4.2.2.
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Table 3 αi and β i values at
equilibrium

αi Values β i Values

α1 1.12 β1 0.24
α2 1.07 β2 0.24
α3 1.02 β3 0.24

2.2 The NTF price directive algorithm

Consider again the GNE defined as follows. For each i ∈ I = {1, ..., N}, find
x∗i such that for given x∗−i optimally solves the following convex optimization
problem:

Minxi θ i(xi, x−i) (33)

s.t. g(xi, x−i) ≤ 0, xi ∈ Xi

where g(xi, x−i) are the players’ common constraints (“shared constraints”
such that g = (gm)M

m=1 : �n → �m) depending also on the other players’ deci-
sion variables (strategies) and xi ∈ Xi ⊆ �ni are the individual constraints that
only depend on player i’s decision variables (strategies). More specifically, we
assume that the feasible strategy set Ki(x−i) of player i is defined as follows:

Ki(x−i) = {
xi ∈ Xi|g(x) ≤ 0

}

and it holds that:

K(x) =
N∏

i=1

Ki(x−i)

The parametrized V I approach proposed by Nabetani et al. solves that
GNE problem through a family of V Is defined as follows. Consider a problem
V I(X, Fγ ) where the (closed and convex) set X and the mapping Fγ : �n →
�n are as follows:

X = {
x ∈ �n|g(xi, x−i) ≤ 0

} ∩
∏

i∈I

Xi

Fγ (x) = (∇xiθ i(x) + ∇xi g(x)γ i)N
i=1 (34)

and γ i is a parameter assigned to each player i. These authors show that the
solution set of a GNE problem is a subset of the union of solution sets of these
parametrized V I(X, Fγ ). In Theorem 3.3 of Nabetani et al. (2009), they also
give conditions for identifying when a solution of V I(X, Fγ ) is effectively a
GNE. Consider the KKT conditions of the optimization programs that give
V I(X, Fγ ):

0 ∈ [(∇xiθ i(x) + ∇xi g(x)γ i) + ∇xi g(x)π
]
, i = 1, ..., N

0 ≤ π⊥g(x) ≥ 0, xi ∈ Xi, i = 1, ..., N



514 G. Oggioni et al.

Theorem 3.3 says that for any γ ∈ �Nm+ and any (x∗, π∗) ∈ �n × �m satisfy-
ing the KKT conditions indicated above, a suf f icient condition for x∗ to be a
GNE is that:

〈
g(x∗), γi

〉 = 0, i = 1, ..., N. (35)

If in addition a constraint qualification condition holds at x∗, then Eq. (35)
is also a necessary condition for x∗ to be a GNE. This algorithm can be easily
adapted to the problem treated in this paper.

In the following, we develop models based on the assumption (verified
in the counter-trading problem) that there exists a function θ(x) such that
∇θ(x) = [[∇xiθ i(x)]N

i=1

]
where [∇xiθ i(x)]N

i=1 is the vector of the gradients of θ i(x)

functions of players i computed with respect to xi. In addition, we assume (as
is also the case in the counter-trading problem) that the common constraints
g(x) are separable functions (see Section 3.2 for an example). This allows us to
transform a V I problem into an equivalent optimization problem.

The following section provides the economic intuition that motivates this
problem. We first present the problem in general terms and then adapt it to
the particular situation that is treated in Section 3.3.

3 Economic interpretation

3.1 A general production context

Nash equilibria are commonly used in economics to describe markets affected
by market power. In contrast, we concentrate in this paper on markets
where all agents are price takers and hence there is no market power (see
Metzler et al. 2003, for a fundamental paper dealing with the use of Nash
equilibria in the more standard context of market power). This was the context
adopted by Arrow and Debreu (1954) and Debreu (1952) for introducing
social equilibrium. Specifically we consider the following social equilibrium
problem that arises in production management. Consider the problem of
decentralizing the activities of an organization into different Business Units
(BU) that is each evaluated on its own performance. The interactions between
the business units are of two types. First, actions of one BU can influence the
payoff (performance index) of another BU . This is for instance the case of
a marketing department, that depending on its efficiency generates a demand
schedule for the production department that may force above or below normal
utilization of capacities and hence of production costs. Second, all BUs share
common constraints (resource availability or operations constraint) with the
implication that the actions of one BU can change the remaining resources
available to the other BUs. This is the case of a corporate department that
conduct investment analysis for the different BUs. Its manpower is limited
and cannot be modified instantaneously. More investment analysis for one BU
limits the manpower available for the other departments. Note that both types
of interactions are known by economists as externalities. Negative externalities



A Generalized Nash Equilibrium Model of Market Coupling... 515

create inefficiencies; positive externalities create benefits. While the organiza-
tion can in principle achieve its best result by an overall optimization, it is
believed that the centralization of operations required by this optimization
decreases individual incentives to be efficient (moral hazard in economic
parlance).

Decentralization consists in assembling activities in BUs and organizing
internal markets for shared resources. We explained that integrating all oper-
ations would maximize efficiency. In a similar way, efficiency justifies creating
an internal market for all common resources or restrictions in the decentralized
organization (see the treatment of common constraints in Dantzig–Wolfe
decomposition), except if, following Williamson’s theory (Williamson 1981),
externalizing transactions through these markets would increase costs with
respect to keeping them inside an integrated firm. There is thus a trade-off
in decentralization between increasing individual incentives towards efficiency
and incurring costs because of loss of coordination. We justify the introduction
of our problem as an instrument to measure the economic cost resulting from
the loss of coordination in decentralized operations.

The economic problem can be analyzed in two stages. A first question is to
group activities into BUs, the other is to decide which resource or restriction to
allocate through a market and which not. The first problem can be handled by
testing different groupings of activities. Suppose, in order to treat the second
question, that the decomposition of the overall organization in BUs is defined.
The question then arises as to the creation of an internal market for common
resources or restrictions. The resources or constraints allocated through an
internal market have a common price charged by all BUs. The other resources
can be valued differently by the different BUs without any market reconciling
these different valuations into a single price or opportunity cost. Inefficiency
arises from both improper grouping of activities and price differences that
signal residual arbitrage possibilities. Assessing this inefficiency can then be
done either by measuring the additional cost incurred by the decentralized
organization or by valuing the remaining arbitrage possibilities. The NT F
(price-directed) algorithm provides a particularly economically intuitive way
to tackle that problem. We apply these general ideas to the particular problem
of counter-trading in restructured electricity systems, that we describe after
introducing a GNE formulation of the above discussion.

3.2 Formulation in terms of GNE

3.2.1 Problem statement

We formulate the above problem in the following abstract way. There are
two BUs, each noted i = N, S (in order to use the same notation as in the
rest of the paper), respectively representing players in the “North” and in
the “South”. Each BU maximizes a utility function Ui(x) where x is the sum
of the xi, taking into account both common and individual constraints. We
adopt this particular dependence of the payoff of a BU on the actions of other
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BUs because it is the dependence found in the rest of the paper (this allows
us to avoid writing variational inequalities and conduct the whole discussion
in terms of optimization. Some of the constraints are considered sufficiently
important for organizing a common market. Others are seen as less important
and hence left to informal arrangements.

Player N (North) solves the following problem:

MaxxN U N(xN, xS) (36)

s.t.

X N(xN) ≥ 0 (νN) (37)

Y(xN, xS) = Y N(xN) + Y S(xS) ≥ 0 (μN) (38)

Z (xN, xS) = Z N(xN) + Z S(xS) ≥ 0 (λN) (39)

where the functions U N and X N are respectively the utility and the own
constraint of player N; Y and Z are the common and separable constraints,
Y denoting those for which a common market has been put in place.

The second player S (South) solves the following problem with the same
characteristic:

MaxxSU S(xN, xS) (40)

s.t.

XS(xS) ≥ 0 (νS) (41)

Y(xN, xS) = Y N(xN) + Y S(xS) ≥ 0 (μS) (42)

Z (xN, xS) = Z N(xN) + Z S(xS) ≥ 0 (λS) (43)

The two players compete in a GNE taking into account the shared constraints.
Referring to the above interpretation we impose that the dual variables μN and
μS are equal because they can be interpreted as a transfer price in the common
market of constraints Y. In contrast, λN and λS can be different because no
internal market has been created for these common constraints. νN and νS

refer to BUs’ own constraints and hence can be expected to be different. This
is a particular Generalized Nash Equilibrium in the sense that some of the
constraints are priced by the market and hence their dual variables are equal
for both players. But the market is incomplete in the sense that it does not
cover all common constraints and the dual variables of the uncovered con-
straints can be different. The theory of GNE tells us that there may be several
solutions to this problem, implying that the outcome of the organization is
intrinsically ambiguous. It is thus relevant to inquire whether these different
outcomes can be far apart, some of them being quite inefficient compared
to an outcome where all constraints would be priced by a complete market.
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Conversely one may wonder whether there are cases where the GNE has a
single outcome (the QV I and the associated V I having identical solution sets).

We explore this question by applying the parametrized variational inequal-
ity approach described by Nabetani et al. (2009) and construct the following
parametrized model. Assume that one can find a function U(xN, xS) such that:

∂xN U(xN, xS)

∂xN
≡ ∂xN U N(xN, xS)

∂xN

∂xSU(xN, xS)

∂xS
≡ ∂xSU S(xN, xS)

∂xS

This is the situation encountered in the rest of the paper. We then state the
problem:

MaxxN,SU(xN, xS) + (Z N(xN))γ N + (Z S(xS))γ S (44)

s.t.

X N(xN) ≥ 0 (νN) (45)

XS(xS) ≥ 0 (νS) (46)

Y(xN, xS) = Y N(xN) + Y S(xS) ≥ 0 (μ) (47)

Z (xN, xS) = Z N(xN) + Z S(xS) ≥ 0 (λ) (48)

One can verify that the KKT conditions of this problem are:

0 ≥ ∂xN U N(xN, xS)

∂xN
+ γ N ∂xN Z N(xN)

∂xN
+ νN ∂xN X N(xN)

∂xN
+ μ

∂xN Y N(xN)

∂xN

+ λ
∂xN Z N(xN)

∂xN
⊥xN ≥ 0

0 ≥ ∂xSU S(xN, xS)

∂xS
+ γ S ∂xS Z S(xS)

∂xS
+ νS ∂xS XS(xS)

∂xS
+ μ

∂xS Y S(xS)

∂xS

+ λ
∂xS Z S(xS)

∂xS
⊥xS ≥ 0

0 ≤ Y(xN, xS)⊥μ ≥ 0 (49)

0 ≤ Z (xN, xS)⊥λ ≥ 0 (50)

0 ≤ X N(xN)⊥νN ≥ 0 (51)

0 ≤ XS(xS)⊥νS ≥ 0 (52)

which are those of the NTF parametrized V I problem (44)–(48).
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Supposing that the NTF problem is feasible and adequate constraint
qualification holds, changing the γ parameters leads to different Generalized
Nash Equilibria provided that positive γ are associated to positive λ. There is
only a single GNE if it is impossible to generate different GNE by modifying
the γ . This can only happen if the NTF optimization problem is unbounded
when setting γ at values different from zero. Unboundedness occurs when the
NTS problem does not have any primal-dual solution and hence dual variables
that price the constraints do not exist. We discuss some cases where the NTF
problems do not have solution or do not lead to an equilibrium in Oggioni and
Smeers (2010b).

3.2.2 Assessing inef f iciencies

The above model can be used to test the inefficiency of a particular organiza-
tion. These arise from two sources. One is in the delineation of the individual
constraints of the BUs (the X constraints) when they result from an ex ante
allocation of some common resources. The other source of inefficiency is the
absence of a common market for the resources that remain common. This is
is expressed by the difference of valuation of these resources by the BU (the
dual variables). In all cases this implies a change of the utility function value
of the BUs. It is this approach that we illustrate in the following application
taken from the restructuring of the European electricity market.

3.3 Counter-trading in restructured electricity markets

The electricity system operating under the regulatory regime is the paradigm
of a fully centralized organization where all machines constantly remain under
the control of a single optimization problem. The underlying philosophy of
the restructuring of the sector is that decentralizing operations improves the
incentive of individual agents (generators, traders, consumers) to be efficient,
possibly at the cost of some loss of coordination of operations. The question
is to find a good trade-off by gaining sufficiently on incentives without losing
too much on coordination. We here consider a particular illustration of that
problem occurring in the so called “Market Coupling” organization of the
European electricity restructuring. A full description of Market Coupling
problems would lead us too far away from the numerical objective of this paper
but a brief discussion of that organization is given in Appendix A. It suffices for
the purpose of this paper to note that Market Coupling first clears the energy
market on the basis of a simplified representation of the grid; this may require
TSOs to restore the feasiblity of the grid in a second stage, in case market
clearing has lead to overflows on some lines (see our companion paper Oggioni
and Smeers 2010b, and some of the references therein for details). This paper
focuses on this second stage, referred to as counter-trading, that we describe
on the basis of a six node example initially presented by Chao and Peck
(1998). We start from a given outcome of the clearing of the energy market,
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Fig. 1 Six node market
(Chao and Peck 1998)

take the resulting grid flows and consider different organizations of counter-
trading that we analyze in terms of the trade-off between decentralization and
efficiency of operation.

3.3.1 The test problem

Consider the six nodes, eight lines network depicted in Fig. 1 (Chao and Peck
1998).6 Lines (1–6) and (2–5) have limited capacity respectively of 200 and
250 MW. Kirchhoff’s laws are represented by a Power Transfer Distribution
Factor (PTDF) matrix that indicates the portions of energy that, after being
injected into a node or before being withdrawn from a hub node (node 6 in
the example) flows through the lines. The PTDF matrix is only relevant for
the capacitated lines (1–6) and (2–5) and its elements are reported in Table 4.
Electricity is produced in nodes i = 1, 2, 4 and consumed in nodes j = 3, 5, 6.
Marginal generation cost (c(qi)) and inverse demand (w(q j)) functions are
given in Table 5.

3.3.2 Counter-trading

Assume a zonal energy market decomposed in two Northern and Southern
zones as depicted in Fig. 2 (see Oggioni and Smeers 2010b, for an alternative
market organization). Zones are currently associated to countries in Europe
and there is one PX and one TSO per country. We refer to the Northern and
Southern TSOs as TSON and TSOS respectively.

6For a global view of the European electricity market see, for instance, Leuthold et al. (2010).
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Table 4 PTDF of the six
node markets (Chao and Peck
1998)

Power (1 MW) Power flow on Power flow on
injected at node link 1 → 6 (MW) link 2 → 5 (MW)

1 0.625 0.375
2 0.5 0.5
3 0.5625 0.4375
4 0.0625 −0.0625
5 0.125 −0.125
6 (hub) 0 0

Consider a set of energy trades resulting from the clearing of the energy
market by the PXs in Market Coupling (see Appendix A). These trades have
been obtained on the basis of a simplified representation of the grid (like
in Fig. 2) and hence can sometimes lead to excessive flows on some lines
of the real network. Counter-trading is the set of operations whereby TSOs
buy incremental or decremental injections at different nodes of the grid so
as to modify the flows on the lines and make them compatible with the real
capability of the grid, namely the network in Fig. 1, in real time. Counter-
trading does not change the energy transactions cleared in the energy market
as these are settled at the prices arrived at by the PXs; counter-trading is
effectively another market that is settled separately. It can be organized in
different ways of which we discuss a few possibilities.

3.3.3 Counter-trading is fully optimized

We first consider an arrangement where both TSOs operate as a single entity.
This corresponds to an overall optimization of all counter-trading operations
by an entity that has access to all counter-trading resources (incremental and
decremental injections and withdrawals). This implicitly assumes that the gains
accruing from an overall optimization exceed the organizational costs incurred
because of the full harmonization and integrated control of the TSOs. This
situation is modeled in Section 4.1 and can be related to European and US
energy markets. Joint optimization is quite clear in the USA where ISOs or
RTOs are designed to fully integrate energy and transmission operations. One

Table 5 Demand and cost
functions of the six node
market (Chao and Peck 1998)

Node Function type Function

1 c(q1) 10 + 0.05q
2 c(q2) 15 + 0.05q
3 w(q3) 37.5 − 0.05q
4 c(q4) 42.5 + 0.025q
5 w(q5) 75 − 0.1q
6 w(q6) 80 − 0.1q
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Fig. 2 Two zones market

also observes some horizontal integration among European TSOs through
mergers and acquisitions or the creation of coordinated groups.7

3.3.4 Counter-trading is decentralised

The second arrangement takes place when the two TSOs retain separate
operations. The interactions induced by Kirchhoff’s laws imply that the two
TSOs physically share all the lines of the interconnected grid. Because of the
numerical assumptions of this example, the capacities of the lines joining the
Northern and Southern zones are the only relevant common constraints shared
by both TSOs in this example. They can be priced or not depending on whether
one introduces a market for transmission/line capacity at the counter-trading
level or not. Pricing of interconnection lines can be found in systems such as
the MISO-PJM market;8 we are not aware of similar arrangement in Europe
(see Cadwalader et al. 1998, for a technical treatment of that type of question).
Pricing interconnection lines corresponds to (partially) completing the market
and the goal is to check the impact of this pricing on the overall efficiency of
counter-trading. Common economic sense indeed suggests (but theory does
not prove) that the inception of a transmission/line capacity market increases
efficiency.

7For instance, TenneT (Dutch TSO) and Elia (Belgian TSO) respectively acquire E.ON and
Vattenfall (German TSOs) grids and the Belgian and the French TSOs (respectively Elia and
RTE) founded the company “Coreso” that has been recently joined by the Italian TSO Terna
and the German TSO 50Herz Transmission (see all Press Releases available at http://www.coreso.
eu/press-releases.php).
8See http://www.miso-pjm.com/

http://www.coreso.eu/press-releases.php
http://www.coreso.eu/press-releases.php
http://www.miso-pjm.com/
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Counter-trading resources at the generator or consumer levels constitute
the other set of common resources. Because there are no bounds on generation
and consumption data, these common resources are not common constraints
in the sense of GNE problems. But different organizations of counter-trading
can impose quantitative restrictions on access to counter-trading resources. We
distinguish three scenarios. A first situation, modeled in Section 4.2, occurs
when both TSOs have access to all incremental and decremental injections
in both zones. In compliance with general non discrimination principles we
assume that both TSOs access these resources at the same price. This cor-
responds to an internal market of counter-trading resources. A second case,
presented in Section 4.3, supposes a limited cross-border access to counter-
trading resources: a TSO can only access counter-trading resources in the
other zone subject to quantitative limits that are often interpreted in terms
of security requirements. The third situation occurs when there is no cross
border market of counter-trading resources and each TSO can only access
counter-trading resources in its own zone. This is described in Section 4.4; we
also want to assess the impact of these different organizations on the overall
efficiency of counter-trading. We here present the mathematical structure of
all these counter-trading models and refer to our companion paper (Oggioni
and Smeers 2010b) for a broader analysis of numerical results.

3.3.5 Note on counter-trading costs

Re-dispatching costs have to be paid and are normally included in grid charges
in real systems. We report the average counter-trading cost α, which is easy to
interpret and compare to the energy price. It is obtained by dividing the total
counter-trading cost (TCC) that varies with the model considered by the total
generation (

∑
i=1,2,4 qi). This is defined as follows:

α = TCC
∑

i=1,2,4 qi

4 Modelling

The original Nabetani et al.’s paper is stated in terms of variational inequality
problems; our example deals with variational inequality models that are integ-
rable into optimization problems. We therefore describe the difference counter-
trading counterfactuals in terms of the optimization version of Nabetani et al.’s
variational inequality problems. We use the following nomenclature:

Sets

l = (1–6); (2–5) Lines with limited capacity;
n = 1, 2, 3, 4, 5, 6 Nodes;

i(n) = 1, 2, 4 Subset of production nodes;
j(n) = 3, 5, 6 Subset of consumption nodes.
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Parameters

PT DFl,n Power Transfer Distribution Factor (PTDF) matrix of node n on
line l;

F̄l Limit of flow through lines l = (1–6); (2–5);
qn Power traded (bought or sold) at node n (MWh); these quantities

are determined in the Market Coupling problem and are taken as
data in the counter-trading models.

Variables

�qn Counter-trading variables: Incremental or decremental quantities of
electricity with respect to qn (MWh).

Functions

c(ξi) Marginal cost function in e/MWh of generator located at node i =
1, 2, 4 (see Table 5);

w(ξ j) Inverse demand function in e/MWh of consumer located at node j =
3, 5, 6 (see Table 5).

We assume that all agents are price takers. They bid in both the day-ahead
and counter-trading markets. We do not separately model a balancing market
taking care of deviations with respect to day-ahead.

4.1 Optimized counter-trading model

Assume that TSON and TSOS buy incremental and decremental quantities
of electricity �qn in their domestic market (N = (1, 2, 3) and S = (4, 5, 6)

respectively) and coordinate operations to remove congestion at the minimal
counter-trading cost. This is stated in the optimization problem (53)–(59).

The global re-dispatching cost appears in the objective function (53). There
are two classes of constraints. The first class involves both TSOs and includes
the balance equations (54), (55) and the transmission capacity constraints (56)
and (57). Conditions (54) and (55) impose that the sum of the incremental
injections (�qi=1,2,4) and withdrawals (�q j=3,5,6) equals zero. This expresses
that TSOs must globally remain in balance: the net result of counter-trading
operations must be zero indicating that they cannot go to the energy market to
counter-trade. This also defines the interpretation of the dual variable of con-
straint (55) as the price of the counter-trading services. As alluded to before,
this rule separates the trading of energy (the qn that remain unchanged) and
the counter-trading operations (the �qn variables that are counter-trading op-
erations) in two different markets. It thus expresses a separation between the
energy and congestion management services that is at complete variance with
respect to the US integration of energy and congestion management services.

The dual variables λ±
l associated with Eqs. (56) and (57) respectively define

the marginal values of the capacited lines (1–6) and (2–5) in the two flow
directions. Because there is a single optimization problem for both TSOs, they
see the same value for the congested lines. In the second class, we group
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constraints (58) and (59) that are specific to the geographic zone covered
by each TSO. The non-negativity constraints (58) state that the quantities of
electricity demanded and produced in the Northern zone plus the incremental
and decremental injections of the TSON have to be non-negative. An identical
constraint applies in condition (59) for the zone covered by TSOS.

Min�qn

∑

i=1,2,4

∫ qi+�qi

qi

ci(ξ)dξ −
∑

j=3,5,6

∫ q j+�q j

q j

w j(ξ)dξ (53)

s.t.
∑

i=1,2,4

�qi +
∑

j=3,5,6

�q j = 0 (μ1) (54)

∑

j=3,5,6

�q j −
∑

i=1,2,4

�qi = 0 (μ2) (55)

Fl −
⎡

⎣
∑

i=1,2,4

PT DFi,l(qi + �qi) −
∑

j=3,5,6

PT DF j,l(q j + �q j)

⎤

⎦ ≥ 0 (λ+
l )

(56)

Fl +
⎡

⎣
∑

i=1,2,4

PT DFi,l(qi + �qi) −
∑

j=3,5,6

PT DF j,l(q j + �q j)

⎤

⎦ ≥ 0 (λ−
l )

(57)

qn + �qn ≥ 0 n = 1, 2, 3
(
νN

n

)
(58)

qn + �qn ≥ 0 n = 4, 5, 6
(
νS

n

)
(59)

Constraints (54) and (55) could be restated as
∑

i=1,2,4 �qi = 0 and∑
j=3,5,6 �q j = 0, possibly with a more direct interpretation. We justify our cur-

rent formulation Eq. (55) (and the accompanying Eq. (54)), because it states
the balance of the total energy exchanged in counter-trading and hence has a
dual variable that is the price of the energy used in counter-trading services.
The formulation therefore contains two key prices namely for line capacity
(λ) and for counter-trading energy (μ). The following models involving two
TSOs will keep these characteristics and contain the prices of line capacity and
counter-trading energy seen by the two TSOs. Crucial for market completeness
will be the capability to prove that these prices are equal among TSOs.

Problem (53)–(59) is strictly convex and admits a unique solution. This
model provides the benchmark for evaluating other organizations of counter-
trading. Finally, the average re-dispatching costs α is computed by dividing the
objective function (53) by

∑
i=1,2,4 qi.
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4.2 Decentralized counter-trading Model 1: TSON and TSOS have full access
to all re-dispatching resources

Suppose that TSON and TSOS no longer integrate for removing network
congestion, but still have full access to all counter-trading resources of the
system. This means that a TSO can buy and sell incremental and decremental
injections and withdrawals in the control area of the other TSO (e.g. TSON

can also counter-trade in the Southern zone and vice versa). This situation
can be interpreted as the creation of an internal market of counter-trading
resources. It is an implementation at the congestion management level of a
general European philosophy that avoids forcing the integration of national
institutions (here TSOs) while favoring the integration of the services that they
provide. This idea is explicitly discussed for balancing services and we apply it
here at the level of counter-trading resources. As part of this internal market
of counter-trading resources, all TSOs adopt the same hub when counter-
trading. A discussion of the realism of this assumption or of the distance
that would remain between this assumption and a fully integrated counter-
trading market is beyond the scope of this paper. We simply note here that this
model requires an harmonization of market design that is well beyond what
is currently institutionally feasible; it nevertheless constitutes a useful counter-
factual somewhere on the path from full integration to full decentralization
of counter-trading activities; it is also an illustration of the philosophy that
aims at integrating services provided by TSOs without integrating the TSOs
themselves.

Denoting the counter-trading variables of the Northern and Southern TSOs
respectively as �qN

n=1,...,6 and �qS
n=1,...,6, the following presents the problem of

TSON ; TSOS’s problem is similar and is given in Appendix C.

4.2.1 Problem of TSON

TSON solves the optimization problem (60)–(65). It minimizes its re-
dispatching costs Eq. (60) taking into account its balance constraints (61)
and (62) and the counter-trading actions of the other TSO. Note that, in
contrast with the preceding model, each TSO must now individually remain
in balance in counter-trading. TSO’s counter-trading operations appear in the
transmission constraints (63)–(64), and the overall non-negativity constraint
(65) on generation and consumption. Note that constraints (61) and (62) are
specific to the single Northen TSO while Eqs. (63)–(65) involve both TSOs.
This also applies to their dual variables. Specifically the price of counter-
trading services expressed by the dual variablle μN,2 is now clearly assigned
to the Northern TSO.

Min�qN
n

∑

i=1,2,4

∫ qi+�qS
i +�qN

i

qi+�qS
i

ci(ξ)dξ −
∑

j=3,5,6

∫ q j+�qS
j +�qN

j

q j+�qS
j

w j(ξ)dξ (60)
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s.t.
∑

i=1,2,4

�qN
i +

∑

j=3,5,6

�qN
j = 0

(
μN,1) (61)

∑

j=3,5,6

�qN
j −

∑

i=1,2,4

�qN
i = 0

(
μN,2) (62)

Fl −
⎡

⎣
∑

i=1,2,4

PT DFi,l(qi + �qN
i + �qS

i )

−
∑

j=3,5,6

PT DF j,l(q j + �qN
j + �qS

j )

⎤

⎦ ≥ 0
(
λ

N,+
l

)
(63)

Fl +
⎡

⎣
∑

i=1,2,4

PT DFi,l(qi + �qN
i + �qS

i )

−
∑

j=3,5,6

PT DF j,l(q j + �qN
j + �qS

j )

⎤

⎦ ≥ 0
(
λ

N,−
l

)
(64)

where l = (1 − 6), (2 − 5)

qn + �qN
n + �qS

n ≥ 0 ∀n
(
νN

n

)
(65)

In a similar vein, it is useful for the rest of the discussion to note that the
λ±

l of the coordinated problem (53)–(59) have now been split into Northern
(λN,±

l ) and Southern (λS,±
l ) lambdas.9 This reflects the different valuation of

the lines (here the interconnections) by the two TSOs. The relation between
the Northern λ

N,±
l and Southern λ

S,±
l of the two TSOs’ separate problems

and the λ±
l of the integrated TSO problem will become crucial when introduc-

ing the discussion on the line capacity market. We shall derive these relations
in the next section using the Nabetani et al. (2009) (hereafter NT F) formalism.

4.2.2 An efficient Generalized Nash Equilibrium

The combination of both TSOs’ problems suggests analyzing the impact of
markets for counter-trading resources and line capacity in terms of General-
ized Nash Equilibrium model using the unifying NT F framework.

A first step towards the creation of an internal market of counter-trading
resources is for both TSON and TSOS to access the same incremental and
decremental injections and withdrawals. This is what we assume throughout

9See Appendix C for the formulation of the problem.
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this section and state in the constraints (61)–(62) of the TSON and Eqs. (108)–
(109) of the TSOS’s problems (see Appendix C). The assumption implies that
this access should be at the same price for both TSOs something that we infer
from an application of general non discrimination principles. A second step
would be to create a market of line capacity for counter-trading operations. We
do not make that blanket assumption here but analyze the possible emergence
of this market as a result of the integration of counter-trading resources.
A market of line capacity is characterized by the equality of dual variables
(λN,−

l ) of constraints (63)–(64) for TSON and the dual variables (λS,−
l ) of

the analogous constraint for TSOS: both TSOs then see the same price for
transmission resources. Imposing the equality of these dual variables amounts
to introducing a market of line capacity among TSOs. In contrast, there is no
market for line capacity in the counter-trading system if the dual variables of
Eqs. (63)–(64) for TSON and Eqs. (110)–(111) for TSOS can be different.

The different assumptions about the existence of a line capacity market
can easily be cast in the NT F parametrized optimization problem (66)–(74)
(a parametrized V I problem in general in NT F). The objective function
(66) combines the actions of both TSOs and also includes the parameters10

γ N,S,± that perturb the dual variables λ+
l and λ−

l associated with the common
transmission constraints (71) and (72). As the following proposition shows,
setting the γ N,S,± to zero implies equal dual variables of the transmission
constraints and hence a line capacity market. Setting them at different values
represents the case where there is no line capacity market. While Eqs. (71)
and (72) are common to TSON and TSOS, the balance conditions (67), (68),
(69) and (70) apply to each individual TSO. Conditions (67)–(68) are identical
to Eqs. (61)–(62) and refer to TSON , while Eqs. (69) and (70) regard TSOS

(compare Eqs. (108) and (109) in Appendix C).
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(66)

10The apeces N,S of the parameters γ N,S,± indicate “North” and “South”; while the signs “+” and
“−” indicate the flow directions. The positive direction is from the Northern to the Southern zone;
the negative direction is from the Southern to the Northern zone.
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s.t.
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where l = (1 − 6), (2 − 5)

qn + �qN
n + �qS

n ≥ 0 ∀n
(
νN

n

)
(73)

qn + �qN
n + �qS
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(
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n

)
(74)

The following proposition states these relations formally:

Proposition 1 Suppose that there is a solution to problem (66)–(74). Denote
transmission constraints (71) and (72) respectively as g+

l and g−
l and suppose
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that 〈g+
l (�q), γ

N/S,+
l 〉 = 0 and 〈g−

l (�q), γ
N/S,−

l 〉 = 0 (Theorem 3.3 of Nabetani
et al. 2009). Then the solution is a GNE and the following relations between the
marginal values of transmission lines of the individual TSOs’ problems (λN,±

l ,
λ

S,±
l ) and the λ±

l of problem (66)–(74) hold:

λ
N,+
l = λ+

l + γ
N,+

l

λ
S,+
l = λ+

l + γ
S,+

l

λ
N,−
l = λ−

l + γ
N,−

l

λ
S,−
l = λ−

l + γ
S,−

l

Proof of Proposition 1 See Appendix E. ��

While the above formulation accounts for the fact that both TSOs have
access to the same counter-trading resources (balance conditions (67)–(70)),
it does not impose explicitly a market of transmission resources as long as the
γ

N,+
l , γ

N,−
l , γ

S,+
l and γ

S,−
l are different. The following proposition shows a

somewhat surprising result: it states that this market is implicitly imposed in a
GNE under the condition that the fully optimized counter-trading problem
has a solution and that a sufficient number of counter-trading resources
are involved to restore grid feasibility. There indeed exists a GNE where
the market for counter-trading resources implies a market for transmission
capacities and there exists no other GNE. Technically, the NT F problem only
has an optimal solution if the γ of both TSOs are equal.

Proposition 2 Suppose the solution of problem (66)–(74) exists and sat-
isf ies qn + ∑

z=N,S �qz
n > 0 ∀n. Denote transmission constraints (71) and

(72) respectively as g+
l and g−

l and suppose that 〈g+
l (�q), γ

N/S,+
l 〉 = 0 and

〈g−
l (�q), γ

N/S,−
l 〉 = 0 (Theorem 3.3 of Nabetani et al. 2009). Then γ

N,+
l = γ

S,+
l

and γ
N,−

l = γ
S,−

l and the optimal solution is a GNE.

Proof of Proposition 2 See Appendix F1. ��

This proposition, as stated, is specific to the particular six node problem
but some extension is presented in Appendix F2. An intriguing implication of
the proposition is that the GNE is isolated in the sense that any attempt to
find a GNE where the two TSOs see different prices leads to an unbounded
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problem, that is to a problem where there are no feasible dual variables. This
isolated GNE also boils down to a full coordination model where there is a
line capacity market. An economic reformulation of Proposition 2 is that the
market for counter-trading resources completes the market for line capacity.
This result is specific to the six node network but it can be extended in a weaker
form to a general case. This is done in Appendix F2 where one shows that a
market for counter-trading facilities together with a market where a sufficient
number of line capacities are traded can complete the market in the sense that
it also implies a market of the other line capacities. This proposition also has
a mathematical interpretation: Generalized Nash Equilibrium has an infinite
set of possible dual variables and the proof of Proposition 2 and its extension
illustrates a construction of that subspace. Restricting the equilibrium on some
variables (see Fukushima 2008) can make the QVI problem associated to
the GNE a full VI problem. We can complete Proposition 2 by stating that
the market of counter-trading resources also creates an internal market of
energy exchanged in the counter-trading market. This is stated in the following
proposition.

Proposition 3 Suppose the solution of problem (66)–(74) exists and sat-
isf ies qn + ∑

z=N,S �qz
n > 0 ∀n. Denote transmission constraints (71) and

(72) respectively as g+
l and g−

l and suppose that 〈g+
l (�q), γ

N/S,+
l 〉 = 0 and

〈g−
l (�q), γ

N/S,−
l 〉 = 0 (Theorem 3.3 of Nabetani et al. 2009). Then the following

relations hold:

λ
N,±
l = λ

S,±
l

μN,1 = μS,1

μN,2 = μS,2.

Proof of Proposition 3 See Appendix G1. ��

The next implication is expected: a complete market is efficient and its
outcome is identical to the one of the full optimization of counter-trading. This
also proves that the solution of the GNE (66)–(74), if it exists, is unique. This
is expressed in the following corollaries.

Corollary 1 Suppose the solution to coordinated counter-trading problem (53)–
(59) exists. Then, the solution of the GNE problem (66)–(74) exists and coin-
cides with that of the coordinated counter-trading problem (53)–(59).
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Proof of Corollary 1 See Appendix H. ��

Corollary 2 The solution of the GNE problem (66)–(74) is unique.

Proof of Corollary 2 Since the solution to problem (53)–(59) is unique (see
Section 4.1), thanks to Corollary 1, we can immediately conclude that the
solution to problem (66)–(74) is unique too. ��

4.3 Decentralized counter-trading Model 2: TSON and TSOS have limited
access to part of the counter-trading resources

4.3.1 A partial market of counter-trading resources

The model presented in Section 4.2 assumes that both TSOs have full access to
all re-dispatching resources. We depart from this assumption here and model
the case where both TSON and TSOS have a limited access to the counter-
trading resources located outside of their control area. This means that the
Northern TSO’s purchase of Southern counter-trading resources is limited and
conversely. A more general situation where the following reasoning would
apply is the case where one TSO has constraints (for instance on reliability and
reserve) that the other does not have. Needless to say, the existence of local
TSO requirements and hence the lack of full harmonization is the most likely
situation to be observed in practice in Europe. While this analysis may look like
invalidating the practical usefulness of the above result, it may alternatively be
seen as a justification for more harmonization.

The TSO optimization problems are immediately derived from those in
Section 4.2 by adding upper and lower constraints on the procurement of re-
dispatching resources in the zone that they do not directly control. We do
not report these individual optimization problems here, but directly present
the model in the Nabetani, Tseng and Fukushima’s form. The additional
constraints (80) and (81) impose the upper and lower bounds on the actions
of TSOs in the other jurisdiction. Condition (80) limits the TSON’s purchase
of Southern counter-trading resources and condition (81) does the same for
TSOS in the Northern zone. This arrangement is likely to be more realistic
than the above creation of an internal market: TSOs that are not integrated
will probably insist on keeping resources under their sole control. We shall
see that giving up the internal market of counter-trading resources can have
dramatic consequences. We discuss these consequences in principle in this
paper together with some numerical results. We further elaborate on these
numerical results in Oggioni and Smeers (2010b).
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4.3.2 Inefficient Generalized Nash Equilibrium

Let �qN
n and �qS

n be respectively the bounds (in absolute value) imposed on
TSOs resorting to outside resources. The other conditions and constraints are
as in Section 4.2. The NTS problem is stated as follows:
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where l = (1 − 6), (2 − 5)
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The following proposition gives the condition for the existence of General-
ized Nash Equilibrium and is a direct application of NT F results.

Proposition 4 Suppose that there is a solution to problem (75)–(85). Denote
transmission constraints (82) and (83) respectively as g+

l and g−
l and suppose

that 〈g+
l (�q), γ

N/S,+
l 〉 = 0 and 〈g−

l (�q), γ
N/S,−

l 〉 = 0 (Theorem 3.3 of Nabetani
et al. 2009). Then this solution is a GNE.

Proof of Proposition 4 The proof is a direct application of NT F’s Theorem
3.3 (see Nabetani et al. 2009). ��

In contrast with the case of the internal market of counter-trading resources,
the outcome of the market is here ambiguous: there may be several GNEs and
they may differ in terms of efficiency. We first state that we fall back on the
case of the internal market of counter-trading resources (decentralized Model
1) if none of the quantitative restrictions of cross zonal resources is binding.
This means that the resources remaining in the exclusive control of the zonal
TSO are not too important. The extension of this proposition to the more
general case considered in Appendix G2 is obvious.

Proposition 5 Suppose that there is a solution to problem (75)–(85). Denote
transmission constraints (82) and (83) respectively as g+

l and g−
l and suppose

that 〈g+
l (�q), γ

N/S,+
l 〉 = 0 and 〈g−

l (�q), γ
N/S,−

l 〉 = 0 (Theorem 3.3 of Nabetani
et al. 2009). Suppose also qn + ∑

z=N,S �qz
n > 0 ∀n. If no cross zonal counter-

trading resource is binding, then γ
N,+/−

l = γ
S,+/−

l and the GNE is unique and
identical to the solution of the optimized counter-trading (Eq. (53)–(59)).

Proof of Proposition 5 Apply the proof of Appendix F1 after noting that the
KKT conditions of problem (66)–(74) are identical to those of problem (75)–
(85) when cross zonal quantitative restrictions are not binding. ��
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As expected, things change when some of the cross zonal quantitative res-
trictions are binding. The following proposition states that the solution of the
GNE (75)–(85), if it exists, is not unique when some of the quantitative limi-
tations on counter-trading resources are binding. This is the normal GNE case
and there is no longer any hope to implicitly complete the market; this imme-
diately carries through to the more general case considered in Appendix F2.

Proposition 6 Suppose that there is a solution to problem (75)–(85) and some
cross zonal restrictions are binding. Denote transmission constraints (82) and
(83) respectively as g+

l and g−
l and suppose that 〈g+

l (�q), γ
N/S,+

l 〉 = 0 and
〈g−

l (�q), γ
N/S,−
l 〉 = 0 (Theorem 3.3 of Nabetani et al. 2009). The valuation of the

transmission capacity by both agents are identical when all γ
N/S,+/−
l are zero. The

solution always satisf ies λ
N,−
l − λ

S,−
l =γ

N,−
l − γ

S,−
l and λ

N,+
l − λ

S,+
l =γ

N,+
l − γ

S,+
l .

Proof of Proposition 6 See Appendix I. ��

This proposition separates the impact of the line capacity and counter-
trading resource markets: it focuses on the case of a limited market of counter-
trading resources and explicitly considers whether one introduces a market
of line capacity at the TSO level. This market can be more or less extended
depending on the set of those lines that are subject to congestion. Former
discussions of the flowgate model in the US and its implementation in ERCOT
show that it might be hazardous to ex ante claim that the number of lines
subject to congestion is limited. We do not get into that subject here but note
that the common wisdom today in discussions of the “flow-based” model in
Europe is still that the number of “critical infrastructures” will be small. Our
objective in this paper is simply to assess the impact of creating a more or less
extended market for line capacities at the TSO level when counter-trading is
decentralized and the market of counter-trading resources is limited. As for
counter-trading resources, one can expect that a market of line capacities is
a step in the right direction even if it fails to restore a fully efficient counter-
trading. In contrast, the absence of a line capacity market, added to the lack
or restriction of a market for counter-trading resources should further degrade
efficiency. The NTS machinery allows one to assess these different situations
in a particularly easy way. Specifically, setting the γ of a particular line to zero
creates a market for that infrastructure. Introducing a wedge between these
γ different from zero (while verifying that the conditions 〈g+

l (x∗), γ N/S,+
l 〉 = 0

and 〈g−
l (x∗), γ N/S,−

l 〉 = 0 for a GNE are maintained) parametrizes the extent
to which the lack of a market for that infrastructure leads to a divergence in
the valuation of the line capacity. This is briefly discussed in Section 5, but it is
broader illustrated through further numerical examples in Oggioni and Smeers
(2010b). Last it is also useful to recall that nothing proves that counter-trading
is always feasible and it is interesting to verify whether one can easily obtain
situations where this occurs.
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Corollary 3 The solution of the GNE problem does not necessarily exist.

Proof of Corollary 3 It suffices to take a case where the NT F problem is
infeasible. ��

4.4 Decentralized counter-trading Model 3: TSON and TSOS only operate
in their own control area

4.4.1 A segmented market of counter-trading resources

This section presents a more extreme situation. The following model, directly
presented in the Nabetani, Tseng and Fukushima’s formulation, describes a
market where each TSO manages the re-dispatching resources of its own area
only, taking as given the action of the other TSO. There is no additional
transaction from a TSO into the other TSO’s zone. Assumptions on the line
capacity market can be made through the γ .

The problem is formulated through relations (86) to (94). The objective
function (86) globalizes the counter-trading costs of the two TSOs. This
problem is subject to the shared transmission constraints (91)–(92) and the
balance constraints of TSON ((87) and (88)) and TSOS ((89) and (90)).
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Re-dispatching costs are then truly zonal: the average counter-trading cost
in the Northern area is:

αN =
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qt
i

ci(ξ)dξ − ∑
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∫ q j+�qN
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q1 + q2

with a similar formula for the Southern area. A “global” average-dispatching
cost can also be determined by dividing the the total re-dispatching costs

(
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4.4.2 Further inefficient Generalized Nash Equilibrium

The following propositions are particular cases of those obtained in the pre-
ceding section. The first statement again directly obtains from NT F’s results:
it simply states the conditions under which the solution of this problem is a
GNE.

Proposition 7 Suppose that there is a solution to problem (86) to (94). Denote
transmission constraints (91) and (92) respectively as g+

l and g−
l and suppose

that 〈g+
l (�q), γ

N/S,+
l 〉 = 0 and 〈g−

l (�q), γ
N/S,−

l 〉 = 0 (Theorem 3.3 of Nabetani
et al. 2009). Then the solution is a GNE.
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Proof of Proposition 7 The proof is a direct application of NTF’s Theorem 3.3
(see Nabetani et al. 2009). ��

There is no market of counter-trading resources in this case and there
may thus be different GNEs. The following proposition states that the GNE
solution of the (86) to (94), if it exists, is not unique.

Proposition 8 Suppose that there is a solution to problem (86) to (94). Denote
transmission constraints (91) and (92) respectively as g+

l and g−
l and suppose

that 〈g+
l (�q), γ

N/S,+
l 〉 = 0 and 〈g−

l (�q), γ
N/S,−

l 〉 = 0 (Theorem 3.3 of Nabetani
et al. 2009). The valuation of the transmission capacity by both agents are
identical when all γ
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l are zero and the solution always satisf ies λ

N,−
l −

λ
S,−
l =γ

N,−
l − γ

S,−
l and λ

N,+
l − λ

S,+
l =γ

N,+
l − γ

S,+
l .

Proof of Proposition 8 See Appendix J. ��

These comments are parallel to those of Section 4.3.2. As already explained
before setting all γ to zero creates a market for line capacity that can
only improve efficiency even without an internal market of counter-trading
resources. One can assess the range of possible inefficiencies by introducing a
wedge between the valuations of the transmission constraints using the γ of the
TSOs.

Last we again recall that there may not exist a GNE because counter-
trading is not possible.

Corollary 4 The solution of the GNE problem does not necessarily exist.

Proof of Corollary 4 It suffices to take a case where the NTF problem is
infeasible. ��

5 Results

This section illustrates the different organizations of counter-trading. All
computations start from the flows obtained from market clearing (as reported
in Table 6) by solving the problem described in Appendix A with the original
demand and marginal cost functions stated in Table 5. The reader is referred
to Oggioni and Smeers (2010b) for the analysis of the interaction between the
clearing of the energy market and the counter-trading process and the analysis

Table 6 Nodal demand and generation (MWh)

q1 q2 q3 q4 q5 q6

366.67 266.67 183.33 166.67 283.33 333.33
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of extreme cases where there is no equilibrium or even when counter-trading
problems is not feasible (as has sometimes been observed in practice in the US
and Europe). The following results are limited to illustrating the theoretical
results and the mathematical insights of the developed model. The choice of
parameters γ

S,N,±
l has been made bearing in mind Propositions 1 and 2.

We first present the results of the optimized counter-trading model pre-
sented in Section 4.1. We then discuss the efficiency levels of a selection of
the possible results of the models presented in Sections 4.2, 4.3 and 4.4 where
counter-trading operations are decentralized.

5.1 Optimized counter-trading model

The optimization of counter-trading implies that TSOs fully cooperate to
relieve congestion. Applying this principle to the network depicted in Fig. 1,
we find a counter-trading cost of 1,146 e, which in average amounts to
1.43 e/MWh. The re-dispatched quantities are indicated in Table 7; there
is a net counter-trading flow from South to North equal to 50 MWh. Line
(1–6) is congested in the North-South direction and its marginal value is 40
e/MWh. Because it is a cooperative solution, some regions may be better off
by not participating. We do not deal with that question and assume that market
operators are able to re-distribute resources among market players in such a
way that no player or zone is worse off than by not participating.

5.2 Decentralized counter-trading Model 1: TSON and TSOS have full access
to all counter-trading resources

Assume that TSON and TSOS can access all counter-trading resources. Setting
all “γ

N,S,±
l ” to zero (see discussion in Section 4.2), the problem describes

a situation where both TSOs equally value line capacities. Numerically, we
fall back on the solution of the optimized counter-trading problem. Applying
different “γ

N,S,±
l ” with the view of testing different valuations of transmis-

sion/line capacity, and hence the absence of a line capacity market, always
leads to unbounded NTF problems. There is no primal dual solution to the
NT F problem and hence no GNE. This complies with the theory stated in
Section 4.2.2: an internal market of counter-trading resources implies a market
of line capacity, at least in this example where the set of traded counter-trading
resources is sufficient to complete the market.

The value of the dual variable of line (1–6) in the model where all “γ
N,S,±

l ”
are equal to zero is 40 e/MWh in the direction North-South. Re-dispatching
quantities are given in Table 7. The sole important figure is the total (the sum

Table 7 Re-dispatching quantities (MWh)

�q1 �q2 �q3 �q4 �q5 �q6

−66.67 33.33 16.67 33.33 16.67 −33.33
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Table 8 Limits on the action of the two TSOs (MWh)

�qS
1 �qS

2 �qS
3 �qN

4 �qN
5 �qN

6

33.33 16.67 8.33 16.67 8.33 16.67

over the two TSOs) re-dispatching; the allocation of this total between the two
agents is arbitrary.

5.3 Decentralized counter-trading Model 2: TSON and TSOS have limited
access to part of the counter-trading resources

The situation changes when constraining the access of a TSO to counter-
trading resources in the other jurisdiction. Suppose limits of one TSO’s access
to resources in the other zone as given in Table 8. These are selected by
halving the counter-trading flows from South to North obtained for optimized
counter-trading (compare Table 7). Taking into account these limits, we run
five cases that differ by the values assigned to the parameters “γ

N/S,±
l ” with

the view of assessing the inefficiency that can result from different valuations
of common resources by TSOs. Results are reported in Table 9. Recall that
α defines the average counter-trading cost and can be used as a metric of
this inefficiency. The bottom of Table 9 reports the total counter-trading costs
(TCC) and the counter-trading costs of the two TSOs. The other row names
are self explanatory.

These different cases are meant to produce different Generalized Nash
Equilibria. Cases 1 and 2 are obtained with equal γ for the two TSOs and
hence represent the impact of a market of line capacity.11

The constraints on cross zonal access to resources are not binding and
the solution is identical to the one of the optimized counter-trading. The
policy implication of this finding is interesting: even though individual TSOs
retain the exclusive control on some of their plants, which is a limitation to
the internal market of counter-trading resources, the line capacity market
overcomes the negative consequences of that limitation and restores efficiency.
The other cases assume TSOs with different γ , therefore modeling the absence
of a transmission/line capacity market. This leads to different phenomena.

11The choice of the value of γ
N,S,±

l has been conducted in the following way. In Case 1, we

first run the problem by setting all γ
N,S,±

l equal to zero. Line (1–6) is congested and assumes a

marginal value (λ+
(1−6)

) of 40 e/MWh. Taking into account the relations among λ±
l , λ

N,S,±
l and

γ
N,S,±

l defined in Proposition 1, in Case 2 we set γ
N,S,+
(1−6)

equal to 40 e/MWh. The marginal value

of line (1–6) becomes zero, but both in Cases 1 and 2, λ
N,S,+
(1−6) are equal to 40 e/MWh, while λ

N,S,+
(2−5)

are zero. Lines (1–6) and (2–5) are not congested in the opposite direction and then λ
N,S,−
(l) are

equal to zero. Cases 1 and 2 are equivalent and leads to the same global counter-trading costs. In
fact, the two TSOs attribute the same marginal value to the common congested transmission line.
Counter-trading costs increase in Cases 3, 4 and 5 where the two TSOs see different prices for the
common congested lines.
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Table 9 γ
N/S,±

l values, Marginal Value (MV) of congested line (1–6), average re-dispatching cost
(α) and TSOs’ counter-trading costs in different cases

Case 1 Case 2 Case 3 Case 4 Case 5

γ
N,+
(1−6)

0.00 40.00 40.00 0.00 80.00

γ
N,+
(2−5)

0.00 0.00 0.00 0.00 0.00

γ
S,+
(1−6)

0.00 40.00 0.00 40.00 20.00

γ
S,+
(2−5) 0.00 0.00 0.00 0.00 0.00

MV line (1–6) λ+
(1−6)

40.00 0.00 42.42 41.00 22.67
MV line (1–6) λ−

(1−6) 0.00 0.00 0.00 0.00 0.00
MV line (2–5) λ+

(2−5)
0.00 0.00 0.00 0.00 0.00

MV line (2–5) λ−
(2−5) 0.00 0.00 0.00 0.00 0.00

λ
N,+
(1−6) 40.00 40.00 82.42 41.00 102.67

λ
N,+
(2−5)

0.00 0.00 0.00 0.00 0.00

λ
S,+
(1−6) 40.00 40.00 42.42 81.00 42.67

λ
S,+
(2−5) 0.00 0.00 0.00 0.00 0.00

α (e/MWh) 1.43 1.43 1.64 1.54 1.86
CCN (e) 722 764 1,454 −236 1,796
CCS (e) 424 382 −143 1,464 −307
TCC (e) 1,146 1,146 1,311 1,228 1,489

Supposes first that the sole γ
N,+
(1−6) is positive and equal to 40 (case 3)12. The

absence of a line capacity market creates another GNE. Different valuations
of the common line (1–6) capacity imply economic inefficiencies measured
by an increase of 165 e of the re-dispatching costs compared to Case 1. The
average re-dispatching cost becomes 1.64 e/MWh. The result of the counter-
trading activity is a net flow of 36.36 MWh going from South to North.
TSON’s re-dispatching costs amount to 1,454 e, while TSOS benefits from the
operations as can be seen from its negative re-dispatching costs. Again, line
(1–6) is congested and its marginal value becomes 42.42 e/MWh; this increase
with respect to the 40 observed in the optimal counter-trading reflects the
inefficiency created by the absence of the transmission/line capacity market.

Consider now the alternative arrangement where one imposes γ
S,+
(1−6) = 40

(case 4). The counter-trading flow from South to North is 43.28 MWh. This
case is more efficient than Case 3, but counter-trading costs are still higher
than in Case 1. In contrast with Case 3, TSON now gains from counter-trading,
while TSOS incurs additional re-dispatching costs. Line (1–6) is still congested
with a marginal value of 41.00 e/MWh (slightly higher than the 40 e/MWh of
the optimal counter-trading).

Case 5 shows the worst degradation of all. The γ of the TSOs relative to line
(1–6) are indicated in Table 9. Global re-dispatching costs amount to 1,489 e.
TSON incurs most of this cost while TSOS still benefits. The net re-dispatch

12Starting from the results of Cases 1 and 2, the values assigned to γ are chosen in such a way
that GNEs are less efficient than in Cases 1 and 2. The economical interpretation of this, that also
holds for Cases 4 and 5, is the absence of a capacity market that implies additional counter-trading
costs.
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Table 10 γ
N/S,±

l values, Marginal Value (MV) of congested line (1–6), average re-dispatching
cost (α) and TSOs’ counter-trading costs in different cases

Case 1 Case 2 Case 3 Case 4 Case 5

γ
N,+
(1−6)

0.00 146.67 146.67 0.00 102.67

γ
N,+
(2−5)

0.00 0.00 0.00 0.00 0.00

γ
S,+
(1−6)

0.00 146.67 0.00 146.67 44.00

γ
S,+
(2−5) 0.00 0.00 0.00 0.00 0.00

MV line (1–6) λ+
(1−6)

146.67 0.00 48.89 97.78 63.55
MV line (1–6) λ−

(1−6) 0.00 0.00 0.00 0.00 0.00
MV line (2–5) λ+

(2−5)
0.00 0.00 0.00 0.00 0.00

MV line (2–5) λ−
(2−5) 0.00 0.00 0.00 0.00 0.00

λ
N,+
(1−6) 146.67 146.67 195.56 97.78 166.22

λ
N,+
(2−5)

0.00 0.00 0.00 0.00 0.00

λ
S,+
(1−6) 146.67 146.67 48.89 244.45 107.55

λ
S,+
(2−5) 0.00 0.00 0.00 0.00 0.00

α (e/MWh) 3.15 3.15 3.85 3.85 3.26
CCN (e) 1,681 1,681 2,988 747 2,159
CCS (e) 840 840 93 2,334 452
TCC (e) 2,521 2,521 3,081 3,081 2,610

amounts to 30 MWh from South to North. The marginal value of line (1–6) is
now 22.67 e/MWh.

5.4 Decentralized counter-trading Model 3: TSON and TSOS only operate
in their own control area

Going one step further, suppose that TSOs remove congestion on the inter-
connection by only acquiring counter-trading resources in their jurisdiction. In
other words, re-dispatching quantities sum to zero in each zone and there is no
exchange of re-dispatching resources between the two zones.

This degrades efficiency as reported in Table 10. “γ
N,S,±

l ” are all equal
to zero in Case 1, which simulates a line capacity market13. Inefficiency is
highlighted by significant re-dispatching costs of 2,521 e with average value of
3.15 e/MWh. Both TSOs counter-trade and TSON face the highest cost. Line
(1–6) is congested in the North-South direction and has a marginal value of
146.67 e/MWh! Parallel to what we did for the decentralized counter-trading
Models 1 and 2, we also consider the case where γ

N,+
(1−6) = γ

S,+
(1−6) = 146.67. This

is Case 2 reported in Table 10. Attributing this particular value to the γ of both
TSOs, we get again the results of Case 1, even though the dual variable of line
(1–6) capacity falls to zero.

We further degrade the situation in Cases 3 and 4 that respectively assume
γ

N,+
(1−6) and γ

S,+
(1−6) equal to 146.67. These cases have identical average and total

re-dispatching costs that are also the worst among the scenarios considered.

13The approaches used to select γ
N,S,±

l is identical to that adopted in the former Section.
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Parallel to what we observed with a restricted internal market of counter-
trading resources (Model 2), TSOS significantly reduces its re-dispatch costs
in Case 3, while TSON benefits in Case 4.

In Case 5, we assume that γ
N,+
(1−6) = 102.67 and γ

S,+
(1−6) = 44.00. These values

are respectively the 70% and 30% of 146.67. Under this alternative assump-
tion, system inefficiency increases, in comparison with Cases 1 and 2. Both
TSOs face counter-trading costs whose global average is 3.26 e/MWh.

6 Conclusion

We apply the notion of Generalized Nash Equilibrium and its computation
through the Nabetani, Tseng and Fukushima’s analysis of Quasi-Variational
Inequality problem to study a situation of market design arising in the re-
structuring of the European electricity market. Specifically, we study different
degrees of coordination in counter-trading activity in the context of the
“Market Coupling” organization of the European electricity market. We also
explain that the approach applies in general to problems of restructuring of an
integrated organization into different Business Units.

The global optimization of counter-trading by a single integrated Trans-
mission System Operator or by a set of Transmission System Operators act-
ing in full coordination minimizes the cost of removing congestion. Even
though efficient, this solution may require too much horizontal integration for
being politically acceptable. Among different alternatives, we consider three
organizations that all suppose that the grid remains operated by different
TSOs.

The first case refers to a so called “internal market of counter-trading
resources”. Following up on attempts in European circles to integrate services
like balancing or reserve without necessarily integrating TSOs, we suppose
that operators can freely resort to counter-trading resources in the whole
market whether in their jurisdictions or outside. We show that this repro-
duces the result of the full optimization. This finding singles out an unusual
situation where the solution set of a variational inequality problem (in our
case the optimized counter-trading problem) coincides with that of the corre-
sponding quasi-variational inequality problem (when all players have an un-
discriminatory access at identical price to all market shared resources). The
economic interpretation is also useful: the un-discriminatory access to the same
set of counter-trading resources “completes the market” and hence makes it
efficient. Last but not least the recourse to the NT F algorithm offers a neat
explanation of why this happens: even though the organization appears to be
of the imperfect coordination type, it may in fact be economically efficient
because of the implications on valuation of line capacities of the arbitrage
taking place in the procurement of counter-trading resources.

Restrictions on the internal market of counter-trading resources jeopardize
this effect on the market of line capacities and hence degrade the situation. A
first loss of efficiency happens when operators can only resort in a limited way
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to counter-trading resources outside of their jurisdiction. The situation can be
remedied by creating a market of line capacity for TSOs, but full efficiency will
only be restored in very particular cases. Here again, the resort to the NT F
theory makes this analysis particularly easy.

The last case is the one where the market of counter-trading resources is
fully segmented. Efficiency is further deteriorated even though the introduc-
tion of a common market of transmission resources can again help.

We conduct all the analysis on a simple six nodes region model and our
results on market completeness are obtained in that particular case. Similar but
weaker results can be obtained for the general case as we show in appendices.
The numerical approach is general: specifically, the recourse to the NT F
algorithm only requires solving an optimal power flow problem. This is now
a standard model, which shows that the analysis can be conducted for any real
world problem.

Appendix A: Market Coupling model

Market Coupling (MC) organizes a partial integration of PXs and TSOs:
PXs clear the energy markets on the basis of a simplified representation of
the transmission grid given to them by TSOs. Market Coupling is the most
advanced version of cross-border trade implemented in continental Europe.
It currently links the electricity markets of France, Belgium, The Netherlands
and since November 2010 Germany. Our problem formulation (realistically)
assumes that PXs operate in a coordinated way to clear a two zone market
organized as depicted in Fig. 2. The objective function (95) includes an average
re-dispatching cost α that is here interpreted as part of the access change to the
network. This levy is proportional to the quantity injected in the energy
market. Because demand is equal to generation, this uniform access charge
to the grid can equally be interpreted as paid by generators or consumers.
Conditions (96) and (97) express the energy balance in the Northern and
Southern zones respectively. The free variable I indicates the import/export
between the two zones. The shadow variables φN,S are the marginal energy
prices of the Northern and Southern zones respectively. Constraints (98)
and (99) impose that flow I does not exceed the transfer limit I of the
interconnecting line in the two possible directions. The dual variables δ1 and
δ2 are the marginal costs of utilization of this zonal link. Finally, variables qn

are non-negative.

Minqn

∑

i=1,2,4

∫ qi

0
ci(ξ)dξ −

∑

j=3,5,6

∫ q j

0
w j(ξ)dξ + α · (q1 + q2 + q4) (95)

s.t.

q1 + q2 − q3 − I = 0 (φN) (96)

q4 − q5 − q6 + I = 0 (φS) (97)
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I − I ≥ 0 (δ1) (98)

I + I ≥ 0 (δ2) (99)

qn ≥ 0 ∀n (100)

Appendix B: Complementarity conditions of the optimized
counter-trading model

Consider the complementarity formulation of problem (53)–(59), as indicated
below, where λl = (−λ+

l + λ−
l )

0 ≤ ci(qi + �qi) −
∑

l

λl · PT DFi,l − μ1 + μ2⊥(qi + �qi) ≥ 0 i = 1, 2, 4

(101)

0 ≤ −ω j(q j + �q j) +
∑

l

λl · PT DF j,l − μ1−μ2⊥(q j + �q j) ≥ 0 j = 3, 5, 6

(102)

0 ≤ Fl −
⎡

⎣
∑

i=1,2,4

PT DFi,l(qi + �qi) −
∑

j=3,5,6

PT DF j,l(q j + �q j)

⎤

⎦⊥λ+
l ≥ 0

(103)

0 ≤ Fl +
⎡

⎣
∑

i=1,2,4

PT DFi,l(qi + �qi) −
∑

j=3,5,6

PT DF j,l(q j + �q j)

⎤

⎦⊥λ−
l ≥ 0

(104)

∑

i

�qi +
∑

j

�q j = 0 (μ1) (105)

∑

j=3,5,6

�q j −
∑

i=1,2,4

�qi = 0 (μ2) (106)

where ci(qi + �qi) = ∂
∫ qi+�qi

qi
ci

∂�qi
for i = 1, 2, 4 and ω j(q j + �q j) = ∂

∫ q j+�q j
q j w j

∂�q j
for

j = 3, 5, 6.
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Appendix C: TSOS’ s problem in the decentralized counter-trading Model 1

The problem (107)–(112) solved by TSOS is similar to that of the TSON . Its
formulation is as follows:

Min�qS
n

∑

i=1,2,4

∫ qi+�qN
i +�qS

i

qi+�qN
i

ci(ξ)dξ −
∑

j=3,5,6

∫ q j+�qN
j +�qS

j

q j+�qN
j

w j(ξ)dξ (107)

s.t.
∑

i=1,2,4

�qS
i +

∑

j=3,5,6

�qS
j = 0

(
μS,1) (108)

∑

j=3,5,6

�qS
j −

∑

i=1,2,4

�qS
i = 0

(
μS,2) (109)

Fl −
⎡

⎣
∑

i=1,2,4

PT DFi,l
(
qi + �qN

i + �qS
i

)

−
∑

j=3,5,6

PT DF j,l

(
q j + �qN

j + �qS
j

)
⎤

⎦ ≥ 0
(
λ

S,+
l

)
(110)

Fl +
⎡

⎣
∑

i=1,2,4

PT DFi,l
(
qi + �qN

i + �qS
i

)

−
∑

j=3,5,6

PT DF j,l

(
q j + �qN

j + �qS
j

)
⎤

⎦ ≥ 0
(
λ

S,−
l

)
(111)

where l = (1 − 6), (2 − 5)

qn + �qN
n + �qS

n ≥ 0 n = 1, ..., 6
(
νS

n

)
(112)

Appendix D: Complementarity conditions of the decentralized
counter-trading Model 1

We here present the mixed complementarity formulation of the decen-
tralized counter-trading Model 1 (66)–(74). Setting γ N

l = (−γ
N,+

l + γ
N,−

l );
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γ S
l = (−γ

S,+
l + γ

S,−
l ) and λl = (−λ+

l + λ−
l ) for l = ((1 − 6), (2 − 5)), the com-

plementarity conditions are as follows:

0 ≤ ci

⎛

⎝qi +
∑

z=N,S

�qz
i

⎞

⎠ −
∑

l

(
λl + γ N

l

) · PT DFi,l

−μN,1 + μN,2⊥
⎛

⎝qi +
∑

z=N,S

�qz
i

⎞

⎠ ≥ 0 (113)

0 ≤ −w j

⎛

⎝q j +
∑

z=N,S

�qz
j

⎞

⎠ +
∑

l

(
λl + γ N

l

) · PT DF j,l

−μN,1 − μN,2⊥
⎛

⎝q j +
∑

z=N,S

�qz
j

⎞

⎠ ≥ 0 (114)

0 ≤ ci

⎛

⎝qi +
∑

z=N,S

�qz
i

⎞

⎠ −
∑

l

(
λl + γ S

l

) · PT DFi,l

−μS,1 + μS,2⊥
⎛

⎝qi +
∑

z=N,S

�qz
i

⎞

⎠ ≥ 0 (115)

0 ≤ −w j

⎛

⎝q j +
∑

z=N,S

�qz
j

⎞

⎠ +
∑

l

(
λl + γ S

l

) · PT DF j,l

−μS,1 − μS,2⊥
⎛

⎝q j +
∑

z=N,S

�qz
j

⎞

⎠ ≥ 0 (116)

0 ≤ Fl −
⎡

⎣
∑

i=1,2,4

PT DFi,l

⎛

⎝qi +
∑

z=N,S

�qz
i

⎞

⎠

−
∑

j=3,5,6

PT DF j,l

⎛

⎝q j +
∑

z=N,S

�qz
j

⎞

⎠ ⊥λ+
l

⎤

⎦ ≥ 0 (117)

0 ≤ Fl +
⎡

⎣
∑

i=1,2,4

PT DFi,l

⎛

⎝qi +
∑

z=N,S

�qz
i

⎞

⎠

−
∑

j=3,5,6

PT DF j,l

⎛

⎝q j +
∑

z=N,S

�qz
j

⎞

⎠ ⊥λ−
l

⎤

⎦ ≥ 0 (118)

∑

i=1,2,4

�qN
i +

∑

j=3,5,6

�qN
j = 0

(
μN,1) (119)
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∑

j=3,5,6

�qN
j −

∑

i=1,2,4

�qN
i = 0

(
μN,2) (120)

∑

i=1,2,4

�qS
i +

∑

j=3,5,6

�qS
j = 0

(
μS,1) (121)

∑

j=3,5,6

�qS
j −

∑

i=1,2,4

�qS
i = 0

(
μS,2) (122)

where i = 1, 2, 4; j = 3, 5, 6 and the dual variables μN,1, μS,1, μN,2 and μS,2

associated with equality constraints are free variables. Note that:

ci

⎛

⎝qi +
∑

z=N,S

�qz
i

⎞

⎠ = ∂
∫ qi+∑

z=N,S �qz
i

qi
ci

∂�qN
i

= ∂
∫ qi+∑

z=N,S �qz
i

qi

∂�qS
i

i = 1, 2, 4 (123)

w j

⎛

⎝q j +
∑

z=N,S

�qz
j

⎞

⎠ =
∂

∫ q j+∑
z=N,S �qz

j
q j

w j

∂�qN
j

=
∂

∫ q j+∑
z=N,S �qz

j
q j

∂�qS
j

j = 3, 5, 6

(124)

Note that conditions (113), (114), (119) and (120) exclusively refer to TSON ,
while (115), (116), (121) and (122) are those of TSOS. Finally, (117) and (118)
are the common transmission constraints.

Appendix E: Proof of Proposition 1

Consider the KKT conditions (113)–(116) of the decentralized counter-trading
Model 1 (66)–(74) reported in Appendix D and compare them to the KKT
conditions of the two TSOs’ problems (namely (60)–(65) for TSON and (107)–
(112) for TSOS) computed with respect to �qN

n and �qS
n that we here report:

0 ≤ ci

⎛

⎝qi +
∑

z=N,S

�qz
i

⎞

⎠ −
∑

l

λN
l PT DFi,l − μN,1

+μN,2⊥
⎛

⎝qi +
∑

z=N,S

�qz
i

⎞

⎠ ≥ 0 i = 1, 2, 4 (125)

0 ≤ −w j

⎛

⎝q j +
∑

z=N,S

�qz
j

⎞

⎠ +
∑

l

λN
l PT DF j,l − μN,1

−μN,2⊥
⎛

⎝q j +
∑

z=N,S

�qz
j

⎞

⎠ ≥ 0 j = 3, 5, 6 (126)
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0 ≤ ci

⎛

⎝qi +
∑

z=N,S

�qz
i

⎞

⎠ −
∑

l

λS
l PT DFi,l − μS,1

+μS,2⊥
⎛

⎝qi +
∑

z=N,S

�qz
i

⎞

⎠ ≥ 0 i = 1, 2, 4 (127)

0 ≤ −w j

⎛

⎝q j +
∑

z=N,S

�qz
j

⎞

⎠ +
∑

l

λS
l PT DF j,l − μS,1

−μS,2⊥
⎛

⎝q j +
∑

z=N,S

�qz
j

⎞

⎠ ≥ 0 j = 3, 5, 6 (128)

where λN
l = (−λ

N,+
l + λ

N,−
l ) and λS

l = (−λ
S,+
l + λ

S,−
l ).

The comparison between conditions (125)–(128) and (113)–(116) shows that

λz
l = λl + γ z

l z = N, S

Following Theorem 3.3 of Nabetani et al. (2009) and thanks to the constraint
qualification, the following relation (129)

〈
g(x∗), γ z

l

〉 = 0 (129)

is a necessary and sufficient condition for a solution x∗ to problem V I(Fγ , K)

to be a GNE. Note that g(x∗) refers to a transmission constraint shared by
the two TSOs. Suppose this property holds for a solution of the parametrized
problem (66)–(74) and bearing in mind that each transmission line can be
congested in one direction only, we obtain:

λ
N,+
l = λ+

l + γ
N,+

l

λ
S,+
l = λ+

l + γ
S,+

l

λ
N,−
l = λ−

l + γ
N,−

l

λ
S,−
l = λ−

l + γ
S,−

l

��

Appendix F1: Proof of Proposition 2

Because all constraints are linear, constraint qualification holds. As already
indicated,

〈
g(x∗), γ z

l

〉 = 0 (130)
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is a necessary and sufficient condition for a solution x∗ to problem V I(Fγ , K)

to be a GNE.
Suppose this property holds for a solution of the parametrized problem

(66)–(74). It is then a GNE and we can write the KKT conditions of that
parametrized problem (see the complementarity conditions in Appendix D).
Suppose that qn + �qN

n + �qS
n > 0 for all n and note λl = (−λ+

l + λ−
l ), γ N

l =
(−γ

N,+
l + γ

N,−
l ) and γ S

l = (−γ
S,+

l + γ
S,−

l ) in order to simplify the discussion.
Then the optimality condition in (113)–(116) are binding and it follows that:

ci

⎛

⎝qi +
∑

z=N,S

�qz
i

⎞

⎠ −
∑

l

γ N
l PT DFi,l −

∑

l

λl · PT DFi,l − μN,1 + μN,2 = 0

(131)

−w j

⎛

⎝q j+
∑

z=N,S

�qz
j

⎞

⎠ +
∑

l

γ N
l PT DF j,l +

∑

l

λl · PT DF j,l − μN,1 − μN,2 =0

(132)

ci

⎛

⎝qi +
∑

z=N,S

�qz
i

⎞

⎠ −
∑

l

γ S
l PT DFi,l −

∑

l

λl · PT DFi,l − μS,1 + μS,2 = 0

(133)

− w j

⎛

⎝q j+
∑

z=N,S

�qz
j

⎞

⎠ +
∑

l

γ S
l PT DF j,l +

∑

l

λl · PT DF j,l − μS,1 − μS,2 =0

(134)

Subtracting (133) from (131) and (134) from (132) leads to the following
conditions:

∑

l

(
γ N

l − γ S
l

)
PT DFi,l = − (

μN,1 − μN,2) + (
μS,1 − μS,2) i = 1, 2, 4

(135)

∑

l

(
γ N

l − γ S
l

)
PT DF j,l = (

μN,1 + μN,2) − (
μS,1 + μS,2) j = 3, 5, 6

(136)

Because node 6 is the hub, we have PT DF6,l = 0 and hence (μN,1 + μN,2) −
(μS,1 + μS,2) = 0 in (136). This in turn implies (γ N

(1−6) − γ S
(1−6))PT DF j,(1−6) +

(γ N
(2−5) − γ S

(2−5))PT DF j,(2−5) = 0 for j = 3, 5 and then:

(
γ N

(1−6) − γ S
(1−6)

) = − PT DF j,(2−5)

PT DF j,(1−6)

(
γ N

(2−5) − γ S
(2−5)

)
j = 3, 5 (137)
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This is verified only when γ N
l = γ S

l because the ratio PT DF j,(2−5)

PT DF j,(1−6)
assumes

a positive and a negative value. Taking stock of condition (130), we can
deduce that:

γ
N,+

l = γ
S,+

l

γ
N,−

l = γ
S,−

l

��
Appendix F2: Generalizing Proposition 2

Assume now that the market is sub-dived in z = 1, ..., Z zones each controlled
by a TSO. The expressions qi + �qN

i + �qS
i and q j + �qN

j + �qS
j are

respectively substituted by qi + ∑Z
z=1 �qz

i and q j + ∑Z
z=1 �qz

j where �qz
i and

�qz
j are the variations operated by TSOz on power respectively produced

and consumed in nodes i ∈ I and j ∈ J. Following former discussions in the
now resolved flowgate/nodal pricing debate in the US and current discussions
on the European “flow based” approach (see De Jong et al., Effects of
flow-based market coupling for the CWE region. Available at http://www.
nextgenerationinfrastructures.eu/download.php?field=document&itemID=
449543 and Kurzidem 2010) we assume that the lines subject to congestion
are few in the overall transmission infrastructure: we let L be this subset of
potentially congested lines and adopt a European like terminology to refer
to them as critical infrastructures (this terminology is used for the energy
market in the European MC). We introduce the following NT F problem that
generalizes the corresponding two zone problem (71)–( 72).

Min�qz
n

∑

i

∫ qi+∑Z
z=1 �qz

i

qi

ci(ξ)dξ −
∑

j

∫ q j+∑Z
z=1 �qz

j

q j

w j(ξ)dξ +

+
∑

l

∑

z

⎡

⎣
(
γ

z,+
l − γ

z,−
l

) ·
⎛

⎝
∑

i

PT DFi,l · �qz
i −

∑

j

PT DF j,l · �qz
j

⎞

⎠

⎤

⎦

(138)

s.t.
∑

i

�qz
i +

∑

j

�qz
j = 0 (μz,1) (139)

∑

j

�qz
j −

∑

i

�qz
i = 0 (μz,2) (140)

Fl −
⎡

⎣
∑

i

PT DFi,l

(

qi+
Z∑

z=1

�qz
i

)

−
∑

j

PT DF j,l

(

q j+
Z∑

z=1

�qz
j

)⎤

⎦≥0 (λ+
l )

(141)

http://www.nextgenerationinfrastructures.eu/download.php?field=document&itemID=449543
http://www.nextgenerationinfrastructures.eu/download.php?field=document&itemID=449543
http://www.nextgenerationinfrastructures.eu/download.php?field=document&itemID=449543
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Fl +
⎡

⎣
∑

i

PT DFi,l

(

qi+
Z∑

z=1

�qz
i

)

−
∑

j

PT DF j,l

(

q j+
Z∑

z=1

�qz
j

)⎤

⎦≥0 (λ−
l )

(142)

qn +
Z∑

z=1

�qz
i ≥ 0 ∀n (νz

n) (143)

We can then state the following proposition that extends Proposition 2.

Proposition 9 Denote transmission constraints (141) and (142) respectively as
g+

l and g−
l . Suppose that the optimization problem (138)–(143) has a solution

that satisf ies the conditions
〈
g+

l (x∗), γ z,+
l

〉 = 0 and
〈
g−

l (x∗), γ z,−
l

〉 = 0 def ined by
Theorem 3.3 of Nabetani et al. (2009). Suppose that the sum of the number
of counter-trading resources and critical infrastructures traded among TSOs in
the counter-trading market is greater or equal to the total number of critical
infrastructures (cardinality of L.) Then, the solution of problem (138)–(143)
exists if and only if γ

z,+
l = γ

z′,+
l and γ

z,−
l = γ

z′,−
l for all z. If so, then the optimal

solution of that NTF problem is a GNE.

Proof of Proposition 9 Accounting for the above modifications and, in or-
der to simplify the presentation, assuming that qi + ∑Z

z=1 �qz
i > 0 and q j +

∑Z
z=1 �qz

j > 0 and setting λl = (−λ+
l + λ−

l ), γ N
l = (−γ

N,+
l + γ

N,−
l ) and γ S

l =
(−γ

S,+
l + γ

S,−
l ), one can deduce that conditions (131)–(134) can be generalized

as follows:

ci

(

qi+
Z∑

z=1

�qz
i

)

−
∑

l

γ z
l PT DFi,l −

∑

l

λl · PT DFi,l −μz,1+μz,2 =0 ∀z; i∈ I

(144)

− w j

(

q j +
Z∑

z=1

�qz
j

)

+
∑

l

γ z
l PT DF j,l

+
∑

l

λl · PT DF j,l − μz,1 − μz,2 = 0 ∀z; j ∈ J (145)

Consider two different zones that we denote as z and z′. Subtracting (144)
for zone z′ �= z from (144) for zone z and doing the same for (145), we obtain:

∑

l

(
γ z

l − γ z′
l

)
PT DFi,l = −(μz,1 − μz,2) + (μz′,1 − μz′,2) i ∈ I (146)

∑

l

(
γ z

l − γ z′
l

)
PT DF j,l = (μz,1 + μz,2) − (μz′,1 + μz′,2) j ∈ J (147)
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Assuming that n ∈ J is the hub node, we then have PT DFn,l = 0 and hence
(μz,1 + μz,2) − (μz′,1 + μz′,2) = 0 in Eq. (147). This in turn implies:

∑

l

(γ z
l − γ z′

l )PT DF j,l = 0 ∀ j �= n (148)

Note that now condition (148) denotes a homogeneous system. If the number
of j �= n nodes is greater or equal to the number of the terms of the sum∑

l(γ
z

l − γ z′
l )PT DF j,l for each of the Z − 1 independent couples γ z

l − γ z′
l

then γ z
l = γ z′

l and thus γ
z,+

l = γ
z′,+

l , γ
z,−

l = γ
z′,−

l . This particular solution
corresponds to the case where a market for line capacity exists. In the opposite
case, the system has infinite number of solutions. Suppose however that one
creates a market of line capacities where the number of lines in that market is
such that the number of j �= n nodes plus the line in the transmission market is
equal to the number of the terms of the sum

∑
l(γ

z
l − γ z′

l )PT DF j,l for each of
the Z − 1 independent couples , then γ

z,−
l = γ

z′,−
l . ��

Appendix G1: Proof of Proposition 3

In order to simplify the discussion, assume again that qn + �qN
n + �qS

n > 0 ∀n
and define λN

l = (−λ
N,+
l + λ

N,−
l ) and λS

l = (−λ
S,+
l + λ

S,−
l ) for l = ((1 − 6), (2 −

5)). Replace qn + �qN
n + �qS

n with qn + ∑
z=N,S �qz

n ∀n. The KKT conditions
of the two TSOs’ problems (namely (60)–(65) for TSON and (107)–(112) for
TSOS) obtained by deriving with respect to the variables �qN

n and �qS
n are as

follows:

ci

(

qi +
∑

z=N,S

�qz
i

)

−
∑

l

λz
l PT DFi,l − μz,1 + μz,2 = 0 i = 1, 2, 4 z = N, S

(149)

−w j

(

q j +
∑

z=N,S

�qz
j

)

+
∑

l

λz
l PT DF j,l − μz,1 − μz,2 = 0 j = 3, 5, 6 z = N, S

(150)
Summing (149) to (150), we have:

ci

(

qi +
∑

z=N,S

�qz
i

)

− w j

(

q j +
∑

z=N,S

�qz
j

)

+
∑

l

λz
l (PT DF j,l − PT DFi,l) − 2μz,1 = 0 z = N, S (151)
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Since condition (151) holds for both TSOs, we can rewrite it in an explicit way:

ci

(

qi +
∑

z=N,S

�qz
i

)

− w j

(

q j +
∑

z=N,S

�qz
j

)

+
∑

l

λN
l (PT DF j,l − PT DFi,l) − 2μN,1 = 0 (152)

ci

(

qi +
∑

z=N,S

�qz
i

)

− w j

(

q j +
∑

z=N,S

�qz
j

)

+
∑

l

λS
l (PT DF j,l − PT DFi,l) − 2μS,1 = 0 (153)

Subtracting (153) from (152), we get:
∑

l

(
λN

l − λS
l

)
(PT DF j,l − PT DFi,l) − 2(μN,1 − μS,1) = 0 (154)

We now subtract (150) from (149) and apply the above reasoning. We get:

ci

(

qi +
∑

z=N,S

�qz
i

)

+ w j

(

q j +
∑

z=N,S

�qz
j

)

−
∑

l

λz
l (PT DF j,l + PT DFi,l) + 2μz,2 = 0 z = N, S (155)

that can be substituted by these two conditions:

ci

(

qi +
∑

z=N,S

�qz
i

)

+ w j

(

q j +
∑

z=N,S

�qz
j

)

−
∑

l

λN
l (PT DF j,l + PT DFi,l) + 2μN,2 = 0 (156)

ci

(

qi +
∑

z=N,S

�qz
i

)

+ w j

(

q j +
∑

z=N,S

�qz
j

)

−
∑

l

λS
l

(
PT DF j,l + PT DFi,l

) + 2μS,2 = 0 (157)

Subtracting (157) from (156), one yields:
∑

l

(
λN

l − λS
l

)
(PT DF j,l + PT DFi,l) − 2(μN,2 − μS,2) = 0 (158)
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The combination of conditions (154) and (158) leads to the following
equalities:

∑

l

(
λN

l − λS
l

)
PT DF j,l − (μN,1 − μS,1) − (μN,2 − μS,2) = 0 (159)

∑

l

(
λN

l − λS
l

)
PT DFi,l + (μN,1 − μS,1) − (μN,2 − μS,2) = 0 (160)

By setting, α = (μN,1 + μN,2) − (μS,1 + μS,2) and β = (μN,1 − μN,2) −
(μS,1 − μS,2) conditions (159) and (160) become:

∑

l

(
λN

l − λS
l

)
PT DF j,l − α = 0 j = 3, 5, 6 (161)

∑

l

(
λN

l − λS
l

)
PT DFi,l + β = 0 i = 1, 2, 4 (162)

We observe that PT DF6,l = 0. This implies that α = 0. If α = 0, then it
holds that:

∑

l

(
λN

l − λS
l

)
PT DF j,l = 0 j = 3, 5 (163)

This corresponds to:
(
λN

(1−6) − λS
(1−6)

)
PT DF j,(1−6) + (

λN
(2−5) − λS

(2−5)

)
PT DF j,(2−5) = 0 j = 3, 5

(164)

(
λN

(1−6) − λS
(1−6)

) = − PT DF j,(2−5)

PT DF j,(1−6)

(
λN

(2−5) − λS
(2−5)

)
j = 3, 5 (165)

But PT DF j,(2−5)

PT DF j,(1−6)
assumes a positive and a negative value respectively for

j = 3, 5 and then λN
l = λS

l . This result means that the marginal values of
transmission lines are identical for both TSOs. Consequently, the two TSOs
are implicitly coordinated and there is no arbitrage. This also implies that
α = β = 0 and then:

(μN,1 + μN,2) − (μS,1 + μS,2) = 0 (166)

(μN,1 − μN,2) − (μS,1 − μS,2) = 0 (167)

These can be rewritten as follows:

μN,1 − μS,1 = (μS,2 − μN,2) (168)

μN,1 − μS,1 = −(μS,2 − μN,2) = 0 (169)

This implies that μN,1 = μS,1 and μN,2 = μS,2. ��
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Appendix G2: Generalizing Proof of Proposition 3

In this appendix, we generalize the results of Proposition 3. Assume again
that the market is sub-dived in z = 1, ..., Z zones each controlled by a TSO.
The expressions qi + �qN

i + �qS
i and q j + �qN

j + �qS
j can be respectively

substituted by qi + ∑Z
z=1 �qz

i and q j + ∑Z
z=1 �qz

j where �qz
i and �qz

j are the
variations operated by TSOz on power respectively produced and consumed
in nodes i ∈ I and j ∈ J.

Proposition 10 Suppose that the sum of the number of counter-trading re-
sources and critical infrastructures that are explicitly traded among TSOs in
counter-trading (for which there is an organized market) is greater or equal to
the total number of critical infrastructures (cardinality of L.). If the solution of
the GNE problem (138)–(143) exists, then it satisf ies γ

z,±
l = γ

z′,±
l and μz,1 =

μz′,1 and μz,2 = μz′,2.

Proof of Proposition 10 Assume again in order to simplify the discussion that
qn + ∑Z

z=1 �qz
n > 0 ∀n and define λl = (−λ+

l + λ−
l ) for l ∈ L. We state the

KKT conditions of the generalized parametrized problem (138)–(143). We get:

ci

(

qi +
Z∑

k=1

�qz
i

)

−
∑

l

λz
l PT DFi,l − μz,1 + μz,2 = 0 ∀z; i ∈ I (170)

−w j

(

q j +
Z∑

k=1

�qz
j

)

+
∑

l

λz
l PT DF j,l − μz,1 − μz,2 = 0 ∀z; j ∈ J (171)

Summing (170) to (171), we have:

ci

(

qi +
Z∑

k=1

�qz
i

)

− w j

(

q j +
Z∑

k=1

�qz
j

)

+
∑

l

λz
l (PT DF j,l − PT DFi,l) − 2μz,1 = 0 ∀z (172)

Since condition (172) holds for all TSOs, we can rewrite it as follows:

ci

(

qi +
Z∑

k=1

�qz
i

)

− w j

(

q j +
Z∑

k=1

�qz
j

)

+
∑

l

λz
l (PT DF j,l − PT DFi,l) − 2μz,1 = 0 ∀z (173)

ci

(

qi +
Z∑

k=1

�qz
i

)

− w j

(

q j +
Z∑

k=1

�qz
j

)

+
∑

l

λz′
l (PT DF j,l − PT DFi,l) − 2μz′,1 = 0 ∀z′ �= z (174)
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Subtracting (174) from (173), we get:
∑

l

(
λz

l − λz′
l

)
(PT DF j,l − PT DFi,l) − 2(μz,1 − μz′,1) = 0 (175)

We now subtract (171) from (170) and apply the above reasoning. We get:

ci

(

qi +
Z∑

k=1

�qz
i

)

+ w j

(

q j +
Z∑

k=1

�qz
j

)

−
∑

l

λz
l (PT DF j,l + PT DFi,l) + 2μz,2 = 0 ∀z (176)

that can be substituted by these two conditions:

ci

(

qi +
Z∑

k=1

�qz
i

)

+ w j

(

q j +
Z∑

k=1

�qz
j

)

−
∑

l

λz
l (PT DF j,l + PT DFi,l) + 2μz,2 = 0 ∀z (177)

ci

(

qi +
Z∑

k=1

�qz
i

)

+ w j

(

q j +
Z∑

k=1

�qz
j

)

−
∑

l

λz′
l (PT DF j,l + PT DFi,l) + 2μz′,2 = 0 ∀z′ �= z (178)

Again, subtracting (178) from (177), one yields:
∑

l

(
λz

l − λz′
l

)
(PT DF j,l + PT DFi,l) − 2(μz,2 − μz′,2) = 0 (179)

The combination of conditions (175) and (179) leads to the following
equalities:

∑

l

(
λz

l − λz′
l

)
PT DF j,l − (μz,1 − μz′,1) − (μz,2 − μz′,2) = 0 (180)

∑

l

(
λz

l − λz′
l

)
PT DFi,l + (μz,1 − μz′,1) − (μz,2 − μz′,2) = 0 (181)

By setting, α = (μz,1 + μz,2) − (μz′,1 + μz′,2) and β = (μz,1 − μz,2) − (μz′,1−
μz′,2) conditions (180) and (181) become:

∑

l

(
λz

l − λz′
l

)
PT DF j,l − α = 0 j ∈ J (182)

∑

l

(
λz

l − λz′
l

)
PT DFi,l + β = 0 i ∈ I (183)
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Assuming that n ∈ J is the hub node. This implies that α = 0. If α = 0, then
it holds that:

∑

l

(
λz

l − λz′
l

)
PT DF j,l = 0 ∀ j �= n (184)

Note that now condition (184) denotes a homogeneous system. If the
number of j �= n nodes is greater or equal to the number of the terms of the
sum

∑
l(γ

z
l − γ z′

l )PT DF j,l for each of the Z − 1 independent couples λz
l −

λz′
l then λz

l = λz′
l and thus λ

z,+
l = λ

z′,+
l , λ

z,−
l = λ

z′,−
l . This particular solution

corresponds to the case where a market for line capacity exists. In the opposite
case, the system has infinite number of solutions. Suppose however that one
creates a market of line capacities where the number of lines in that market is
such that the number of j �= n nodes plus the line in the transmission market
is equal to the number of the terms of the sum

∑
l(γ

z
l − γ z′

l )PT DF j,l for each
of the Z − 1 independent couples, then λ

z,−
l = λ

z′,−
l . Consequently, the TSOs

are implicitly coordinated and there is no arbitrage. This also implies that
α = β = 0 and then:

(μz,1 + μz,2) − (μz′,1 + μz′,2) = 0 (185)

(μz,1 − μz,2) − (μz′,1 − μz′,2) = 0 (186)

These can be rewritten as follows:

μz,1 − μz′,1 = (μz′,2 − μz,2) (187)

μz,1 − μz′,1 = −(μz′,2 − μz,2) = 0 (188)

This implies that μz,1 = μz′,1 and μz,2 = μz′,2. ��

Appendix H: Proof of Corollary 1

Corollary 3.2 of Nabetani, Tseng and Fukushima’s paper (see Nabetani et al.
(2009)) proves that if the dual problem has solution then

⋃

γ∈�

SOLV I(Fγ ,K) ⊇ SOLGNEP

We first consider the case where γ = 0. Under this assumption V I(F, K) =
V I(Fγ=0, K) and the parametrized problem is identical to the optimized
counter-trading problem. This can be easily done by imposing �qN

n +
�qS

n = �qn.
As already observed, the optimized counter-trading problem has a unique

solution because of the convexity of the set K and the strict convexity of its
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objective function. This implies that the solution of the decentralized counter-
trading problem (66)–(74) coincides with that of the optimized counter-trading
model (53)–(59) when γ = 0.

We now show that the solution set of problem V I(Fγ , K) when γ
N,±

l = γ
S,±

l
and μZ ,1 = μZ ,2 reduces to a unique solution that is the solution of the
optimized counter-trading problem (53)–(59).

Compare now the KKT conditions of the optimized counter-trading prob-
lem with those of the decentralized counter-trading problem. Denote �qn =
�qN

n + �qS
n for all n and λl = (−λ+

l + λ−
l ), the optimality conditions of the

optimized counter-trading model are as follows (compare complementarity
conditions in Appendix B):

ci
(
qi + �qN

i + �qS
i

) −
∑

l

λl PT DFi,l − μ1 + μ2 = 0 i = 1, 2, 4 (189)

− w j

(
q j + �qN

j + �qS
j

)
+

∑

l

λl PT DF j,l − μ1 − μ2 = 0 j = 3, 5, 6

+ transmission constraints and the re-dispatching balances.

(190)

Denoting similarly γ N
l = (−γ

N,+
l + γ

N,−
l ) γ S

l = (−γ
S,+

l + γ
S,−

l ) and know-
ing that γ

N,±
l = γ

S,±
l , the optimality conditions of the decentralized counter-

trading Model 1 are as follows:

ci
(
qi + �qN

i + �qS
i

) −
∑

l

(
λl + γ N

l

)
PT DFi,l − μ1 + μ2 = 0 i = 1, 2, 4

(191)

−w j

(
q j+�qN

j +�qS
j

)
+

∑

l

(
λl + γ N

l

)
PT DF j,l − μ1 − μ2 = 0 j = 3, 5, 6

+transmission constraints and the re-dispatching balances.

(192)

Setting λl = λl + γ N
l one can easily see that the two groups of optimality

conditions are identical and then the corresponding problems admit the same
solution set.

Appendix I: Proof of Proposition 6

Let us denote the NTF’s formulation of problem (75)–(85) as to V I(Fγ , K2).
The primal solution of problem V I(Fγ=0, K2) is unique when all γ

N/S
l = 0.

This is because both the objective function (75) and the set defined by the
constraints are convex. Due to the lack of perfect arbitrage between the two
TSOs, the equality γ N

l = γ S
l is no more ensured and then when γ

N/S
l �= 0 we

have two different cases.
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If γ
N/S

l �= 0 and γ N
l = γ S

l , then the transformations applied to λl in the
complementarity version of problem (75)–(81) are simply translations (as we
already seen in the Proof of Corollary 1 in Appendix H). This means that:

λ
N/S
l = λl + γ

N/S
l

and implies that under this assumption the solution set of problem V I(Fγ , K2)

coincides with that of problem V I(Fγ=0, K2). Since the solution set of the
primal problem of V I(Fγ=0, K2) contains one solution, this is also the unique
solution of V I(Fγ=0, K2).

This does not happen when γ
N/S

l �= 0 and γ N
l �= γ S

l because the translations
operated on the problems are now different. In other words:

λN
l = λl + γ N

l (193)

λS
l = λl + γ S

l (194)

respectively for the TSON and TSOS. As a consequence, the solution set
can admit several solutions. However, from conditions (193) and (194), one
immediately deduces that λN

l = λl = λS
l when γ

N/S
l = 0 and that

λN
l − λS

l = γ N
l − γ S

l

��

Appendix J: Proof of Proposition 8

The proof is parallel to that of Proposition 6 (see Appendix I).
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