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Abstract This paper considers evacuation via surface transportation networks in an
uncertain environment. We focus on demand uncertainty which can lead to
significant infeasibility cost during evacuation, where loss of life or property may
appear. We develop a robust linear programming model based on a robust
optimization approach where hard constraints are guaranteed within an appropriate
uncertainty set. The robust counterpart solutions have been shown tractable. We
show that the robustness in evacuation is important and a robust solution
outperforms a nominal deterministic solution in both quality and feasibility.

Keywords Dynamic traffic assignment . Evacuation . Robust optimization .

Data uncertainty

1 Introduction

Evacuation in extreme events based on large-scale transportation systems is of
critical importance. It is challenging to model evacuation in real world transportation
network due to the inherent complexity and uncertainty. Moreover, distinct from
typical transportation network, transportation network for evacuation bears signif-
icant infeasibility cost, resulting from the potential loss of life and property in
excrement events. The infeasibility cost refers to the cost incurred when the routing
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policy is rendered infeasible due to uncertain demand. In a general traffic assignment
scenario, the infeasibility cost under uncertain demand is much smaller as compared
to an evacuation scenario. Therefore, robust solutions play a major role in evacuation
transportation planning.

This paper develops a robust linear programming model based on a robust
optimization (RO) approach aiming to provide a robust and tractable framework for
evacuation management in large-scale network. The focus is on uncertainty
associated with significant infeasibility cost.

In recent years we have experienced dramatic development in the RO approach,
in which truly workable and scalable methodologies in both theory and practice have
been proposed to deal with optimization under uncertainty. Such tractability progress
has been responsible for the blooming success of RO in a broad array of application
areas (Ben-Tal et al. 2007; Bertsimas et al. 2007). Specifically, in a departure from
the typical nominal optimization where all data are assumed to be known
deterministically, the RO approach focuses on data uncertainty related with hard
constraints: those that are guaranteed for data within an appropriate prescribed set. It
is intuitively clear that there is a “price of robustness”, which is related to the trade-
off between robustness and conservativeness (Bertsimas and Sim 2004). In this
paper, we show that a robust solution outperforms a nominal deterministic solution
in both quality and feasibility in an environment with high infeasibility cost.

While infeasibility costs have been ignored in many transportation studies, our
paper provides a new modeling framework based on RO and innovative insights for
evacuation management. Our results can be generalized to general decision making
under uncertainty settings where significant infeasibility impacts exist.

1.1 Literature review

The evacuation planning problem has enjoyed most attention in the emergency
operations literature. Typically, the region to be evacuated is represented as a
transportation network, where nodes correspond to the regions and arcs represent the
roads. The evacuation plan consists of a flow over time on the transportation network
which satisfies the evacuee demand from source nodes to sink nodes. Therefore, the
approaches for evacuation planning may come from variety of fields such as dynamic
network flows (see Ahuja et al. (2003) for a complete survey on network flow
theory), Dynamic Traffic Assignment (DTA) (see Peeta and Ziliaskopoulos (2001)
for a review) and simulation (see Mahmassani (2001) for a survey).

In the DTA literature many studies use link performance to propagate traffic.
Such functions often tend to overestimate the time required to travel as they are
convex functions of flow on the links. An attractive alternative to using link
performance functions is Cell Transmission Model (CTM). This model was
originally proposed by Daganzo (1994, 1995) to simulate traffic flow based on
hydrodynamic flow. The transportation network is decomposed into cells whose
length corresponds to the maximum distance that can be traveled in a unit time and
given speed. The direction of traffic flow is represented by the connectors. The complete
formulation of CTM using a system optimal criterion was presented by Ziliaskopoulos
(2000). One of the main advantages of CTM is that it can be formulated as a linear
program and therefore computationally tractable. Li et al. (2003) proposed an effective
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decomposition scheme to reduce computational complexity. Chiu et al. (2007)
applied this model to the evacuation problem. Tuydes (2005) has extended
standard formulations to include the lane reversibility and temporary capacity
increments (also called as “contra-flow”). Although practical significance of CTM
has not been explored, the analytical models have a great advantage of using the
existing theory on Linear Programming (LP).

Most research in DTA has assumed deterministic input parameters. There has
been sparse literature on the inherent stochastic nature of parameters. This is
surprising because demand uncertainty, capacity reductions and implementation
errors of the optimal solution may have a drastic impact on the optimality and even
the feasibility of the solution. Peeta and Zhou (1999) subjected the deterministic
model to a number of randomly generated demand samples so as to gain insights.
But such a sampling approach may be prohibitively expensive as a large number of
samples are required to establish any statistical significance. Waller and Ziliaskopoulos
(2006) applied chance constrained programming and assumed a known distribu-
tion of the demand. Karoonsoontawong and Waller (2007) consider a scenario-
based robust optimization (Mulvey et al. 1995) by modeling the trade-off between
optimality robustness and model robustness. Ukkusuri and Waller (2008) describe
a two stage stochastic programming with recourse model. These approaches
provide a relaxation of constraints and treat actually soft constraints (Ben-Tal and
Nemirovski 1999).

In this paper, we focus on evacuation under uncertainty associated with hard
constraints. These constraints must be satisfied and can lead to significant
infeasibility cost during evacuation, where loss of life or property may appear. We
develop a robust linear programming model based on a RO approach.

The idea of RO is not new, as Soyster (1973) first studied it. His paper considers a
linear programming case where the column vectors from the constraint coefficient
matrix are within prescribed convex sets. Unfortunately, the column-wise uncertainty
case is extremely conservative which means that too much optimality has been
traded off to guarantee robustness. The issue of robustness was relatively silent in
the optimization community until the recent works of Ben-Tal and Nemirovski
(1998, 1999, 2000), Ghaoui et al. (1997, 2003) and Bertsimas and Sim (2003, 2004).
These papers make a significant step forward and propose less conservative models
by considering tractable robust counterparts for nominal problems (Ben-Tal and
Nemirovski 2002). These works, with the development of efficient interior point
algorithms for convex optimization and improvements in computation technology,
have provided computational tractability for RO in both theory and practice, and
hence have reinvigorated a sudden burst of interest in the RO field. For applications
of RO to the problems of transportation systems, refer to Ordonez and Zhao (2007),
Atamturk and Zhang (2007), Mudchanatongsuk et al. (2008) and Erera et al. (2007)

In the remaining of this paper, we will develop a deterministic linear
programming (DLP) evacuation model in the line of CTM by incorporating the
infeasible cost (Section 2). We then present and analyze a robust solution by
developing the robust counterpart formulation of the DLP to consider data
uncertainty (Section 3). To overcome the conservativeness of the robust solution,
inequality flow control constraint is proposed in section 4. We present numerical
examples in section 5 and conclude in section 6.
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2 Cell transmission model for evacuation planning

In this section we present the deterministic evacuation planning model. Our focus is on
the importance of robustness by analyzing the impact of infeasibility of an evacuation
model. The DLP formulation will be a generalization of the traditional CTM model
(Chiu et al. 2007; Ziliaskopoulos 2000). A typical CTM objective is a measure of the
total time taken for all evacuees to reach a safe destination. But, in an evacuation
scenario not all places are equally prone to the disaster. For example, the direction of
hurricane determines the areas of evacuation region which have to be evacuated
before any other. In addition, as the hurricane changes direction, the threat level
faced by evacuees changes across time. We introduce a measure called, coefficient of
threat level, which is an estimate of the susceptibility of an area to disaster at a
particular time. Such a generalization allows us to capture spatial-temporal priorities
during evacuation. While this coefficient of threat level is assumed to be constant
across space and time in a traditional CTM objective, such a modification provides a
natural way to incorporate infeasibility cost into the objective function, hence opens
the door to study the significance of robustness. More importantly, such modification
presents a unique way to compare robust solution with nominal solution and leads to
interesting results discussed in section 5. In this paper, we focus on demand
uncertainty, however, this modeling framework can be extended to study the effect
of uncertainty in other factors including capacity, cost, or threat levels.

The cell transmission model, named by Daganzo (1994, 1995), models freeway
traffic flow using a finite difference approximation of the kinematic wave model. Such
a model naturally incorporates congestion effect in traffic flows via shock waves in
fluid flow. The finite difference approximation ensures piecewise linear dependence
between traffic flow and density on the link which forms the foundation for linear
programming based approaches. More formally, let q and k denote the traffic flow and
density on a link in a traffic network. The following equation describes the relationship
between q and k in terms of v (free flow velocity), kmax (maximum possible density),
w (velocity of shock wave) and qmax (maximum allowable flow on the link).

q ¼ min vk; qmax;w kmax � kð Þð Þ

Based on the free flow velocity and length of discrete time step, a segment of a
freeway is decomposed into cells so that traffic can move only to adjacent cells in unit
time. The connectors between cells are dummy arcs indicating the direction of flow
between cells. Ziliaskopoulos (2000) extends the original CTM model of Daganzo by
formulating the DTA problem as a linear program. We introduce an adjacency matrix
A=[aij], for ease of notation. The adjacency matrix represents the connectivity of the
cells in the cell based transmission model. More formally, it is defined as follows

aij ¼ 1 cell i is connected to cell j
0 else

:

�
The notations are given as below:

= set of time intervals, {1,...T}
C set of cells, {1,...I}
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CS set of sink cells
CR set of source cells
A adjacency matrix representing transportation network connectivity.
cti weight proportional to the threat level experienced by the evacuees

in cell i at time t
xti number of evacuees contained in cell i at time t
ytij number of evacuees flowing from cell i to cell j at time t
dti demand generated in cell i at time t
N t
i capacity of cell i at time t

Qt
i inflow/outflow capacity of cell i at time t

dti traffic flow parameter for cell i at time tbxi initial occupancy of cell i

Based on these notations, we present the DLP model:

Min
x;y

X
t2=

X
i2CnCs

ctix
t
i M � DLPð Þ

subject to

xti � xt�1
i �

X
k2C

akiy
t�1
ki þ

X
j2C

aijy
t�1
ij ¼ dt�1

i 8i 2 C t 2 = ð1Þ

X
k2C

akiy
t
ki � Qt

i 8i 2 C t 2 = ð2Þ

X
k2C

akiy
t
ki þ δtix

t
i � δtiN

t
i 8i 2 C t 2 = ð3Þ

X
j2C

aijy
t
ij � Qt

i 8i 2 C t 2 = ð4Þ

X
j2C

aijy
t
ij � xti � 0 8i 2 C t 2 = ð5Þ

x0i ¼ bxi 8i 2 C ð6Þ

y0ij ¼ 0 8 i; jð Þ 2 C � C ð7Þ

xti � 0 8i 2 C t 2 = ð8Þ

ytij � 0 8 i; jð Þ 2 C � C t 2 = ð9Þ
In the objective function of this model, we minimize the evacuees’ total threat

exposure. Equation (1) refers to the flow constraint in cell i at time t. Equation (2)
represents that the total inflow into a cell is bounded by the inflow capacity. Equation (3)
ensures that the total inflow is bounded by the remaining capacity of the cell. Similarly,
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total outflow from a cell is bounded by outflow capacity and the current occupancy of
that cell which are represented by Eq. (4) and Eq. (5) respectively. The remaining
constraints, from (6) to (9), reflect the initial conditions and non-egativity conditions.

The M-DLP can be reduced and reformulated by eliminating state variable xti and
redundant constraints such as Eqs. (1), (6) and (8). Since

P
j2C

aijytij � xti � 0, ytij � 0

and aij � 0, it is evident that 0 � P
j2C

aijytij � xti and, in that reason, the non-negativity

constraint of xti, Eq. (8), is redundant. Also, in general, xti can be represented

as xti ¼ bxi þ Pt�1

t'¼0

ðP
k2C

akiyt'ki �
P
j2C

aijyt'ij þ dt'i Þby applying the Eqs. (1) and (6)

recursively. Thus, we can get the following equivalent DLP formulation:

Min
y;z

z ðM � DLP2Þ
subject toP
t2=

P
i2CnCs

cti bxi þ Pt�1

t'¼0

P
k2C

akiyt'ki �
P
j2C

aijyt'ij þ dt'i

 ! !
� zP

k2C
akiytki � Qt

iP
k2C

akiytki þ dti bxi þ Pt�1

t'¼0

P
k2C

akiyt'ki �
P
j2C

aijyt'ij þ dt'i

 ! !
� dtiN

t
iP

j2C
aijytij � Qt

i

P
j2C

aijytij � bxi þ Pt�1

t'¼0

P
k2C

akiyt'ki �
P
j2C

aijyt'ij þ dt'i

 ! !
� 0

9>>>>>>>>>>>=>>>>>>>>>>>;
i 2 C t 2 =

y0ij ¼ 0 8 i; jð Þ 2 C � C
ytij � 0 8 i; jð Þ 2 C � C t 2 =

Note that the capacities of source and sink cells are assumed to be infinite, i.e.,
Nt
i ¼ 1; 8i 2 CS [ CRð Þ. Also, demands are zero everywhere except source cells,

i.e., dti ¼ 0; 8i 2 CnCR.
In order to account for the infeasibility due to uncertainty in demand, our model

incorporates the infeasibility cost in the cost parameter, cti. We penalize an
evacuation plan which leaves any evacuees behind at the end of time horizon, T, i.e.

cti ¼
1 i 2 CnCs; t 6¼ T
M i 2 CnCs; t 6¼ T

:

�
ð10Þ

where M is assumed to be a positive large number to represent the infeasibility cost.
This reformulation provides an appropriate way to analyze the consequences of data
uncertainty with a focus on the impact of infeasibility cost.

This introduction of time dependent cost coefficients is distinct from the penalty
function proposed by Mulvey et al. (1995). In their paper, the slack variables for
each constraint appear in the objective function. A scenario-based robust
optimization approach is used, hence the violation of constraints may still be
observed. In contrast, we develop a set-based robust optimization approach where
feasibility in a prescribed uncertainty set is guaranteed. While Chiu et al. (2007)
consider “no-notice evacuation” (Pearce 2008) by focusing on deterministic demand
realized at time 0, the present model can also be used for short-notice evacuation
(hurricane, wildfire, and flooding) by considering time dependent demand.
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In the model shown above, we study the effect of uncertain demand information.
Our basic aim is to study the effect of uncertain demand on the value of the objective
function. We assume the demand d belong to a prescribed uncertainty set Ud.

To simplify the notation, in order to address demand uncertainty, we can denote the
objective functionV(y, d), as a function of flow on the links, y, and the demand variable, d.

Given a deterministic demand d∈Ud, the nominal solution

yN ¼ yN dð Þ � argmin
y

V y; dð Þ ð11Þ

Proposition 1 The nominal solution for a deterministic demand is not necessarily
optimal when the demand changes.

Proof From (11), we have V yN d1ð Þ; d1ð Þ � V yN d2ð Þ; d1ð Þ; 8d1; d2 2 Ud : ■

We would like to show that relatively small uncertainty in demand information can
lead to severe sub optimality or even infeasibilities with respect to the nominal
solution. For example, if more traffic is allowed between cells then will it lead to
infeasibility of the overall solution? We will conduct experiments to verify such
hypothesis based on a numerical example suggested by Chiu et al. (2007) in section 5.

3 Robust optimization formulation of CTM

It is clear that uncertainty needs to be taken into account to create a robust evacuation
plan. In this paper, we develop a RO methodology to deal with uncertainty and
illustrate this approach with demand uncertainty.

Given the defined demand uncertainty set Ud, the RC of the M-DLP2 is
formulated as shown below

Min
y;z

z M � RCð Þ
subject toP
t2=

P
i2CCnCs

cti bxi þ Pt�1

t'¼0

P
k2C

akiyt'ki �
P
j2C

aijyt'ij þ dt'i

 ! !
� z 8dti 2 UdP

k2C
akiytki � Qt

iP
k2C

akiytki þ dti bxi þ Pt�1

t'¼0

P
k2C

akiyt'ki �
P
j2C

aijyt'ij þ dt'i

 ! !
� dtiN

t
i 8dti 2 UdP

j2C
aijytij � Qt

i

P
j2C

aijytij � bxi þ Pt�1

t'¼0

P
k2C

akiyt'ki �
P
j2C

aijyt'ij þ dt'i

 ! !
� 0 8dti 2 Ud

9>>>>>>>>>>>=>>>>>>>>>>>;
i 2 C t 2 =

y0ij ¼ 0 8 i; jð Þ 2 C � C
ytij � 0 8 i; jð Þ 2 C � C t 2 =

We note that M-RC is a semi-infinite problem and has infinitely many constraints.
The following theorems show that it can be converted into a tractable equivalent
deterministic problem.
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Theorem 1 Given that Ud is polyhedral set d þ qd : Ad � b; d � 0
� �

where
d 2 R I�Tð Þ, d 2 R I�Tð Þ, q 2 R I�Tð Þ, A 2 Rm� I�Tð Þ and b∈Rm, the robust counterpart
with uncertain demand data is equivalent to the following deterministic problem.

Min
y;l;z

z M� RC1ð Þ
subject toP
t2=

P
i2CCnCs

cti bxi þ Pt�1

t'¼0

P
k2C

akiyt'ki �
P
j2C

aijyt'ij þ d
t'
i

 ! !
þ Pm

m'¼1

l1
m'bm' � z

Pm
m'¼1

l1
m'am' ; i' ;t'ð Þ �

P
t2=

ct
i'q

t'
i' 8i' 2 C; t' 2 =

l1
m' � 0 8m' 2 1; ::;mf gP

k2C
akiytki � Qt

iP
k2C

akiytki þ dti bxi þ Pt�1

t'¼0

P
k2C

akiyt'ki �
P
j2C

aijyt'ij þ d
t'
i

 ! !
þ Pm

m'¼1

l2
m'itbm' � dtiN

t
iPm

m'¼1

l2t
m'iam' ;ði' ;t'Þ �

P
t2=

dtiq
t'
i 8i' 2 C; t' 2 =; i' ¼ i

Pm
m'¼1

l2t
m'iam' ;ði' ;t'Þ � 0 8i' 2 C; t' 2 =; i' 6¼ i

l2t
m'i � 0 8m' 2 1; ::;mf gP

j2C
aijytij � Qt

i

P
j2C

aijytij � bxi þ Pt�1

t'¼0

P
k2C

akiyt'ki �
P
j2C

aijyt'ij þ d
t'
i

 ! !
þ Pm

m'¼1

l3
m'itbm' � 0

Pm
m'¼1

l3t
m'iam' ;ði' ;t'Þ �

P
t2=

�dtiq
t'
i 8i' 2 C; t' 2 =; i' ¼ i

Pm
m'¼1

l3t
m'iam' ;ði' ;t'Þ � 0 8i' 2 C; t' 2 =; i' 6¼ i

l3t
m'i � 0 8m' 2 1; ::;mf g

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

i 2 C t 2 =

y0ij ¼ 0 8 i; jð Þ 2 C � C
ytij � 0 8 i; jð Þ 2 C � C t 2 =

where αm′,(i′,t′) and βm′ are entries of A and b respectively.

Proof For notational simplicity, the each constraint affected by the demand uncertainty

of M-RC can be generalized by
PI
i¼1

cidi � a for 8di 2 Ud ¼ fd þ qd : Ad � b; d � 0g.
The equation is equivalent to Max

di
ðPI
i¼1

cidiÞ � a where di 2 Ud ¼ fd þ qd : Ad � b; d � 0g.
Then, we consider the following primal linear programming (P) and dual linear

programming (D).

Max
d

P
i
cj dj þ qjdj
� �

Pð Þ
subject toP
j
aijdj � bi

dj � 0
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Min
d

P
j
cjdjþ

P
i
libi Dð Þ

s:t:
P
i
liaij � cjqj

li � 0

where λt is dual variable.
Note that based on the fundamental theorem of duality (Bazaraa et al. 2005), one

of the followings is true

(1) If one problem has an optimal solution, then the other problem also has an
optimal solution and two values are equal.

(2) If one problem has a bounded optimal solution, then the other problem is
infeasible.

(3) Both problems are infeasible.

Therefore, if M-RC has an optimal solution, the dual linear programming M-RC1 has an
equal optimal solution. M-RC1 is a linear programming problem, hence is tractable. ■

Below we present similar results for ellipsoid and box uncertainty set.

Theorem 2 Given that Ud is ellipsoid set fd : d � d
� �

S�1ðd � dÞ � q2g where
d 2 R I�Tð Þ, d 2 R I�Tð Þ,q 2 R1 and S 2 R I�Tð Þ� I�Tð Þ, the robust counterpart with
uncertain demand data is equivalent to the following deterministic problem

Min
y;z

z M� RC2ð Þ
subject toP
t2=

P
i2CnCs

cti bxi þ Pt�1

t'¼0

P
k2C

akiyt'ki �
P
j2C

aijyt'ij þ d
t'
i

 ! !
þ q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CT
1 SC1

p
� zP

k2C
akiytki � Qt

iP
k2C

akiytki þ dti bxi þ Pt�1

t'¼0

P
k2C

akiyt'ki �
P
j2C

aijyt'ij þ d
t'
i

 ! !
þ q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CT
2itSC2it

p � dtiN
t
iP

j2C
aijytij � Qt

i

P
j2C

aijytij � bxi þ Pt�1

t'¼0

P
k2C

akiyt'ki �
P
j2C

aijyt'ij þ d
t'
i

 ! !
þ q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CT
3itSC3it

p � 0

9>>>>>>>>>>>=>>>>>>>>>>>;
i 2 C t 2 =

y0ij ¼ 0 8 i; jð Þ 2 C � C
ytij � 0 8 i; jð Þ 2 C � C t 2 =

where C1∈R(I×T) is a matrix, of which (i′,t′)th entries are
P
t2=

ct
i' C2it∈R(I×T) is a

matrix, of which (i′,t′)th entries are dt'
i' if i=i′, otherwise 0, C3it∈R(I×T) is a matrix, of

which (i′,t′)th entries are�dt'
i' if i=i′, otherwise 0.

Proof Similar to the proof of Theorem 1, an equivalent formulation of the

each constraint affected by the demand uncertainty becomes Max
d

ðPI
i¼1

cidiÞ � a
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where d 2 Ud ¼ f d � d
� �

S�1ðd � dÞ � q2g and our interest is the optimal solution
of the following mathematical programming

Max
d

PI
i¼1

cidi

subject to
d � d
� �

S�1 d � d
� � � q2

By the Karush-Kuhn-Tucker (KKT) conditions, the solution of the problem is
d ¼ d þ qffiffiffiffiffiffiffiffiffi

CTSC
p SC and Max

d

PI
i¼1

cidi ¼
P
i
cidi þ q

ffiffiffiffiffiffiffiffiffiffiffiffi
CTSC

p
� a where C∈RI is a matrix, of

which (i)th entries are Ci

Now, we have following relationship and M-RC2 can be formulated.

XI
i¼1

cidi � a 8di 2 Ud ¼ d � d
� �

S�1 d � d
� � � q2

� �,
X
i

cidi þ q
ffiffiffiffiffiffiffiffiffiffiffiffi
CTSC

p
� a ■

To illustrate the RO approach, let’s consider a box uncertainty set

Ud � d 1� qð Þ; d 1þ qð Þ� � ð12Þ

where d
t
i is the nominal demand in cell i at time t. As shown in Theorem 1–2, this

simple interval uncertainty set can be extended into more general form of uncertainty
set. (see Bertsimas et al. (2007) for a survey).

Theorem 3 Given that Ud is box set fd : d 1� qð Þ � d � d 1þ qð Þg where
d 2 R I�Tð Þ, d∈R(I×T), θ∈R(I×T), the robust counterpart with uncertain demand data
is equivalent to the following deterministic problem

Min
y;z

z M� RC3ð Þ
subject toP
t2=

P
i2CnCs

cti bxi þ Pt�1

t'¼0

P
k2C

akiyt'ki �
P
j2C

aijyt'ij þ d
t'
i 1þ qt'i

	 
 ! !
� zP

k2C
akiytki � Qt

iP
k2C

akiytki þ dti bxi þ Pt�1

t'¼0

P
k2C

akiyt'ki �
P
j2C

aijyt'ij þ d
t'
i 1þ qt'i

	 
 ! !
� dtiN

t
iP

j2C
aijytij � Qt

i

P
j2C

aijytij � bxi þ Pt�1

t'¼0

P
k2C

akiyt'ki �
P
j2C

aijyt'ij þ d
t'
i 1þ qt'i

	 
 ! !
� 0

9>>>>>>>>>>>=>>>>>>>>>>>;
i 2 C t 2 =

y0ij ¼ 0 8 i; jð Þ 2 C � C
ytij � 0 8 i; jð Þ 2 C � C t 2 =
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Proof Note the following relation for any real numbers ui and v (see Ben-Tal et al.
(2004) for more details).P
t2It

dti u
t
i � v 8dti 2 d

t
i 1� qti
� � � d � d

t
i 1þ qti
� �� �, P

t2It
d
t
i uti þ qi uti

�� ��� � � v

ð13Þ
Using the equivalence of equations, we can obtain M-RC3. ■

Robust optimal solution can be interpreted as the solution being feasible for any
realization of the uncertain data and achieving best worst case objective value. In
other words, the objective value (zRC, i.e., z in (M-RC)) of RC is guaranteed for any
demand realization within an appropriate uncertainty set. Hence, zRCis an upper
bound of a realized objective value (zR−RC). The realized robust objective value
(zR−RC) refers to the objective value we can obtain when the robust optimal
solution (yRC) is used and a data scenario (d) is realized i.e. zR−RC=V(yRC, d) (see
proposition 1). However, in some cases, RC is only feasible at unrealistic small
uncertainty level or generates too conservative solution (Ben-Tal et al. 2004, 2005).

Proposition 2 If the least demand is realized and the ideal solution exists, realized
robust objective value (zR-RC) is equal to the ideal objective value (zLeast).

Proof Let us consider the constraints for source nodes.

X
t2=

X
i2CnCs

ctiðbxi þXt�1

t0¼0

ð
X
k2C

akiy
t0
ki �

X
j2C

aijy
t0
ij þ d

t0

i ð1þ qt
0
i ÞÞÞ � z

X
j2C

aijy
t
ij � Qt

i i 2 CR t 2 =

ð14Þ

X
j2C

aijy
t
ij � ðbxi �Xt�1

t0¼0

ð
X
j2C

aijy
t0
ij þ d

t0

i ð1� qt
0
i ÞÞÞ � 0 i 2 CR t 2 =

y0ij ¼ 0 8 i; jð Þ 2 C � C
ytij � 0 8 i; jð Þ 2 C � C t 2 =

ð15Þ

Equations (14) and (15) are related to the uncertain demand. The constraint (15) is

equivalent to
Pt
t'¼0

P
j2C

aijyt'ij � bxi þ Pt�1

t'¼0

d
t'
i 1� qt'i

	 

, which means total number of

evacuees from a source node i at time t cannot exceed the sum of initial occupancy
of the source node and total minimum demands until time t-1. In other words, any
additional demand "t'i 2 ð0; 2qt'i Þ exceeding possible minimum demand d

t'
i ð1� qt'i Þ

cannot be controlled by the RC. In that reason, the constraint (14) can be reformulated

as
P
t2T

P
i2CnCs

ctiðbxi þ Pt�1

t'¼0

ðP
k2C

akiyt'ki �
P
j2C

aijyt'ijþd
t'
i ð1� qt'i ÞÞÞ þ

P
t2T

P
i2C

Pt�1

t'¼0

cti"
t'
i � z. Finally, we

conclude that zRC ¼ zLeast þP
t2T

P
i2C

Pt�1

t'¼0

2ctiq
t'
i and zR�RC ¼ zLeast þP

t2T

P
i2C

Pt�1

t'¼0

2cti"
t'
i

when uncertain demand data "t'i 2 ð0; 2qt'i Þ are realized. Also, zR−RC becomes zLeast

when the least demands are realized. ■
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Proposition 2 also shows that RC is always feasible as long as zLeast exists.
However, as the uncertainty level increases, it becomes too conservative to adopt the
solution in the real world. In some sense, the solution may be worthless since we
have to give up the evacuation to find the uncertainty immunized solution. In the
next section, we will show that an inequality constraint will improve the
performance of the robust solution.

4 Robust counterpart of CTM with inequality flow control constraint

Retuning to our CTM based evacuation problem (M-DLP), let’s recall the flow
control constraint, Eq. (1). The demand equality constraint Eq. (1) can be written as
an inequality constraint xti � xt�1

i � P
k2C

akiyt�1
ki þP

j2C
aijyt�1

ij � dt�1
i (e.g., Ukkusuri

and Waller 2008). Clearly, for a given deterministic demand dti ¼ d
t
i, the inequality

flow control constraint is always binding and therefore becomes an equality based
flow constraint. However, the actual realized demand can be lower or higher than the
expected anticipated demand, d

t
i. Intuitively, if the realized demand is lower than

expected, the nominal solution should remain feasible by allocating the realized
demand proportionally to the planned routes. Therefore, we formulate the flow
constraint as an inequality to accommodate for uncertainty in demand. Using the Eq.
(13), a tractable robust counterpart is written as

Min
x;y

P
t2=

P
i2CnCs

ctix
t
i M � RC4ð Þ

subject to

xti � xt�1
i � P

k2C
akiyt�1

ki þP
j2C

aijyt�1
ij � d

t�1
i 1þ qið ÞP

k2C
akiytki � Qt

iP
k2C

akiytki þ dtix
t
i � dtiN

t
iP

j2C
aijytij � Qt

iP
j2C

aijytij � xti � 0

9>>>>>>>>>>>=>>>>>>>>>>>;
i 2 C t 2 =

x0i ¼ bxi 8i 2 C
y0ij ¼ 0 8 i; jð Þ 2 C � C
xti � 0 8i 2 C t 2 =
ytij � 0 8 i; jð Þ 2 C � C t 2 =

Clearly, the robust counterpart corresponds to the case when there is maximum
demand at each of the cells. Intuitively, the worst case should correspond to
maximum demand at each node.

We can see that the M-RC4 corresponds to a DLP with maximum demand at each
of the cells. It is worthwhile to note that our original DLP considers expected
demand in all cells. Based on this finding, we can propose the following theorem
(similar discussions see Bertsimas and Perakis (2005)).
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Theorem 4 The robust counterpart of the Cell Transmission Model with uncertain
demand in Eq. (12) corresponds to a deterministic LP (M-RC4) considering
maximum possible demand in the uncertainty set.

From Theorem 4, we have the following:

yRC4 � arg min
y

max
d

V y; dð Þ ¼ yN dMð Þ ¼ argmin
y
V y; dMð Þ

where dM ¼ d
t
i 1þ qð Þ, the maximum possible demand within demand uncertainty

set defined in Eq. (12).
We then can have the following proposition.

Proposition 3 In the Cell Transmission Model with uncertain demand in Eq. (12),
the robust solution of the robust counterpart has performance better than or same as
any nominal solution considering maximum possible demand in the uncertainty set.

Proof From Proposition 1 and 2, we have

V yN dð Þ; dMð Þ � V yN dMð Þ; dMð Þ ¼ V yR; dMð Þ: ■

The implication of Proposition 3 is that a robust solution performs better than any
nominal solution under worst scenario demand. A natural question is that, on
average, which solution will have better performance. We will conduct numerical
experiments in section 5 to investigate this question.

5 Numerical examples

This section presents an illustrative example based on Chiu et al. (2007). The input
data consists of topology or connectivity, demand estimates at source nodes and
geometric characteristics of the transportation network. The geometric characteristics
include length, no. of lanes, speed limits and capacity limits on the road. Using this
information, an equivalent cell model is constructed in which length of a cell
corresponds to the maximum distance traveled by a vehicle in a unit time interval.
The capacity and demand information is appropriately reflected in the cell
transmission model. The model parameter, δ, is assumed to be unity, i.e.,
dti ¼ 1; 8i 2 C; t 2 =. The entire data for the CTM is presented in Tables 1 and 2.

Table 1 Time invariant cell properties

Cell 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ni ∞ 20 20 20 ∞ 20 20 20 ∞ 20 20 20 20 ∞
Qi 12 12 a 12 12 12 12 12 12 12 12 12 12 12bxi 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a See below for time-dependent data

Evacuation Transportation Planning Under Uncertainty 183



Consider the example in Fig. 1 where evacuation needs to be moved out from
nodes {A,D,G} to sink nodes {C,F,H}. The equivalent cell transmission model is
shown on the right part of Fig. 1. A super sink cell, 14, has been added to convert
the multiple source/multiple sink model to a multiple source/ single sink model. The
cells (1,5,9) are source cells and 14 is a sink cell.

Without loss of generality, let T=15 (total time periods). All other data regarding
expected demand and capacity of the transportation network is adopted from Chiu et
al. (2007). The nominal solution is obtained by assuming a deterministic demand,
where the realized demand is equal to the expected demand d. But, the realized
demand can be less than or greater than the expected demand and one has to adjust
the nominal solution in order to implement it. Waller and Ziliaskopoulos (2006)
choose to duplicate extra demand randomly when more realized than expected
appear. Mudchanatongsuk et al. (2008) propose artificial arcs with high cost to avoid
higher demand. By considering vehicle holding (evacuees may wait in some places
as long as not violating the constraints) in evacuation, we choose the following rules
to adjust nominal solution:

1) If the realized demand is greater than the expected, then the excess demand
remains at the source cell. Although this is a restrictive assumption, we expect
that this will provide a good starting point for further work. The cost function,
as defined in Eq. (10) and presented below for convenience, penalizes evacuees
who haven’t reached the sink cell at the end of time horizon

cti ¼
1 i 2 C; t 6¼ T
M i 2 C; t ¼ T :

�

Table 2 Time dependent data

Time 0 1 2 3 4 5 6 7 8 9 10

dt1 27 0 0 0 0 0 0 0 0 0 0

dt5 15 0 0 0 0 0 0 0 0 0 0

dt9 32 0 0 0 0 0 0 0 0 0 0

Qt
3 12 6 6 0 0 0 12 12 12 12 12

Fig. 1 Evacuation example (Chiu et al. 2007)
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2) If there is less demand than expected then proportionate demand is allocated to
each path.

We assume qi ¼ q 8i 2 C and M=10. For a given q, 100 random demand
samples were generated and the average objective function value (zqnom) obtained by
implementing the nominal solution. This average value was compared to objective
function value (z0nom ¼ 414) in a deterministic scenario. The average degradation
relative to the nominal solution is calculated and plotted as q is varied from 0% to
30% in intervals of 2%. The degradation is calculated as follows

degradation q
� � ¼ zqnom � z0nom

	 

z0nom

As shown in Table 3 and Fig. 2, an average degradation of 10–15% was observed
when the nominal solution was subject to uncertain demand. This may be significant
as the increase in objective cost function value corresponds to loss of human life and
property. Also, uncertainty in demand seems to be proportional to the degradation in

θ Degradation θ Degradation

0 0 16 12.91

2 1.6 18 14.54

4 3.2 20 16.17

6 4.81 22 17.8

8 6.42 24 19.43

10 8.03 26 21.06

12 9.65 28 22.7

14 11.28 30 24.33

Table 3 Degradation Of
nominal solution under uncertain
demand
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Fig. 2 Consequence of data uncertainty for nominal solution
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the nominal solution. One can argue that the analysis seems to be dependent on the
policy we used to deal with excess/less demand. But, we note that policies used to
adjust solutions must be computationally inexpensive and relatively simple for the
traffic controllers to implement it in real time. Although different policies can exhibit
different results, a similar trend can be expected as seen in Table 3. This experiment
provides a clear motivation to consider uncertainty in evacuation problems.

Similar setting is used to compare the robust solution to the nominal solution. For
a given q, 100 random demand samples were generated and the objective function
values obtained by implementing the robust (zqrob) and the nominal solution (zqnom)
were compared. The average relative improvement over the nominal solution is
calculated and plotted as q is varied between 0% to 30% in intervals of 2%. The
improvement is calculated as follows

improvementðqÞ ¼
zqnom � zqrob

	 

zqnom

θ Improvements θ Improvements

0 0 16 9.02

2 0.87 18 9.75

4 1.7 20 10.78

6 2.48 22 8.77

8 3.19 24 12.03

10 5.43 26 13.64

12 6.72 28 14.28

14 5.21 30 14.84

Table 4 Improvement of robust
solution relative to the nominal
solution
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Fig. 3 Relative performance of robust solution
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Table 4 and Fig. 3 show that an average improvement of 8–10% is over the
nominal solution by the robust solution under varying level of uncertainty. Although,
the improvement observed is not monotone, the robust solution seemingly performs
better at higher uncertainty levels in demand. Similar non-monotone results were
reported by Bertsimas et al. (2007) when RO was applied to an inventory control
problem.

Although, the results obtained are based on several assumptions such as excess
demand being left at source nodes, we feel that robust solution is conceptually
superior to a deterministic solution. In addition, one can see that the robust solution
can be conservative as it deals with the worst case scenario which corresponds to
maximum demand at each of the source nodes. In reality, there is a small chance of
this scenario to occur. We argue that a conservative solution such as a robust solution
will provide a guaranteed bound and be preferable to a nominal solution which does
not guarantee feasibility or solution quality under all demand realizations. This may
be particularly relevant in an evacuation scenario where solution infeasibility may
result in loss of life and property. Also, one can restrict the uncertainty set to obtain
robust solutions which will provide more realistic guarantees during evacuation. In
this section, we tested whether evacuation problem is an appropriate application area
for optimization under uncertainty. (see Ben-Tal et al. (2007) for a similar analysis of
a drug development example). Clearly, RO is a promising approach to develop
evacuation plans which are immune to uncertainty.

6 Conclusion

This paper develops a RO model for evacuation transportation planning in extreme
events. The robust counterparts have been shown tractable. Existing optimization
softwares like CPLEX can be potentially used to efficiently solve large scale RO
solution. By focusing on infeasibility cost, we show the importance of robustness.
More interestingly, we find that a robust solution improves both feasibility and
quality comparing to a nominal solution.

Our work provides a basis for future analytical and simulation analysis for
evacuation management. Additional experiments need to be conducted on variety of
transportation networks with different policies to deal with uncertain demand to
enhance the findings discussed in this paper. The uncertainty analysis may be
extended to include capacity reductions and implementation errors.

The robust solutions obtained are conservative in nature. In order to make the
robust solutions less conservation, more realistic demand scenarios which have a
higher probability of occurrence may be incorporated into the analysis. Also, a
multi-period Adjustable Robust Counterpart (ARC) solution (Ben-Tal et al. 2004)
may be developed to reduce the solution conservativeness when sequential decisions
are made with information updating over time.
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