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Abstract Travel demand models are usually estimated using cross-sectional
data. Although the use of panel data has recently increased in many areas, there
are still many aspects that have not been fully analyzed. Some examples of
unexplored topics are: the optimal length of panel surveys and the resulting
issue of how to model panel data correctly in the presence of repeated
observations (for example, several trips per week, by people in a panel with
waves every six months) and whether, and to which extent, this affects the
efficiency of the estimated parameters and their capability to replicate the true
situation. In this paper we analyse this issue and test the effect of including
journeys made, with the same characteristics, several times in a week. A broad
variety of models accounting for fixed parameters but also for random
heterogeneity and correlation among individuals were estimated using real and
synthetic data. The real data comes from the Santiago Panel (2006–2008), while
the synthetic data were appropriately generated to examine the same problem in a
controlled experiment. Our results show that having more observations per
individual increases the probability of capturing more effects (i.e. different types
of heterocedasticity), but having identical observations in a data panel reduces the
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capability to reproduce the true phenomenon. Consequently, the definition of panel
survey length demands us to consider the implicit level of routine (i.e. the
proportion of identical observations) in it.

Keywords Panel data with repeated observations . Discrete choice models .

Parameter efficiency

1 Introduction

For many years, travel demand models have been estimated using mainly cross-
sectional data involving the collection of information, at one point in time, over
a relatively large number of individuals. One problem with this data structure is
that it does not allow to model user’s behaviour in the presence of temporal
effects. Only recently, the increased need for better understanding of individual
behaviour and the parallel advances in travel demand modelling techniques and
computational power has made it possible to re-discover panel data. In this case,
contrary to cross-sectional data, information is collected at a number of successive
points in time retaining the same individuals for the entire series of surveys.

Panels can be classified into two categories: “long survey panels” and “short
survey panels” (see Yáñez et al. 2010). The first are the most common in the
literature and consists of repeating the same survey (i.e. with the same
methodology and design) at “separate” times, for example once or twice a year
for a certain number of years or before-and-after an important event. The second
type of panel consists of multi-day data where repeated measurements on the same
sample of units are gathered over a “continuous” period of time (e.g. seven or more
successive days), but the survey is not repeated in subsequent years. Some recent
examples of panel data gathered over a continuous period of time are the two-day
time-use diary for the US National Panel Study of Income Dynamics (2002) and
the six-week travel and activity diary data panels collected in Germany (Axhausen
et al. 2002) and Switzerland (Axhausen et al. 2007). One of the most recent panels
is that gathered in Santiago (2006–2008), which combines both the “short” and
“long” survey panel approaches. In fact, the Santiago Panel (Yáñez et al. 2010) is
a five-day pseudo diary which has also four waves before and after the
implementation of a radically new and much maligned urban public transport
system (Transantiago).

Panel data offer major advantages over cross-sectional data because repeated
observations from the same individual generally allow for more accurate measure-
ments of changes in individual mobility. In particular, a “long survey panel”
including data for the same respondents at “separate” points in time allows studying
dynamic effects over waves, such as habit formation, learning and the reaction to
important policies (Yáñez and Ortúzar 2009; Yáñez et al. 2009). A “short survey
panel”, on the other hand, such as a multi-day panel over only one continuous period
of time allows to detect effects such as rhythms of daily life (Axhausen et al. 2002),
to explain current behaviour on the basis of the individuals’ history and experience
(Cirillo and Axhausen 2006) and to account for interpersonal variability and
correlation across individuals over different time periods (Cherchi and Cirillo 2008).
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Although panel data have many advantages, they can also suffer from certain
specific problems, such as:

– Attrition bias: associated to the fact that some respondents may drop out among
waves; the problem is that usually this does not occur randomly but might be
depend on the person´s socio-economic characteristics, causing a bias in the
results (Ruiz 2006).

– Panel effect: participating in a panel may affect individual decisions as panel
members become more conscious about their own behaviour.

– Fatigue effect: respondents tend to show, for example, declining trip rates and
omit short trips or journeys using slow modes; this error tends to increase with
the number of days of the diary (Van Wisen and Meurs 1989).

Another problem (specific to successive multi-day panel data), which is important
to take into account in order to establish the survey length, is the presence of
repeated observations. It is normal to expect that individuals, in different days, may
repeat exactly some trips (typical cases are the systematic trips to work that are often
made every day with the same characteristics: time, cost, purpose, mode, and so on).
The problem arises when these data are used for model estimation, as the way in
which repeated information is treated may affect the estimation results.

In this paper we analyze the effect of repeated observations in a panel context,
specifically, the problem of how repeated data should be treated in model estimation
and whether, and to what extent, this affects the efficiency of the estimated
parameters and their capability to replicate the true phenomenon. In fact, the way a
panel data model is specified affects model estimation because the above
assumptions imply substantial differences in model specification, data variability,
degree of correlation over individuals and different sample dimensions. In particular,
using simulated data we analyse the impact of multi-day-panel-survey length on the
capability of models to recover the “true parameters”.

The analyses were carried out with real data from the second wave of the
Santiago Panel and with synthetic data generated to test, in a controlled experiment
(free of unknown effects), the effect of the repeated observations on the efficiency of
the model parameters. Efficiency is measured in this case by the Fisher information
matrix; this is inversely related to sample size, to the values of the attributes
associated to the estimated parameters and to the probability associated to the chosen
alternative (McFadden 1974). Rose and Bliemer (2008) analysed the effect of the
number of alternatives, attributes, and attribute levels on the optimal sample size for
stated choice experiments in MNL models, as part of their search for the
experimental design with highest asymptotic efficiency of the estimated parameters.
They found that only the range of attribute levels could offer an explanation for
some problems of convergence encountered in their experiments. In line with these
analyses on experimental design, Cherchi and Ortúzar (2008) demonstrated that
while efficiency clearly improves with sample size, data variability does not always
increase it; rather, in some cases it might not even be beneficial to increase data
variability or it might be better to have a smaller range of variation.

In contrast, the repeated observations in a panel will increase the number of
observations but might reduce data variability, because observations that are
identical do not bring new information about attribute trade-offs. Thus, when
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using panel data it is important to understand how efficiency is influenced by
the repeated observations and up to what point these are beneficial. This last
result is also crucial to determine the length of a multi-day panel survey which
is something that has not been explored up to date. Moreover, as in the case of
panel data the same individual provides more than one observation, we need to
account for correlation among these, which obviously has a different effect
depending on how the repeated observations are treated. Cherchi and Cirillo
(2008) found that the effect of correlation is, to a large extent (at least 50%), given
by the repeated observations; however, they only compared the case with and
without repeated observations and did not explore the effect on the efficiency of
the parameters and on the capability of a flexible model, such as Mixed Logit
(ML), to reproduce the true phenomenon.

The rest of the paper is organised as follow. In section 2 we briefly discuss the
issue of modelling with panel data and the effect of repeated observations in the
efficiency of the estimated models. In section 3 the main features of the Santiago
Panel data are described, and the results of several models estimated with these data
are reported. Section 4 reports the same type of analyses but using synthetic data, in
order to test also the capability of the ML model to reproduce the true phenomenon
in the presence of panel data and repeated observations. Finally, section 5
summarizes our conclusions.

2 Modelling with panel data

Although panel data models have been estimated using fairly typical discrete
choice functions, the presence of repeated observations makes it more
appropriate to use a Mixed Logit (ML) formulation accounting for correlation
among observations belonging to the same individual. As well known, a ML
probability is the integral of standard logit probabilities over a density of
parameters (Train 2003). In particular, when more than one observation per
individual is available, we need to take into account the sequence of choices, made
by the respondent; hence, if we assume the popular framework proposed by Revelt
and Train (1998), which accommodates inter-respondent heterogeneity but
assumes intra-respondent homogeneity in tastes, including the effect of the
repeated choices by assuming that tastes vary across respondents in the sample,
but stay constant across observations for the same respondent, the ML panel
probability is given by the product of ML probabilities:

Pqj Ωð Þ ¼
Z
mq

YT
t¼1

eVqjt mqð ÞP
i2At

q

eVqit mqð Þ

0BB@
1CCAf mq Ωj

� �
dmq ð1Þ

where V t
qi is the observable component of the utility of option i for individual q at

time t; and At
q is the choice set of individual q at time t. T is the number of periods,

f is the so-called “mixing distribution” with means μ and covariance matrix Ω (i.e.
the so-called “population parameters”) of the coefficients to be estimated in V.
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We also tested a generalised approach suggested by Hess and Rose (2009), which
relaxes the assumption of intra-respondent homogeneneity of tastes and where the
choice probability is given by:

Pqj Ωð Þ ¼
Z
aq

YT
t¼1

Z
gq;t

eV
t
qj mqð ÞP

i2At
q

eV
t
qi mqð Þ g gq;t Ωg

��� �
dgq;t

0BB@
1CCAh aq Ωj a

� �
daq ð2Þ

where μ is now a function of αq which varies over respondents with density
h aq Ωj a

� �
, and γq,t which varies over all choices with density g gq;t Ωg

��� �
. This model

has two integrals, inside and outside the product over choices; the outside integral
accounts for inter-respondent heterogeneity as in the traditional model (Revelt and
Train 1998), while the inside integral accounts for intra-respondent heterogeneity.
Due to the limitations of currently available software, we used a simplified version
(K1 in the notation of Hess and Train 2009) available in BIOGEME (Bierlaire 2003).

To analyse the effects generated by variability and repeated observations in model
structure we used the typical t-test and LR test (Ortúzar and Willumsen 2001). To
check whether the estimated parameters differed significantly among specifications
(i.e. different sample sizes), we used the t*-test (Galbraith and Hensher 1982):

t» ¼
bb1 � bb2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s
_2

1 þ s
_2

2

q ð3Þ

where bbi is the estimated parameter in specification i and bs i is its standard error.
The t-test is also inversely related to the Fisher information matrix that, as well

known, measures the efficiency of the estimated parameters. In Maximum
Likelihood estimation the expected value of the variance of the kth estimated
parameter (i.e. the kth element of the diagonal of the Fisher information matrix) is
given by:

E
@2‘

@b2k

" #
ffi

XQ
q¼1

X
j2Aq

@2 yjq ln pjq xjq; b
� �� �

@b2k

" #
b¼bb ð4Þ

where ‘ ¼ ln
Q

q p
yqjt
qjt is the log-likelihood function with respect to the parameters (β)

evaluated at their true values, pjq is the probability that individual q chooses
alternative j among the alternatives belonging to her choice set (Aq), xjq are the level-
of-service and socio-economic attributes, and yjq equals one if j is the alternative
actually chosen by individual q and zero otherwise.

Equation (4) shows that the efficiency of the estimated parameters depends on
sample size, the values of the attributes associated to the estimated parameters and
the probability of choosing the chosen alternative. In particular, the logit probability
depends, among other things, on the data variability and on the variance of the error
term (through the scale factor); thus, understanding the sensitivity of the efficiency
of the estimated parameters is a complex task. Cherchi and Ortúzar (2008) analysed
how the efficiency of the estimated parameters varied for RP and SP data. Here we
extend their analysis to the case of panel data.
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Equations (4), (5) and (6) below show the expression for one element of the Fisher
information matrix. These expressions are convenient for our theoretical discussion
because they help to understand easily what elements influence the matrix. However,
in practice it would be better to try and measure the overall statistical efficiency of the
expected outcomes of models estimated on a given dataset as in the experimental
design literature (Rose and Bliemer 2009); this can be done by computing the negative
inverse of the Fisher information matrix (i.e. the asymptotic covariance matrix, AVC),
and then computing the D-error which is equal to det(AVC)1/k (with k the number of
the parameters). Smaller D-error yields more efficient parameter estimates.

Let us consider, for simplicity, a binary choice logit model (i.e. with “fixed”
parameters). The variance of the parameters estimated with panel data is analogous
to the case with SP data:

var bb� �
¼ � 1P

q

P
t Δx2qjtbpqjt 1� bpqjt� � ð5Þ

where Δx2qjt is the attribute difference among both alternatives in period t. However,
in contrast to the case of SP data, when using information from a “short survey
panel” the attribute values do not vary over periods as they are identical for the same
individual. Thus, in this case we have that Δxqjt ¼ Δxqj8t and the variance becomes:

var bb� �
¼ � 1P

q

P
t Δx2qjbpqjt 1� bpqjt� � ð6Þ

These equations show that the variance depends clearly on the number of repeated
observations as well as on the data variability and number of observations. However, as
noted by Cherchi and Ortúzar (2007) “... the efficiency of the parameter increases with
the variability of the attribute but only for scale factors over 0.5. This effect, that might
seem counterintuitive, is due to the effect that the scale factor has on the variability of
the data, because efficiency reduces as data variability diminishes; and is also due to
the second order function of the probability that tends to zero as the probability of the
chosen alternative approximates one.” It is important to note that a panel with identical
repeated observations for each individual is a special case. In fact, in terms of the
above discussion having equal observations repeated a certain number of time
increases only marginally the variability of the attributes. In particular, if N is the
number of observations and R is the number of times these are repeated for each
individual, the variance of the attributes (Δxqj) for N and RN observations is related by
the following expression:

var RΔxqj
� �

var Δxqj
� � ¼ RN � Rð Þ

RN � 1ð Þ ð7Þ

Hence, identical repeated observations should not infuence (at least in theory) the
efficiency of the estimated parameters. This result was also confirmed by computing
the D-error typically used to generate efficient experimental designs (Rose and
Bliemer 2008).

The extension of this result to the MNL and ML cases is not difficult. In the ML
model, the variance of the mean of the random parameters is more complex, but the
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structure is basically the same (Cherchi and Ortúzar 2008). It is still inversely related
to the square value of the attributes associated to each parameter (as in the case of
the fixed parameters model), to the number of repeated observations, and is also a
function of the probabilities (Bliemer and Rose 2010).

3 Experiments with real data

The real data set used in this paper comes from the second wave of the Santiago Panel,
which included four waves around the introduction of Transantiago (full details can be
found in Yáñez et al. 2010). One important characteristic of this panel is that people were
asked only about their work trips in the morning peak hour, but it was also enquired if
this trip was repeated identically during other working days of the week and, if not,
respondents were asked to report on the alternative trips for other days of the week.

In the Santiago Panel the sampling unit is the individual. The initial sample
consisted of 303 individuals who lived in Santiago and worked full-time at one of
the six campuses of the Pontificia Universidad Católica de Chile (see Fig. 1). The
information sources used in the panel were:

(a) Face-to-face interviews with the aid of palms. The questionnaire had the
following sections:

i. Socioeconomic characteristics: age, sex, income, education, car ownership,
work hours in a week, possession of a driving licence.

Fig. 1 Home locations of the panel respondents
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ii. Characteristics of the trip to work: mode (could differ in different days),
departure and arrival times, travel times per trip stage, fares.

iii. From the second wave onwards, subjective perception of the performance
of the new public transport system (Transantiago).

(b) Very precise measurement of level-of service variables using state-of-the-art
technology, such as GPS and geocoding of origin-destination pairs.

The design of the survey was based on the 2002–2006 Great Santiago Origin-
Destination survey (DICTUC 2003; Ampt and Ortúzar 2004) and considered 12 modes.
As illustrated in Fig. 2, the mode chosen most frequently was car driver followed by bus.

3.1 Modelling results with real data

We are interested in the effects of the multi-day-panel-survey length. Thus, using data
from the second wave of the Santiago Panel, we considered five sample specifications,
each one having 1, 2, 3, 4 and 5 observations (working days) per individual
respectively. It means that the first specifications lose part of the information contained
in the data, as 12% of the users selected more than one mode per week.

In summary, in the first specification, as in any cross-sectional dataset, we have
only one available observation per individual, while in the other four specifications
we have a panel data context, due to the multiple available observations per
individual. However, each group of observations from the same individual has a
rather low variation. This was expected as we have travel information for one
working week and also because the members of the Santiago Panel have a fairly
static routine. The main reason for this is that all of them work at least eight hours
per day at the same place. This behaviour is similar to what was found by Cherchi
and Cirillo (2008) in the six-week data panel from the Mobidrive (2000) survey, i.e.
choices are much more persistent for tours the main activity of which is work or
study. This feature reminds us of an important issue in panel data: the presence of
habit or inertia in choice making behaviour (Cantillo et al. 2007).

Models of increasing complexity were estimated, starting with the simplest
multinomial logit (MNL), followed by nested logit (NL) structures ending with a
flexible random parameters mixed logit (ML) specification. We assumed that
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individuals chose their mode among a finite set of alternatives and that this choice set
could vary over working days and individuals. For space reasons we will only present
here the best models found, and we will leave out several specifications tested (i.e. MNL
models with systematic taste variations and models featuring the introduction of
additional activities1) as they came out as no improvement (i.e. using the likelihood
ratio test) over their restricted versions.

Tables 1 and 2 show the model results obtained for each data specification. In
particular, and with the aim of simplifying the analysis, Table 1 presents the results
of simple models which assume fixed parameters (MNL and NL), while Table 2
presents the results of the two selected ML models, based on the previous simple
models, for each sample specification. The corrected ρ2 index (Ortúzar and
Willumsen 2001) is provided for each case in order to account for the differences
in terms of number of estimated parameters.

All of models incorporate systematic heterogeneity around the alternative
specific constants (ASC) through the introduction of two variables related to
the start of Transantiago.2 The first was needed to represent the effect of the new
payment system, which featured an integrated fare for bus and Metro trips (which
did not exist in the old system) and which allows a time window of two hours to
make an interchange. For this we decided to introduce a dummy variable that
indicates if the individual was a new Metro user (Transantiago relies on Metro as
its backbone), with an expected positive effect in the utility function. The second
variable was needed to represent the comfort perceived by public transport users;
this became especially important after the inauguration of Transantiago as the
levels of overcrowding in the buses and the underground were extreme when the
system started (although this has improved a lot after two years of operation, at
least in the Metro, it is still higher than before). Regrettably, the initial survey
design did not consider the inclusion of latent variables so we could not predict
the importance of the above effects. Nevertheless, we obtained valuable
information about the subjective perceptions of individuals, and we used these
to create a dummy variable that took the value of one for respondents stating that
comfort was the attribute that worsened the most after Transantiago. The expected
sign of this variable is positive, as users chose the mode despite declaring a
negative change in comfort. It is important to remark that these two new variables
obtained high t-ratios for every model and data specification. Moreover, when
they were not considered the models presented problems with the signs of key
policy variables.

To facilitate comparisons, all models presented have the same “root” defined
by MNL. Therefore, they all started with the same utility function. The differences
are:

– the NL model also considers a hierarchical structure, nesting the modes
involving the use of a bus,

1 The panel survey also enquired about all activities involved in the tour that had work as its main purpose;
this allowed us to incorporate the effect of additional activities in the choice of mode.
2 It is important to note that the second wave was taken just three months after the introduction of
Transantiago, when the situation was still chaotic in the city.
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– the ML_INTER model allows for random variation in the cost attribute,3 which
also includes inter-respondent heterogeneity,4 and

– the ML_INTER_INTRA model is based on ML_INTER, but also includes intra-
respondent heterogeneity via the error components.

The signs of all estimated parameters are consistent with microeconomic
theory. However, the expected relationship between time coefficients
( btravel timej j < bwalk timej j < bwait timej j) is achieved only in the case of ML models
for the specification with five observations per individual, and in the case of ML
models that do not include nested structures for the other sample specifications.

As well-known, panel correlation is usually accommodated via (i) random
parameters (RP) or (ii) error components (EC). The main difference between
these two approaches is that the EC are applied to constants (thus, in this case
it is mandatory to set up an error-component reference alternative, i.e. an
alternative without error component) while the RP apply to variables that vary
across the sample. This gives an advantage to the RP approach because it does
not suffer from identification problems per se (Walker 2001).

Both methods generate correlation among alternatives, but while the RP-panel
generates correlation among all the alternatives, the EC-panel generates correlation
among a sub-set of (n-1) alternatives, generating confounding effects with NL forms.
This is the reason why in the literature the RP-panel is usually preferred over the EC-
panel method. However, in the RP-panel version correlation and random heterogeneity
are confounded and the effect of correlation can only be appreciated comparing the
log-likelihood and eventually the t-test of the random parameters estimated with and
without panel correlation. But we know that these measures do not allow the two
effects to be disentangled. Moreover, if there is no random heterogeneity in the
parameters associated to the level of service attributes, the RP-panel version cannot be
used as it generates a false random heterogeneity, which is even worse than having a
false NL structure, because it involves the level of service attributes.

Thus, although the influence of repeated observations (i.e. inter-respondent
heterogeneity in tastes) can be considered via the estimation of random coefficients
(i.e. RP-panel version), we believe there might be extra correlation across repeated
observations besides the effect of the random cost coefficients. Therefore, even
though random parameters and error components might induce confounding effects
they might also account for slightly different effects. In fact, as long as both effects
are significant the pure error-panel component (i.e. EC-panel version) will account
for correlation in the preference for the alternative, while the random cost coefficient
will account for correlation in tastes; we provide an analytical explanation below.

We postulated the following utility function:

Ud
iq ¼ ai þ

X
j

X d
ijq � bijq þ "diq ð8Þ

3 The Cost attribute was specified divided by the wage rate. This parameter has a Log-Normal distribution
because this gave a superior fit. Nevertheless, we first used a Normal distribution and checked that the
proportion of individuals with incorrect sign was in fact minimal (Sillano and Ortúzar 2005).
4 We also tested for the presence of inter-respondent heterogeneity in tastes for the rest of the explanatory
variables, but this effect was only significant for cost.
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Here the error component has the form "diq ¼ udq þ zdiq where z
w
iq is a random term

distributed independent and identically Gumbel, and udq is a random effect which
may be specific to the individual (υq), in which case we assume panel correlation as
inter-respondent heterogeneity, and/or variable among observations (udq), in which
case we assume intra-respondent heterogeneity.

Asβ have mean βij and standard deviation μijq we can rewrite the utility function as:

Ud
iq ¼ ai þ udq

� �
þ
X
j

bij þ mijq

� �
X d
ijq þ zdiq ð9Þ

where X d
ijq stands for level-of-service attribute j of option i for individual q on day d.

Equation (9) shows that both random coefficients and error components are
separable. Indeed, the random coefficients assume inter-respondent heterogeneity.5 It
means, they allow tastes to vary across respondents in the sample, but stay constant
across observations for the same respondent (Revelt and Train 1998). On the other
hand, the “pure” error components (which also capture heterogeneity) affect the values
of the ASC. Thus, the error component udq has the power to increase/decrease the
relative weight of the ASC in relation to the explanatory variables in the utility
function. Now, confounding effects are implicit in the ML structure and should not
strictly depend on whether we account or not for random tastes. On the contrary, our
experience (Cherchi and Ortúzar 2008) is that decomposing randomness in as many
components as possible helps to reveal the confounding effects.

Another important issue regarding panel correlation has to do with estimation using
available software. The standard form to incorporate panel correlation under the pure EC
approach consists of adding an error component to (n-1) of the available alternatives,
otherwise for identifiability reasons the model cannot be estimated (Walker 2001).
However, this methodology may lead to biased results as it requires choosing,
arbitrarily, a reference alternative for the error-component (i.e. one not having a pure
panel error-component). Equation (8) allows us to see that this is equivalent to
assuming that this reference alternative has the same ASC for all observations, while
the remaining alternatives have different values for the ASC among observations.
Moreover, even using the best normalization (i.e. selecting as error-component
reference alternative that with the minimum variance), this methodology leads to a
type of NL model, as it correlates the (n-1) alternatives including an error component.
To avoid this problem, in this paper we modified the traditional estimation method by
randomly selecting the error-component reference alternative for each individual.6

The ML models were estimated varying the number of draws to test for the
presence of empirical identification problems (Walker 2001). It is important to note

5 It is also possible to accommodate intra-respondent heterogeneity in the random parameters (Hess and
Rose 2009), but in this case the best models accounted for inter-respondent heterogeneity by the cost
parameter, and intra-respondent heterogeneity via the error components which, at the end, affect the ASC.
6 Note that if the reference alternative varies across individuals in the EC-panel version, it becomes
equivalent to the RP-panel version, at least in terms of correlation, with the (non-negligible) advantage that
the variance does not vary across alternatives. However, it is important to note that this method is just a
practical simplification which, while allowing to estimate panel models with EC using any estimation
software (without increasing estimation time), overcomes only partially the problems of the standard
method. In fact, our method does not generate systematically false NL correlation among two specific
alternatives, but it is a model with randomly distributed heteroskedasticity across the sample. We wish to
thank an anonymous referee for having made us clarify this point.
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that in this case we did not find any such problems. All ML models estimated with
repeated observations accounted correctly for correlation over a given individual.

Although the repeated observations problem has been widely studied in the literature,
because it is especially relevant for SP data with multiple answers (Abdel-Aty et al.
1997; Cirillo et al. 2000; Ortúzar et al. 2000; Revelt and Train, 1998; Yen et al. 1998),
in this case we are working with RP data. Moreover, as every data specification
effectively represented the real series of choices observed in the sample (considering
different number of days), the amplification effect was not artificial.

As expected, the models with repeated observations have parameters with higher
t-ratios in all the model formulations estimated. However, the key travel time
variable is not significant in the first two specifications.

Table 1, which presents the results of the simple models, shows that NL is
significantly better than the restricted MNL for all sample specifications (the LR
values are clearly larger than the critical value #295%;1 ¼ 3:84). Furthermore, the
likelihood improvement is even larger for specifications with more observations.
Contrariwise, Table 2 shows two singularities for the larger sample specification (i.e.
5 observations per individual). First, the NL version of the best ML model is not
significantly better than its restricted version. Second, only the best model
(ML_INTER_INTRA) allows us including not only inter-respondent heterogeneity
via the cost parameter, but also intra-respondent heterogeneity via the error
component. This particular result suggests that the model capability of including
simultaneously inter and intra-respondent heterogeneity depends on the number of
observations. Actually, we suspect that it is related to empirical identifiability issues,
as all five specifications are theoretically able to accommodate both types of
heterogeneity, but the empirical results show that the contribution of the intra-
respondent heterogeneity is significant only for the largest sample specification.
Additionally, the inclusion of intra-respondent heterogeneity improves model fit only
in the presence of inter-respondent heterogeneity. Indeed, the models that allow only
intra-respondent variation are not significantly better (according to the LR test) than
their restricted versions, even for the largest sample specification.

In conclusion, the number of observations does not affect significantly the
structural definition of models which do not include panel correlation. In all cases,
no matter the number of observations per individual, the LR test indicates that the
NL model is significantly better than its restricted (MNL) version. However, the
presence of more observations seems to provide more evidence to discriminate
between models if heterogeneity is accounted for correctly.

Agreeing with other findings reported in the recent literature (Cherchi and Cirillo
2008; Hess and Rose 2009), we confirm that the introduction of correlation is the
main improvement factor in terms of fit. Moreover, this difference becomes higher
with the number of repeated observations. Complementary, if we compare the
likelihood value for the market share models (i.e. only with ASC) we could, in some
sense, isolate our analysis taking out the influence of the other variables. In this way,
we could confirm that the difference between the various models tested is mainly
due to panel correlation.

Regarding the error component there are two important points to mention: first,
the inclusion of inter-respondent heterogeneity via an error component was tested
using the individual effect (υq), but for every specification the contribution was not
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significant. Second, the error component udq , which accommodates intra-respondent
heterogeneity was found to distribute Normal among observations with mean zero
and standard deviation as reported in Table 2.

In line with Hess and Rose (2009), we also observed a higher significance for
inter-respondent heterogeneity. Anyway, we expected a lower level of intra-
individual variation, as the second wave of the Santiago Panel shows a strong
presence of routine. So, a higher variation in tastes across respondents rather than
variation across observations is consistent with our previous assumptions.

As the final aim of this paper was to analyse the impact of the length of multi-
day-panel-surveys, it is also important to compare the values of the estimated
parameters. Thus, on the basis of Eq. (3), we found that:

– If we vary the sample specification of any model, we only get significant
differences in the parameter value of the variable associated to new Metro users
(i.e. TRANSANTIAGO), and only between the first specification (i.e. one
observation per individual) and the rest of the sample specifications.

– Only a few parameters show significant differences among models for a given
sample specification; for example, comparing the ML models with their
restricted versions (MNL and NL), the specifications with 3, 4 and 5
observations per individual present significant differences for the parameter
values of mean cost and the time-related variables (travel, waiting and walking
time).

4 Simulated experiments

Following the tradition of Williams and Ortúzar (1982), a collection of datasets were
generated in which pseudo-observed individuals behaved according to a choice
process determined by the analyst. Simple samples, with three alternatives, two
generic attributes (travel time and cost) and a Gumbel error (εq) term were generated.
The marginal utility of travel time (βqt) was varied such that the generated sample
showed random heterogeneity in tastes which was generic among alternatives. In all
experiments, the attributes and the travel time parameter were generated according to
a censored Normal distribution to avoid mass points on the truncations that can
induce estimation problems (Cherchi and Polak 2005).

The datasets were generated according to the following utility functions:

Uq3 � Uq1 ¼ �bqt Timeq3 � Timeq1
� �� 1:5 � Costq3 � Costq1

� �þ "q3 � "q1
Uq2 � Uq1 ¼ �bqt Timeq2 � Timeq1

� �� 1:5 � Costq2 � Costq1
� �þ "q2 � "q1

ð10Þ

where individuals q are assumed to evaluate only one choice task as in a RP data set.
Several samples were generated with the characteristics illustrated in Table 3, but
varying the sample dimensions: 5,000; 1,000; 500; 250 and 125 observations, the
last four corresponding to random samples of the original 5,000 observations (and
these also were varied up to four times). Finally, each sub-sample was randomly
generated 10 times with different seeds for the random terms, yielding 40 samples in
the last four cases and 10 in the first one.
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In a second stage we assumed more than one observation for each individual, as
in panel data, but that all observations belonging to the same individual were
identical (i.e. as in 88% of cases in the Santiago Panel). Starting from the above
samples (excepting that with 5,000 observations), 16 synthetic panel datasets were
generated varying the number of identical observations from the equivalent to a 2-
day panel up to a 5-day panel. The data for each panel was generated repeating the
same observations t times (t=2, 3, 4, 5). Note that the sample size and the number of
identical observations were appropriately chosen in order to test, also, the effect of
identical observations independently from the effect of the panel length.

4.1 Modelling results

For each dataset above, several ML models allowing for random heterogeneity in the
travel time parameter were estimated. In particular, Table 4 shows the values of the
mean, standard deviation and coefficient of variation (CV) of the estimated parameters
over the 10 samples generated with different seeds (we tested if there were variations
for the four subsamples of each case with less than 5,000 observations, finding that
these occurred only in one of the 40 sets for the 125 size case with no repeated
observations). Table 5 in turn, shows the minimum and maximum values (over the 10
samples) of the t-tests against zero; for space reasons we do not report the results with
three repeated observations, which followed the trend.

The models shown allow us to appreciate how results vary with the number of
repeated observations. They also allow us comparing the effects on models estimated
with samples of comparable size (i.e. a sample of 1,000 individuals with five
identical observations each is comparable to a sample of 5,000 individuals with only
one observation). All models were estimated varying the number of Halton draws of
the simulated maximum likelihood procedure between 125 and 4,000 and,
analogously to our real data set, we did not find estimation problems except for
the single case mentioned above where we encountered an empirical identification
problem. As results did not change much, those reported in the tables are based on
only one of the four subsamples generated in each case.

Looking at the models estimated with only one observation per individual, the t-
tests against zero correctly diminish with sample size because the standard deviation
is inversely related to the dimension of the sample. This result is in line with the

Table 3 Characteristics of the synthetic samples

Mean Standard deviation Coefficient of variation Limits

Time3-Time1 2.66 0.79 0.30 [1.0; 4.0]

Time2-Time1 2.85 1.23 0.43 [1.0; 6.0]

Cost3-Cost −2.34 0.80 0.34 [−4.0; −1.0]
Cost2-Cost1 −2.67 0.79 0.28 [−4.0; −1.0]
Time parameter- 5000 obs. (**) −0.86 0.55 0.64 [−0.01; −2.00]

(**) These values were computed as the average values over the 10 samples with 5000 individuals

The mean and standard deviation of the random travel time parameters were computed for all subsamples
of 1000, 500, 250 and 125 members (with 1–5 observations per individual); figures did not change
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analyses computed on the Fisher information matrix. The D-error decreases with
sample size, varying from 0.128 for the samples with 125 observations to 0.0052 for
those with 5000 observations. The model capability to recover the true parameters
also depends on the sample size. Table 6 shows the scale factors computed for each
estimated parameter (i.e. the means and standard deviations over the 10 samples). As
can be seen, while the parameters are recovered correctly on average (i.e. the ratios
between the estimated and true parameters averaged over the 10 samples are similar
to the true scale factor used to generate the EV1 error), the standard deviation of the
scale factors over 10 samples clearly increase as sample size decreases, indicating
that the number of cases where the true values are not correctly recovered increases.
In fact, for a sample size of 5000 individuals, all estimated parameters in the 10
samples (i.e. 30 parameters) are between ±20% of the true values, but as the sample
size decreases the number of estimated parameters falling outside this range
increases: four for the sample sizes of 1,000 individuals, five for the sample sizes of
500 and 250 individuals, and 20 for the sample sizes of 125 individuals.

Models ML6 to ML17 report the results for the panel with identical
observations. As can be seen, including identical observations yields better t-
test against zero only when this increases the sample size (compare for example
model ML2 with models ML6-ML8). However, if we compare models estimated
with the same “sample size”, but composed of different numbers of individuals and
different numbers of identical observations (e.g. models ML2 vs. ML9-ML13), the
t-tests of the panel data worsen, although the effect is not always clear. This result
seems to depend on the estimation process, and maybe on the simulation involved
in the estimation, because the D-error computed with the simulated data gives, as
expected, the same result for a sample with 5000 observations and a sample of
1000 observations repeated 5 times each. Note that, although the data variability is
the same in both types of samples (e.g. 1000 individuals with 1 observation each,
and 500 individuals with 2 observations each) having identical observations does
not add new information for estimation.

More importantly, including identical observations is not beneficial in terms of the
model capability to recuperate the true parameters. In fact, the standard deviation of
the scale factors increases as the number of repeated observations increases while
keeping the sample size unchanged (compare models ML2, ML9 and ML13). This
clearly means that having repeated observations does not allow one to reduce sample
size.

We wish to emphasize that all the above results do not depend on the richness of
the data (Cherchi and Ortúzar 2008), because all samples have the same average
travel time and cost even when the repeated observations are accounted for.

The third test performed consisted in estimating a weighted utility function where
each individual utility was multiplied by the number of identical trips (R) made
during the panel period. For space reasons we do not report the results here, but will
only comment them. We found that weighting the utility of each individual by R
gives exactly the same statistical results as estimating a model with N individuals
and R repeated identical observations. However, as expected, the capability to
reproduce the true parameters improves, because weighting individual utilities is
equivalent to increasing the weight of the systematic component of utility over the
random part.
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When simulated data are used, it is possible to test the capability of the ML to
reproduce the true phenomenon using the marginal square error (MSE) computed for
each estimated model:

MSE ¼ m bb� �
� btrue

� �2
þ s2 bb� �

ð11Þ
where m bb� �

and s2 bb� �
are the estimated mean and variance of each parameter.

The MSE tends to zero as the estimated mean becomes equal to the true mean and
its standard deviation equals zero. This test allows verifying whether the estimated
means and standard errors are close enough to the true parameters. However, as all
parameters estimated in a discrete choice model are scaled by an unknown factor (λ)
proportional to the inverse of the standard deviation, the MSE was also computed
de-scaling the estimated parameters. Results for the de-scaled MSE are reported in
Table 7. In line with the above comments, the MSE values (especially the de-scaled
ones) are fairly close to zero for almost all models up to a sample size of 500
individuals (ML1-ML3), but increase drastically for smaller size of samples with
repeated identical observations, no matter how many repeated observations are used
for each individual.

5 Conclusions

We have analysed the problem of how to model panel data in the presence of
repeated observations and to which extent repeated observations affect the efficiency
of the estimated parameters and their capability to reproduce the true phenomenon.
In particular, we tested the impact of sample size and repeated observations in a
“short-survey-panel” context. The effect of the repeated observations was tested
using both real data from the Santiago Panel and synthetic data generated especially
with the aim of complementing the real case.

As in previous works, we were able to confirm that the largest improvement in
overall model statistics is due to the panel correlation contribution. Considering the
different ways to introduce heterogeneity discussed above, we believe that it is
crucial to analyse empirically (i.e. for each application case) the most appropriate
ways to accommodate heterogeneity.

In our particular case, and also in the case recently studied by Hess and Rose
(2009), the effect of inter-respondent heterogeneity is dominant. In fact, this
constitutes empirical evidence of the advantages of the panel approach, as it allows
the inclusion of correlation among the answers from the same individual, which as
we said in the previous paragraph, is normally responsible for a large increase in
likelihood.

Our empirical results for real data show that the inclusion of intra-respondent
heterogeneity demands more observations, which means that the repeated observations
can affect the definition of model structure. Therefore, we could say that a potential
benefit of considering a longer multi-day survey in a short panel context is the highest
probability to capture the different kinds of heterogeneity among observations.

The results from the synthetic data show that having repeated observations in a
data panel increases the efficiency of the estimated parameters only because this
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increases the sample dimensions. Therefore, based on our results from real and
synthetic data, we can say that there is a trade-off between the higher probability of
capturing more effects (i.e. different types of heterocedasticity) in a longer multi-
day-panel sample and the risk of a decreased capability of reproducing the true
phenomenon (as this worsens in the presence of repeated observations).

Finally, our suggestion on the definition of a multi-day-panel survey length would
be to consider not only the number of individuals, but also the level of routine
expected. This last factor seems to be especially important in “short panel” surveys,
as they commonly feature a large proportion of identical observations, which are
actually harmful; we proved that they reduce the capability of reproducing the true
phenomenon. Thus, even though having more observations per respondent requires
smaller sample sizes in order to establish the statistical significance of the parameter
estimates derived from choice data (Rose et al. 2009), our results show that this is
effectively true if and only if the level of routine is not strong.
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