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Abstract A facility needs to be located in the plane to sell goods to a set of
demand points. The cost for producing an item and the actual transportation
cost per unit distance are given. The planner needs to determine the best
location for the facility, the price charged at the source (mill price) and the
transportation rate per unit distance to be charged to customers. Demand
by customers is elastic and assumed declining linearly with the total charge.
For each customer two parameters are given: the demand at charge zero and
the decline of demand per unit charge. The objective is to find a location
for the facility in the plane, the mill price charged to customers and the unit
transportation rate charged to customers such that the company’s profit is
maximized. The problem is formulated and an algorithm that finds the optimal
solution is designed and tested on randomly generated problems.

Keywords Location · Economics · Elastic demand · Pricing

1 Introduction

The Weber problem (Weber 1909; Wesolowsky 1993; Drezner et al. 2002)
is one of the most useful and researched problem in the location literature.
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It is based on a set of demand points generating demand for a facility and
the best location of the facility that minimizes the total transportation cost
to the facility is sought. Many papers investigate the problem in the plane
with Euclidean distances. For a review see Drezner et al. (2002). Weiszfeld
(1937) suggested an iterative procedure to solve the problem using Euclidean
distances. When using rectilinear distances the problem is separable into two
one dimensional problems and the solution in each dimension is the median
point (Love et al. 1988; Drezner et al. 2002). This result is the source of the
name 1-median problem that was generalized to the p-median problem when
the location of p facilities is sought (Current et al. 2002). Hakimi (1964, 1965)
proved that the solution in a network environment to the Weber (1-median)
problem is on a node of the network which suggests a very simple algorithm
for the solution to the Weber problem in a network environment. Therefore,
researchers are interested only in developing solution approaches to the
p-median problems which are not that simple (Daskin 1995; Current et al.
2002; Alp et al. 2003). p-median problems on the plane are sometimes called
location-allocation problems because demand points are allocated among the
facilities and the location of each facility is at the Weber solution based on the
subset of demand points allocated to it (Cooper 1963; Beaumont 1980; Chen
1983; Love 1976; Love and Morris 1975; Sherali and Shetty 1977).

Moses (1958) introduced specific considerations related to the location
of a production firm in his seminal paper about location and the theory
of production. He claimed that “there is no need for much of the esoteric
paraphernalia sometimes employed by location specialists”, a statement that
generated many follow-up papers generalizing his approach (Sakashita 1967;
Bradfield 1971; Emerson 1973; Khalili et al. 1974; Osleeb and Cromley 1977;
Miller and Jensen 1978). More recent papers on various aspects of the topic
are by Martinich and Hurter (1982) and Tobin and Friesz (1986). The book by
Hurter and Martinich (1989) provides a comprehensive analysis of the location
of a production firm. They consider models that incorporate cost (such as
electricity cost that may change by region) and transportation cost (linear in
the distance). There are no customers in their models (both the facility and the
demand points are part of the firm), and their objective is to minimize the cost
to the firm.

Another stream of research considers the cost charged to customers as a
variable in location models. The planner determines the cost to be charged
to customers in addition to the location decision. Drezner and Wesolowsky
(1996) investigated the location-allocation problem making the cost charged
to users by a facility a function of the total number of users patronizing the
facility. Users select the facility to patronize based on the facility charges
and transportation cost. In a competitive environment such a situation may
or may not lead to an equilibrium solution (Cournot-Nash or Stackelberg).
Such models are discussed in Miller et al. (1992, 1993, 1996, 2007); Tobin et al.
(1995); Tobin and Friesz (1986); Friesz et al. (1988a, b, 1989).
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Some models assume that demand is declining when the distance to the
facility increases. Drezner and Scott (2006) investigated the Weber problem
including a queuing component assuming that demand is declining by the
distance and therefore some of the demand is lost. Berman et al. (2003)
investigated the problem that the reliability of the service, thus demand served,
is declining with the distance to the facility. In the competitive facility literature
there are many papers that assume that the demand is declining with the
distance to the facility (for example, Huff 1964, 1966; Drezner 1994, 1995).

In this paper we investigate a problem where demand depends on the mill
price and transportation rate charged by the facility which depend on the
distance to the facility. In addition to finding the best location for the facility,
there are two parameters to be determined by the planner: the mill price and
the transportation rate per unit distance charged by the facility. Demand by
customers is elastic and thus depends on the total price charged for the good
which depends on the distance between the demand point and the facility.

The paper is organized as follows. In Section 2 the problem is formulated
and in Section 3 solution algorithms are presented. In Section 4 computational
experiments are reported and we conclude in Section 5.

2 Formulation

A facility needs to be located in the plane to sell goods to a set of demand
points. The facility charges the customers for the product a mill price P and a
transportation rate T per unit distance. The cost for producing an item is C,
and the transportation cost to the company is T0 per unit distance. One would
expect that for profit maximization T ≥ T0 but the optimal strategy for the
company may be to subsidize the transportation rate. Demand by customers is
elastic. For customer i demand is wi − �wi PT where wi is the y intercept of the
elastic demand line and �wi is its negative slope. PT is the total charged price.
The problem is based on three variables: the location of the facility X = (x, y),
the mill price charged by the facility P and the transportation rate per unit
distance charged by the company T. The problem is to find X, P and T such
that the company’s profit is maximized.

Let di(X) be the distance between demand point i and the facility located
at X. The cost charged to demand point i is Pi(X) = P + T × di(X). The
demand generated at demand point i is wi − �wi Pi(X). The total profit of the
company, F(X, P, T), to be maximized, is therefore

F(X, P, T) =
n∑

i=1

[
wi − P�wi − T�widi(X)

] [
P − C + (T − T0)di(X)

]
(1)

= A1 P2 + 2A2 PT + A3T2 + 2A4 P + 2A5T + A6 (2)
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where

A1 = −
n∑

i=1

�wi; A2 = −
n∑

i=1

�widi(X); A3 = −
n∑

i=1

�wid2
i (X)

A4 = 1

2

{
n∑

i=1

wi + C
n∑

i=1

�wi + T0

n∑

i=1

�widi(X)

}

A5 = 1

2

{
n∑

i=1

widi(X) + C
n∑

i=1

�widi(X) + T0

n∑

i=1

�wid2
i (X)

}
;

A6 = −C
n∑

i=1

wi − T0

n∑

i=1

widi(X) (3)

Theorem 1
[

n∑
i=1

�widi(X)

]2

≤
n∑

i=1
�wi

n∑
i=1

�wid2
i (X) with equality holding only

when all distances are equal to one another.

Proof By the Schwartz inequality (Hardy et al. 1952):
[

n∑
i=1

�widi(X)

]2

=
[

n∑
i=1

√
�wi

√
�widi(X)

]2

≤
n∑

i=1
�wi

n∑
i=1

�wid2
i (X) with equality holding only

when K
√

�wi = √
�widi(X) for a constant K > 0. This is true only if di(X) =

K for all i. ��

The function F(X, P, T) Eq. (2) is concave because A1 ≤ 0, A3 ≤ 0, and
A1 A3 − A2

2 ≥ 0 by Theorem 1. Substitute P = U − A2
A1

T, then

F(X, P, T) = A1U2 − 2A2UT + A2
2

A1
T2 + 2A2UT − 2

A2
2

A1
T2

+A3T2 + 2A4U − 2A4
A2

A1
T + 2A5T + A6

= A1U2+
(

A3− A2
2

A1

)
T2+2A4U +2

(
A5− A4

A2

A1

)
T+ A6 (4)

The maximization of F(X, P, T) Eq. (4) is separable by U and T, and the
maximum is achieved for

U = − A4

A1
; T = − A5 − A4

A2
A1

A3 − A2
2

A1

= − A5 A1 − A4 A2

A1 A3 − A2
2

;

P = U − A2

A1
T = A5 A2 − A4 A3

A1 A3 − A2
2

(5)
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The objective function to be maximized F(X) after substituting the optimal
values of P and T is by Eq. (4):

F(X) = − A2
4

A1
− (A5 − A4

A2
A1

)2

A3 − A2
2

A1

+ A6 = − A1 A2
5 + A3 A2

4 − 2A2 A4 A5

A1 A3 − A2
2

+ A6

(6)
Following substitution of Eq. (3) and extensive manipulations:

P = C
2

+

n∑
i=1

wi

n∑
i=1

�wid2
i (X) −

n∑
i=1

widi(X)
n∑

i=1
�widi(X)

2

[
n∑

i=1
�wi

n∑
i=1

�wid2
i (X) −

{
n∑

i=1
�widi(X)

}2
] (7)

T = T0

2
+

n∑
i=1

widi(X)
n∑

i=1
�wi −

n∑
i=1

wi

n∑
i=1

�widi(X)

2

[
n∑

i=1
�wi

n∑
i=1

�wid2
i (X) −

{
n∑

i=1
�widi(X)

}2
] (8)

It is interesting to note that for a given location X the optimal value of P
Eq. (7) is independent of the value of T0 and the optimal value of T Eq. (8) is
independent on the value of C. They are implicitly dependent on these values
because when C or T0 are changed, the value of the optimal location X may
change.

Evaluating the objective function F(X) by substitution of Eq. (3) and
simplifying the expressions is quite long and tedious. The result is:

F(X )=
C2

4

n∑

i=1

�wi+ T2
0

4

n∑

i=1

�wid2
i (X)− C

2

n∑

i=1

wi− T0

2

n∑

i=1

widi(X)+ CT0

2

n∑

i=1

�widi(X)

+

n∑
i=1

�wi

{
n∑

i=1
widi(X)

}2

+
{

n∑
i=1

wi

}2 n∑
i=1

�wid2
i (X)−2

n∑
i=1

wi

n∑
i=1

widi(X)
n∑

i=1
�widi(X)

4

[
n∑

i=1
�wi

n∑
i=1

�wid2
i (X)−

{
n∑

i=1
�widi(X)

}2
]

(9)

Note that the denominator of the last term is positive by Theorem 1 unless all
distances are equal to one another.

2.1 A special case

If we assume that �wi = αwi for some positive α, the optimization problem
is simplified. This assumption is equivalent to assuming that demand vanishes
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at the same charge for all customers. This is a reasonable assumption if the
service area is homogenic and customers behave in a similar fashion. It is also
plausible that the elasticity of demand is known for the area as a whole and
not for each demand point and thus such an assumption is necessary for the
application of the model.

The optimal value of P is by Eq. (7):

P = C
2

+ 1

2α
(10)

The optimal value of T by Eq. (8) is

T = T0

2
(11)

Note that for this special case the optimal P and T do not depend on the
location of the facility. The following result can be directly obtained by
substituting Eqs. (10) and (11) into Eq. (1). We show it by evaluating Eq. (9)
for this special case:

F(X) = αC2 −2C
4

n∑

i=1

wi + αT2
0

4

n∑

i=1

wid2
i (X)− (1−αC)T0

2

n∑

i=1

widi(X)+

n∑
i=1

wi

4α

= αT2
0

4

n∑

i=1

wid2
i (X) − T0(1 − αC)

2

n∑

i=1

widi(X) + (1 − αC)2

4α

n∑

i=1

wi

= α

n∑

i=1

wi

{
T0

2
di(X)− 1−αC

2α

}2

= αT2
0

4

n∑

i=1

wi

{
di(X)− 1−αC

αT0

}2

(12)

By Eqs. (10) and (11) the condition di(X) ≤ 1−αC
αT0

is equivalent to
2αTdi(X) ≤ 2(1 − αP), or wi − �wi(P + Tdi(X)) ≥ 0. This means that the
demand is non-negative. It is therefore necessary that di(X) ≤ 1−αC

αT0
otherwise

the demand is negative which is impossible. Therefore, the value of α must be
small enough not to entail negative demand otherwise the data does not ac-
curately reflect actual customer behavior. In conclusion, we must require that
di(X) ≤ 1−αC

αT0
. Without restrictions on the facility location, the best location of

the facility by this formulation is at infinity.
Optimizing Eq. (9) is complicated because of the ratio in the last term

of the expression. We therefore propose a different approach to maximizing
F(X, P, T).
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2.2 An alternative approach

We first find the best price P for a given location X and a transportation
rate T.

F(X, P, T) = −
{

n∑

i=1

�wi

}
P2

+
{

n∑

i=1

[
wi − T�widi(X) + C�wi − �wi(T − T0)di(X)

]
}

P

+
n∑

i=1

[
wi − �wiTdi(X)

[ [−C + (T − T0)di(X)
]

= −aP2 + bP + c (13)

Since a > 0, the maximum of F(X, P, T) is achieved for

P = b
2a

=

n∑
i=1

[
wi + C�wi − (2T − T0)�widi(X)

]

2
n∑

i=1
�wi

= C
2

+

n∑
i=1

wi

2
n∑

i=1
�wi

− (2T − T0)

n∑
i=1

�widi(X)

2
n∑

i=1
�wi

(14)

with a maximum value of the objective function of F(X, T) = b 2

4a + c.
To simplify we write

b
2
√

a
=

n∑

i=1

[−γidi(X) + δi
]

and

c =
n∑

i=1

[−εi + φidi(X) − θid2
i (X)

]
.

where:

γi = �wi [2T − T0]

2

√
n∑

i=1
�wi

; δi = wi + C�wi

2

√
n∑

i=1
�wi

(15)

εi = Cwi; φi = CT�wi + wi(T − T0); θi = �wiT(T − T0) (16)
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Therefore, the objective function F(X, T), to be maximized, is:

F(X, T) =
{

n∑

i=1

[−γidi(X) + δi
]
}2

+
n∑

i=1

[−εi + φidi(X) − θid2
i (X)

]

=
{

n∑

i=1

γidi(X)

}2

−
n∑

i=1

θid2
i (X) +

n∑

i=1

[
φi − 2γi

n∑

i=1

δi

]
di(X)

+
{

n∑

i=1

δi

}2

−
n∑

i=1

εi (17)

Theorem 2 For a given location X, the objective function F(X, T) is concave
in T.

Proof F(X, T) for a given X is a second order polynomial in T. The coefficient
of T2 is:

[
n∑

i=1
�widi(X)

]2

n∑
i=1

�wi

−
n∑

i=1

�wid2
i (X)

and the theorem follows by Theorem 1. ��

Define

L =
n∑

i=1

δi; K =
n∑

i=1

εi; ξi = φi − 2Lγi

F1(X, T) =
{

n∑

i=1

γidi(X)

}2

; F2(X, T) =
n∑

i=1

θid2
i (X)

F3(X, T) =
∑

ξi≥0

ξidi(X); F4(X, T) = −
∑

ξi<0

ξidi(X)

and the objective function is:

F(X, T) = F1(X, T) − F2(X, T) + F3(X, T) − F4(X, T) + L2 − K (18)

3 Solution approach

We propose to find the optimal X for a given T and determine the best T by a
golden section search (Zangwill 1969) on the value of T. This approach yields
the optimal solution by Theorem 2. Note that for the special case analyzed in
Section 2.1 the optimal value of T is known by Eq. (11) and thus there is no
need for the golden section search.
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We propose to maximize F(X, T) for a given T by the Big Triangle Small
Triangle (BTST) approach proposed in Drezner and Suzuki (2004).

3.1 The BTST approach

A feasible region which consists of a finite number of convex polygons is given.

Phase 1: Each convex polygon is triangulated using the Delaunay triangula-
tion. The vertices of the triangles are the demand points and the vertices of the
convex polygon. The union of the triangulations is the initial set of triangles.

Phase 2: Calculate an upper bound, UB, and a lower bound, LB, for each
triangle. Let the largest LB be LB. Discard all triangles for which UB ≤
LB(1 + ε).

Phase 3: Choose the triangle with the largest LB and divide it into four small
triangles by connecting the centers of its sides (see Fig. 1 where the large
triangle is split into four small triangles and the smaller lower left triangle
is further split into four smaller triangles). Calculate UB and LB for each
triangle, and update the LB if necessary. The large triangle and all triangles
for which UB ≥ LB(1 + ε) are discarded.

Stopping Criterion: The branch and bound is terminated when there are no
triangles left. The solution LB is within a relative accuracy of ε from the
optimum.

Note that: (i) A lower bound in a triangle is the value of the objective
function at any point in the triangle (such as the center of gravity). (ii) Since
the triangulation is based on the demand points as vertices, no demand point
is in the interior of a triangle. This is also true for all triangles generated in the
process.

In order to implement the BTST approach we need an upper bound for
the value of the objective function in a triangle. To construct such an upper
bound we express the function F(X, T) by Eq. (17) as a difference between
two convex functions. An upper bound based on a difference between two
convex functions proved successful in many papers (Drezner 2007; Drezner
and Drezner 2004; Tuy et al. 1995; Drezner and Nickel 2009). For the analysis

Fig. 1 Split of a triangle into
four small triangles
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below we assume a given T and a given triangle. We find an upper bound for
F(X, T) at all the points of the triangle.

– The function F1(X, T) is convex because γi are either all positive (when
D ≥ T0/2) or all negative (when D ≤ T0/2).

– The function F2(X, T) is convex for T ≥ T0 and concave for T ≤ T0.
– The functions F3(X, T) and F4(X, T) are both convex.

In summary, for a given T, F(X, T) = G1(X, T) − G2(X, T) is expressed as
a difference between convex functions in X G1(X, T) and G2(X, T):

For T ≥ T0:

G1(X, T) = F1(X, T) + F3(X, T) (19)

G2(X, T) = F2(X, T) + F4(X, T) (20)

For T < T0:

G1(X, T) = F1(X, T) − F2(X, T) + F3(X, T) (21)

G2(X, T) = F4(X, T) (22)

To complete the construction of the upper bound, the function G2(X, T)

is bounded by a tangent plane at a point in the triangle. Specifically, let
X0 be a point in the triangle such as its center of gravity. By the convex-
ity of G2(X, T), G2(X, T) ≥ G2(X0, T) + ∇X G2(X0, T)(X − X0) = H(X, T).
Therefore, F(X, T) ≤ G1(X, T) − H(X, T). Since H(X, T) is a linear func-
tion of X, G1(X, T) − H(X, T) is a convex function of X which obtains
its maximum on one of the three vertices of the triangle. The values of
G1(X, T) − H(X, T) at the three vertices of the triangle are calculated, and
the upper bound in the triangle UB is the maximum among these three values.

4 Computational experiments

Programs in Fortran1 using double precision arithmetic were coded, compiled
by Intel 9.0 FORTRAN Compiler, and ran on a 2.8GHz Pentium IV desk top
computer with 256MB RAM.

Problems with ten values of n demand points between 10 and 10,000 were
tested. Ten problems were randomly generated for each value of n for a total
of 100 problems. The coordinates of demand points were randomly generated
in a unit square. The parameters used are: C = 1, T0 = 2 and wi ∈ [10, 20]. �wi

was calculated as αwi with α generated in a range. Two ranges for α were tested
α ∈ [0.05, 0.10] and α ∈ [0.05, 0.15]. These values of α are small enough so that
demand is positive for a facility located anywhere in the square. The solution
by BTST for a given T was calculated to a relative accuracy of ε = 10−10. The

1We thank Atsuo Suzuki for his Fortran program that finds the triangulation based on Sugihara
and Iri (1994) subroutines first developed in Ohya et al. (1984).
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golden section search for the optimal value of T was conducted on the range
[-10, 10] to an accuracy of 10−5. This means that exactly 30 applications of the
BTST are required for a solution of one problem.

Since a constant value of α for all demand points leads to a solution of T =
T0
2 Eq. (11), we also found the solution assuming that T = T0

2 and compared it
with the optimal solution. This experiment also provides the run times required
for the solution of the special case analyzed in Section 2.1. Since such a solution
requires only one application of the BTST, it is about 30 times faster.

The results are depicted in Tables 1 and 2. In Table 1 the optimal solutions
for these problems are given. For each value of n the minimum, maximum and
average values for P, T and the run times in seconds are given.

For any fixed α the optimal T = T0
2 = 1. For α ∈ [0.05, 0.10] the midrange

is α = 0.075 which leads to P = 7.167 and for α ∈ [0.05, 0.15] the midrange is
α = 0.1 which leads to P = 5.5. By examining Table 1 we conclude that as the
number of demand points increases, the optimal values of P and T indeed
approach the values of the special case by Eqs. (11) and (10) by using for α the
midrange of the interval.

Run times increase by about the square of the value of n and do not vary
much for problems with the same n. They are very short considering that
30 applications of BTST are required for the solution of each problem.
Problems with n = 10, 000 demand points were optimally solved in less than
nine minutes.

Table 1 Computational results for the mill price and the transportation rate

n P T CPU time (sec.)
Min. Max. Ave. Min. Max. Ave. Min. Max. Ave.

α ∈ [0.05, 0.10]
10 6.631 9.525 7.780 −4.921 5.494 −0.356 0.00 0.05 0.03
20 6.119 8.446 7.462 −3.472 4.817 0.431 0.03 0.11 0.05
50 6.471 8.300 7.222 −2.013 3.947 0.960 0.06 0.12 0.09
100 6.749 7.969 7.212 −1.109 2.575 0.898 0.17 0.20 0.19
200 6.823 7.472 7.238 −0.195 2.331 0.830 0.44 0.64 0.52
500 7.087 7.365 7.224 0.271 1.348 0.781 1.73 2.12 1.91
1,000 7.034 7.294 7.201 0.272 1.481 0.852 5.94 6.42 6.20
2,000 7.044 7.265 7.175 0.598 1.403 0.993 21.75 22.75 22.05
5,000 7.115 7.218 7.155 0.799 1.188 1.028 129.53 135.31 130.75
10,000 7.096 7.199 7.147 0.856 1.222 1.055 510.69 515.66 512.95

α ∈ [0.05, 0.15]
10 5.382 8.738 6.840 −7.827 4.449 −2.491 0.02 0.05 0.03
20 4.261 7.063 5.889 −4.354 5.496 0.207 0.02 0.06 0.04
50 4.745 6.917 5.596 −2.790 4.256 0.861 0.08 0.14 0.10
100 5.021 6.437 5.559 −1.447 2.833 0.866 0.17 0.23 0.20
200 5.115 5.852 5.585 −0.400 2.494 0.798 0.45 0.64 0.52
500 5.411 5.728 5.566 0.190 1.397 0.749 1.77 2.20 1.93
1,000 5.352 5.644 5.539 0.184 1.539 0.831 6.00 6.50 6.24
2,000 5.363 5.612 5.510 0.549 1.457 0.991 21.83 22.91 22.22
5,000 5.442 5.557 5.487 0.774 1.212 1.031 129.94 135.89 131.32
10,000 5.421 5.537 5.478 0.839 1.250 1.061 512.34 517.58 514.91
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Table 2 Computational results for T = T0/2

n P % below maximum CPU time (sec.)
Min. Max. Ave. Min. Max. Ave. Min. Max. Ave.

α ∈ [0.05, 0.10]
10 6.684 8.021 7.363 0.021 2.443 0.706 0.00 0.02 0.00
20 6.991 7.686 7.297 0.002 1.011 0.215 0.00 0.02 0.00
50 7.027 7.462 7.181 0.002 0.524 0.184 0.00 0.02 0.00
100 7.073 7.357 7.174 0.005 0.235 0.070 0.00 0.02 0.01
200 7.086 7.349 7.190 0.001 0.114 0.027 0.02 0.03 0.02
500 7.032 7.243 7.168 0.000 0.035 0.011 0.06 0.08 0.06
1,000 7.110 7.206 7.163 0.000 0.034 0.008 0.19 0.22 0.21
2,000 7.132 7.234 7.173 0.000 0.010 0.004 0.72 0.77 0.73
5,000 7.137 7.204 7.162 0.000 0.003 0.001 4.30 4.50 4.36
10,000 7.148 7.183 7.161 0.000 0.003 0.001 17.02 17.23 17.12

α ∈ [0.05, 0.15]
10 4.976 6.527 5.739 0.080 7.238 2.268 0.00 0.02 0.00
20 5.305 6.108 5.654 0.007 2.633 0.704 0.00 0.02 0.00
50 5.345 5.840 5.517 0.005 1.301 0.489 0.00 0.02 0.00
100 5.395 5.718 5.509 0.012 0.600 0.180 0.00 0.02 0.01
200 5.409 5.708 5.527 0.002 0.284 0.070 0.02 0.03 0.02
500 5.350 5.587 5.501 0.000 0.086 0.027 0.05 0.08 0.07
1,000 5.436 5.544 5.496 0.000 0.085 0.021 0.20 0.22 0.21
2,000 5.461 5.576 5.508 0.001 0.025 0.011 0.72 0.77 0.74
5,000 5.467 5.542 5.495 0.000 0.006 0.002 4.33 4.52 4.38
10,000 5.480 5.518 5.493 0.000 0.008 0.002 17.05 17.25 17.13

In Table 2 the results of using T = T0
2 = 1 are given. Run times, as expected,

are about 30 times shorter. It took less than 8 min to solve all 200 problems
reported in Table 2. The optimal values of P are closer to the results by
Eq. (10) then those found for the optimal value of T. Note that the optimal
value of P for T = T0

2 is independent of the location of the facility and can
be calculated by Eq. (14) because the last term vanishes. The value of the
objective function was quite close to optimality. There was one case where
the objective function was more than 7% below the optimum but for most
problems it was very close.

5 Conclusions

In this paper we optimally solved the problem of locating a facility and
determining the mill price and transportation rate it charges the customers to
maximize profit. Demand by customers is elastic and declines according to the
total cost charged by the facility. Computational experiments demonstrated
the effectiveness of the solution approach.

The analysis provided in this paper yields several interesting results.

Once the location of the facility is known (or given): the optimal mill price
charged by the facility is independent on the company’s transportation rate,
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and the optimal transportation rate charged by the facility is independent on
the company’s mill price.

When the elasticity of demand is the same for all customers: Both the optimal
transportation rate and the mill price charged by the facility are independent
of the location of the facility. The transportation rate charged by the facility
is exactly half the transportation cost to the facility. This means that the
transportation rate is subsidized by 50%. This explains the “free shipping”
approach adopted by many companies. The mill price that should be charged
by the facility can be directly calculated by a simple formula Eq. (10).

As future research we propose to analyze different elasticity assumptions
such as a convex decline function of the demand. It may be possible to solve
such problems by assuming a linear decline (the derivative of the demand
decline function) when the facility is located in the neighborhood of the
present facility location and solve the problem iteratively based on the tech-
niques presented in this paper. This means using the values of wi and �wi

as functions of the distance from the facility but fix them at the distances
of the present iterate. Note that even when the original problem satisfies
the special case requirement (the same elasticity curve for all customers),
the resulting optimization procedure for each iteration does not have this
property because the elasticity curve depends on the distance from the facility
and therefore is different for different demand points. Therefore, the general
solution algorithm is required.
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