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Abstract In computer and transportation networks, we consider the situation
where each user has its own routing or load balancing decision and seeks
to minimize noncooperatively the expected passage time of its packet or
job, given the routing or load balancing decisions of other users. Intuitively,
it is anticipated that adding connections to such a noncooperative system
may bring cost improvement at least to some users. The Braess paradox is,
however, the first example of paradoxical cases where it is not always the case.
A few studies have been published on the degrees of coincident cost degra-
dation for all users by adding connections. In contrast, it has not been certain
whether or to what degree adding connections to a network can bring coin-
cident cost improvement for all users. We believe that this paper is the first
one that studies the possible degrees of coincident cost improvement for all
users by adding connections to noncooperative systems. There has been found
no system in Wardrop equilibrium for which the degree of degradation can
increase without bound by adding connections with the number of nodes fixed.
We show that there exist systems in Wardrop equilibria and ones in Nash equi-
libria for both of which the degree of coincident cost improvement can increase
without bound for all users by adding connections, even if the number of nodes
is fixed. We then study, for models reflecting realistic distributed systems,
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the effects of adding connections to them on the coincident cost improvement
or degradation for all users.

Keywords Braess paradox · Noncooperative optimization ·
Wardrop equilibrium · Nash equilibrium · Computer networks ·
Distributed computer systems · Network routing · Static load balancing

1 Introduction

There exist numerous systems wherein a number of independent users share
and compete for resources on a network. Consider, for instance, a distributed
computing system, such as a grid, composed of a network of servers on a
local or wide-area network (Foster and Kesselman 1998), or a packet-switched
computer network like the Internet (see, e.g., Keshav 1997; Stevens 1994; Chen
et al. 1999). The network consists of nodes, i.e., computers (hosts) and routers,
which are connected by links, namely, the communication lines. Each job, or
packet, sent by a node, is associated with a unique pair of hosts: its origin and
destination nodes. Jobs originating at a host flow through a path that consists
of a series of interconnected routers to their destination host. Each router
may keep routing information in some form, e.g., of a routing table. Such
information tells each arriving job to which adjacent router the packet is to
be forwarded. Alternatively, so-called ‘source routing’ arises when the path of
each job is specified at the origin. Then, each job carries this information about
its path while passing through the network.

In addition, there exist protocols that provide routing information at each
router, so that every job, or packet, may be guided through a path of the
shortest cost among the paths that connect the same pair of origin and
destination nodes, given the cost of each link. Thus, such a routing protocol
assigns to each link the cost that reflects the estimated communication delay
through the link. The communication delay and availability of each link may
vary from time to time, and so routers need to exchange packets to update
routing information. So-called ‘dynamic routing protocols’ work in this way.
Such exchange of packets, however, cannot be done too frequently. Otherwise,
links would be flooded and performance would degrade. Thus, the information
at each router is updated at some regular (but not too short) intervals, and the
cost optimization process is not truly ‘dynamic’ but rather ‘quasi-static.’

Job and/or packet generation is regarded as a stochastic process. It is
probable that such processes are stable, i.e., in a stochastic equilibrium, during
a time period that contains a large number of update intervals. In quasi-static
control, a shortest path routing that reflects communication delays as link costs
may cause oscillations in the amount of jobs, or packets, that flow through
each link, and thus, oscillations in the communication delay of each link or
path. Such oscillations could be avoided by means of suitably forecasting the
expected delay of each link for the next update interval, and/or by employing,
if needed, an adequate mixing strategy of using more than one possible path,
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each used at a certain ratio or frequency. Thus, if suitably controlled, shortest
path routing may bring about situations wherein each job, or packet, flows
through one of the paths of the shortest cost (communication delay) among
the paths that connect its origin and destination nodes. The resulting network
flow must be very close to a Wardrop equilibrium (of nonatomic users).

On the other hand, source routing may provide situations quite close to a
Nash equilibrium, as in the following example. Consider a situation where the
information on the estimated delay of each link, and thus each path, is available
at each origin. An autonomous system, e.g., a local-area computer network in
a large enterprise, or a telephone network run by an Internet-service provider,
may be connected to the network at an origin. Then, the manager or the
administrator of the autonomous system would like to minimize the overall
cost or mean delay of the jobs that are sent from the origin into the computer
communication network. Again, such oscillations mentioned above could be
avoided by means of suitably forecasting the expected delay of each link in
the next update interval, and/or by employing, if needed, an adequate mixing
strategy of using more than one possible path, each used at a certain ratio
or frequency. Thus, if suitably controlled, source routing may bring about
situations wherein the mean delay of the packets of an autonomous system
is at a minimum, given the routing decisions on the packets of the other
autonomous systems that are connected to the network. In such cases, the
situation must be very close to a Nash equilibrium.

Nash and Wardrop equilibria are two related paradigms that describe
a stable network flow as a function of its characteristics. While there are
similarities between the two notions of network equilibrium, as we shall see
in this paper, there are important differences as well. Wardrop equilibria
have been discussed extensively in transportation science which continues to
develop (Patriksson 2004; Shao et al. 2006).

The famous (original) Braess paradox shows that adding a connection (a
link) to a network may sometimes degrade the cost for all users in a Wardrop
equilibrium. If performance degrades coincidently for all users when a new
connection is added to a system, it is called a paradox. The Braess paradox
has attracted the attention of many researchers. A list of references on the
Braess paradox is kept in Braess’ home page at http://homepage.ruhr-uni-
bochum.de/Dietrich.Braess/#paradox.

Only a few studies have provided an estimation of how harmful the paradox
can be, i.e., the worst-case degree of coincident cost degradation for all users by
adding connections to a noncooperative system (Kameda 2002; Roughgarden
2006a; Roughgarden and Tardos 2004). It has been shown that there exists
a system in a Nash equilibrium for any size of the degree of the paradox. In
contrast, there has not been found any system in Wardrop equilibrium for
which the degree of coincident cost degradation can increase without bound if
the number of nodes in the network is bounded. Moreover, we have not seen
any estimation of how beneficial the addition of connections to a noncoop-
erative network can be, i.e., the best-case degree of coincident cost improve-
ment by adding connections to a noncooperative system.

http://homepage.ruhr-uni-bochum.de/Dietrich.Braess/#paradox
http://homepage.ruhr-uni-bochum.de/Dietrich.Braess/#paradox
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This paper answers the following questions:

i. For Wardrop and Nash networks (networks in a Wardrop or Nash equi-
librium), is there a parameterization that leads to every level of coincident
cost degradation up to a bound, and every value of coincident cost im-
provement, when adding new connections to a network?

ii. What is the effect of adding connections to distributed computer systems?

Note, in passing, that each user of a network may have decisions on flow
control, in addition to routing. In wireless networks, users may have power
control. The concept of a Nash equilibrium is also discussed with a paradoxical
behavior discovered (Inoie et al. 2006), both of which are not addressed in this
paper.

As to the literature on the game theory and networks, see also Altman and
Wynter (2004).

The next section introduces Nash and Wardrop networks. Section 3 presents
the measure of coincident degradation (paradox) and improvement for all
users by adding connections to systems. Section 4 answers question (i) above,
while Section 5 discusses distributed computing systems and responds to
question (ii).

Section 6 concludes and summarizes the contributions of the paper.

2 Nash and Wardrop networks

We discuss two types of noncooperative networks. In the first case, one can
consider systems where the jobs, or packets, are classified into a small number
of groups led by a user or decision maker, each of which optimizes its cost
non-cooperatively. In this situation, the users are referred to as “atomic” (as
some game-theorists say) in that each user’s decision has an impact on the
costs experienced by the other users. The situation where, in such a scheme,
every user has optimized his decision, given the decisions of other users, and
furthermore, would not unilaterally deviate from this decision is called a Nash
equilibrium, since it is, in this respect, “stable” (Haurie and Marcotte 1985;
Kameda et al. 2000; Kameda and Pourtallier 2002). As mentioned above, in
computer networking, some source routing protocols may bring about situa-
tions close to Nash equilibria.

In other types of noncooperative networks, each infinitesimal, i.e., non-
atomic (as some game-theorists say), user makes its own routing decision so
as to minimize its expected delay from its origin to its destination given the
routing decisions of other users. In this setting, the number of such users is
so high that the impact of any one such user is infinitesimally small on the
cost experienced by all users. In this case as well, the situation where every
infinitesimal user has optimized its decision, given the decisions of other users,
and would not unilaterally deviate from that choice, is called an equilibrium.
The name given to this form of equilibrium is Wardrop equilibrium, i.e., a Nash
equilibrium with infinitesimal players (nonatomic users) (Haurie and Marcotte
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1985; Patriksson 1994). As mentioned previously, in computer networking,
some shortest path routing protocols may bring about situations close to
Wardrop equilibria.

3 Degrees of coincident cost degradation (paradox) and improvement
for all users by adding connections to systems

This paper uses a single scalar measure that quantifies Pareto superiority of a
system state before adding connections to that after doing so, or the degree of
paradoxes in Nash equilibria.

Pareto superiority is defined as follows. Consider a system consisting of n
users (or players, decision makers), 1, 2, . . . , n. User i has its cost Ci(S), in the
system state S.1 Denote by Sa and Sb two different states of the system, and
ki � Ci(Sa)/Ci(Sb ). Then, we say that Sb is Pareto superior to Sa iff ki > 1
for some i and k j ≥ 1 for all other j. In particular, we say that Sb is strongly
Pareto superior to Sa iff ki > 1 for all i. A state to which some other state
is Pareto superior is Pareto inefficient. Thus, the Pareto superiority depends
on the vector (k1, k2, . . . , kn). It may, however, be convenient to express the
degree of Pareto superiority, using a single scalar measure. It is required that
the measure should clearly reflect Pareto superiority. If kmin > 1, the state Sb

is (strongly) Pareto superior to Sa. Thus, the measure kmin may be used as a
primary measure of Pareto superiority. In contrast, for example, a measure
based on a certain average or on a product of all ki cannot satisfy the above
requirement, but may be used as a secondary measure for tie-breaking in the
case where kmin = 1.

It would be anticipated that in a system state where each user has more
freedom of choice than in another state, at least one user should enjoy higher
utility than in the latter state. As the famous Braess paradox shows, however,
it is not always the case for noncooperative systems. Thus, a Nash equilibrium
of a system with less freedom may be strongly Pareto superior to that with
more freedom, which is called paradox. We, therefore, use the measure of
Pareto superiority defined above as the measure of the degree of the paradox,
i.e., the coincident cost degradation for all users by adding connections. The
measure of the degree of coincident cost improvement for all users by adding
connections can be considered in a similar way. For example, if kmin → 0, we
say that the degree of coincident cost improvement for all users by adding
connections can increase without bound.

The price of anarchy The idea of a measure, the price of anarchy, was men-
tioned by Koutsoupias and Papadimitriou (1999), and its name ‘the price of

1We only consider the cases where Ci(S) > 0 for all i. In the case where there are such i’s that
Ci(S) ≤ 0 for some i, we replace Ci(S) by Ci(S) + C for all i where C is a constant such that Ci(S) +
C > 0 for all i. By this replacement, we would not have any essential change in our arguments.
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anarchy’ appeared in Papadimitriou (2001). The term ‘anarchy’ is considered
to mean the state of a Nash or Wardrop equilibrium which is reached by
the situation where every player behaves selfishly to optimize its own cost
or utility. The measure looks to show the degree how bad is the state of the
worst-case Nash/Wardrop equilibrium against a best state. The proposer of the
measure defines the best state to be the state with the optimal social cost. Then,
the price of anarchy is equal to the ratio of the social cost of the worst-case
Nash/Wardrop equilibrium to the minimum social cost. A number of results
have been obtained based on this measure, many of which are described by
Roughgarden (2005, 2006b). In fact, before the idea of the measure, price of
anarchy, was proposed, anomalous behaviors of Wardrop and Nash equilibria
compared with social optima, like those expressed in terms of the price of
anarchy, had already been discovered and investigated in the context of load
balancing in distributed computer systems that was identical to routing in
networks of particular types (Zhang et al. 1992; Kameda et al. 1997a, b).

On the other hand, the measure of the Pareto inefficiency of a Nash
equilibrium has to reflect the comparison with all the Pareto optima, and the
state with the optimal social cost is only one Pareto optimum. Therefore, the
price of anarchy cannot be a good measure of the Pareto inefficiency of a Nash
equilibrium (Legrand and Touati 2007). Following the spirit of the price of
anarchy, we may think of a measure which is the ratio of the social cost of
state A to that of state B for comparing two states A and B. According to the
discussion given above on the measure of Pareto superiority and paradoxes,
we can see that the above-mentioned measure that has the spirit of the price
of anarchy may serve only as a secondary measure and cannot serve as the
primary measure of Pareto superiority and paradoxes. We note that the above-
mentioned anomalous behavior of the Wardrop/Nash equilibrium necessarily
occurs when the Braess paradox occurs, but not vice versa.

4 Coincident cost improvement for all users by adding connections
to Wardrop and Nash systems

The present paper addresses the estimation of the best-case degrees of co-
incident cost improvement for all users by adding connections to Wardrop
and Nash systems. In this section, we show that the degree of coincident cost
improvement (benefits) by adding connections to both Wardrop and Nash
systems can increase without bound.

4.1 Wardrop network

Wardrop networks considered here consist of one origin and one destination
and some relay nodes, some pairs of which a one-way link connects. One of the
simplest networks is the general Braess network (Fig. 1) discussed later. There
are a number of paths each of which connects the origin and the destination
through a different series of links. The cost of a path is the sum of the cost
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Node 3

Node 0

Node 1 Node 2

t2( f2)

t3( f3)t1( f1)

t4( f4)

Node 3

Node 0

Node 1 Node 2

t2( f2)

t3( f3)t1( f1)

t4( f4)

t5( f5)

Fig. 1 General Braess network. Left: The network before Link 5 is added. Right: The network
after Link 5 is added

of each link in the path. Infinitely many infinitesimal users send their packets
through the network. Each user chooses a path of the minimum cost. The
choice of a single infinitesimal user has only a negligible impact on the cost of
each link. The situation where no user can reduce his/her cost by unilaterally
choosing another path is a Wardrop equilibrium, an infinitesimal-user version
of a Nash equilibrium.

It is assumed that the cost of each link is a non-decreasing function of the
total flow, i.e., the rate of packets through the link. In a Wardrop equilibrium
of the networks with only one pair of origin and destination, the costs of all
users are identical. Co and Cc, respectively, denote the costs of users of a
Wardrop network before and after adding connections to the network. Define
k = Cc/Co. Then, k expresses the degree of cost change for all users by adding
the connections. kmin of Section 3 reduces to k here.

The Braess network consists of four nodes: one origin (Node 0), one
destination (Node 3), and two relay nodes (Nodes 1 and 2): See Fig. 1. Before
adding a link, the network has two paths, 0-1-3 (Path 1) and 0-2-3 (Path 2),
each of which contains two links, Link 1 (from Node 0 to Node 1) and Link
2 (from Node 1 to Node 3) for the first path, and Link 3 (from Node 0 to
Node 2) and Link 4 (from Node 2 to Node 3) for the second: See Fig. 1 left.
After adding new link (Link 5), i.e., a one-way link connecting the two relay
nodes 1 and 2, the network has three paths including the new, third, path 0-1-2-
3 (Path 3): See Fig. 1 right. In the original Braess network, the cost of each link
is a linear function of the amount of the flow through the link (Braess 1968).

This paper also considers general Braess networks, that have nonlinear link
cost functions. As before, let fi denote the flow on Link i. The total demand
in the network is denoted, as before, by d, and the path flows are denoted by
xr for path r. The superscripts c and o indicate which flows are on the original,
o, network, and which are on the network with an added link, c, i.e., xc

r is the
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flow on Path r in the network having the additional link. Since the flow on the
original network on all paths equals demand which in turn equals the flow on
all three of the paths in the new network, we have that:

xo
1 + xo

2 = xc
1 + xc

2 + xc
3 = d. (1)

The cost on the four links are ti( fi), for i = 1, 2, 3, 4. For the original Braess
network, t2( f2) = f2 + 50, t3( f3) = f3 + 50, t1( f1) = 10 f1, and t4( f4) = 10 f4,
and for the new connection, t5( f5) = f5 + 10. The demand on the network
is d = 6. Solving for Wardrop equilibrium, using these values, one obtains
Co = 83 and Cc = 92, and thus k = Cc/Co = 1.1084 . . . (Braess 1968). Recall
that k shows the degree of cost change by adding Link 5, and k (> 1) gives the
value of the coincident cost degradation. In the above case, it is about 11%
degradation.

By general Cohen–Kelly networks, we mean a subset of general Braess
networks for which the costs of Links 1 and 4, are, respectively, t1( f1) =
α/(a − f1) and t4( f4) = α/(a − f4). By definition, 0 ≤ fi < a, for i = 1, 4. The
costs on Links 2 and 3 are t2 = t3 = b , for some constant, b > 0, and t5 = τ > 0,
a different nonnegative constant.

Cohen and Kelly (1990) considered a network of this type for which α = 1,
b = 2, τ = 1, and d = 2λ, for some arrival rate, λ. Note that the resulting net-
work is symmetric. They showed that Co = 1/(a − λ) + 2 < 3 = Cc (i.e., 1 <

k < 3/2), assuming that 2λ > a − 1 > λ > 0, which is a paradox. In the above
case, the degree of degradation is bounded by the 50% above the original cost
(Fig. 2).

As a general result on the Braess networks, it has been shown that the
degree, k, of coincident cost degradation is bounded by 2 for the general Braess
networks for which costs on Links 1 and 4 are increasing and costs on Links 2,
3, and 5 are non-decreasing (Kameda 2002). Furthermore, as a general result

Node 3

Node 0

Node 1 Node 2

t2( f2) = b

t3( f3) = b
t1( f1) =

α
a − f4

t4( f4) =
α

a − f4

Node 3

Node 0

Node 1 Node 2

t2( f2) = b

t3( f3) = bt1( f1) =
α

a − f4

t4( f4) =
α

a − f4

t5( f5) = τ

Fig. 2 General Cohen–Kelly network. Left: The network before Link 5 is added. Right: The
network after Link 5 is added
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on the Wardrop systems, it has been shown that k is bounded by �n/2� for
networks that consist of n vertices and have link costs each of which is a non-
decreasing function of the flow through the link (Roughgarden 2006a). Note,
in passing, that the Braess paradox may also occur for networks with multiple
origin-destination pairs (Cohen and Jeffries 1997; Kameda 2002).

Cohen–Kelly network Consider a Cohen–Kelly network with and b ≥
α/(a − d) + τ. Then, the following relations hold.

Co = α

a − d/2
+ b , (2)

Cc = 2α

a − d
+ τ. (3)

We consider the case of τ = 0, in particular. Then, the above Cohen–Kelly
networks are described by the values of parameters α, a, b , and d that satisfy
0 < d < a and 0 < α/(a − d) ≤ b .

Reduced Cohen–Kelly network A subset of general Cohen–Kelly networks
with b = α/(a − d) + τ . Thus, the following relation holds for Cc while Co is
given by Eq. (2).

Cc = 2α

a − d
+ τ = 2b − τ = α

a − d
+ b . (4)

We also consider the case of τ = 0, in particular.
We show that there exist Wardrop systems such that any degree of k can be

obtained, up to a bound.

Theorem 1 For every value of k, s.t. 0 < k < 2, there exist Wardrop systems for
which the measure k is that value.

Proof The outline of the proof is given as follows.

Step 1. shows that k depends only on ρ (= d/a) and Z (= b(a − d)/α − 1),
i.e., k = k(ρ, Z ).

Step 2. sees that k = k(ρ, 0) monotonically increases in ρ with the range
1 < k < 2 and the domain 0 < ρ < 1. Thus, given k, s.t. 1 < k < 2,
the corresponding value of ρ can be obtained and thus, with Z = 0,
the corresponding combinations of values of α, a, d, and b , can be
obtained, which describe model Cohen–Kelly networks that are also
reduced Cohen–Kelly networks.

Step 3. sees that, given ρ, s.t. 0 < ρ < 1, k = k(ρ, Z ) monotonically de-
creases in Z with the range 0 < k ≤ 1 and the domain Zρ ≤ Z where
Zρ = ρ/(2 − ρ) > 0. Thus, given k, s.t. 0 < k ≤ 1, the corresponding
value of Z can be obtained and thus, with given ρ, the corresponding
combinations of values of α, a, d, and b , can be obtained, which
describe model Cohen–Kelly networks.
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Step 4. shows, by combining 2. and 3., that, for every value of k, s.t. 0 < k < 2,
the corresponding combinations of values of α, a, d, and b , can be
obtained, which describe model Cohen–Kelly networks. Therefore,
for every value of k, s.t. 0 < k < 2, there exist model Cohen–Kelly
networks that have the value of k.

The details of the proof are as follows.

1. Consider a Cohen–Kelly network. Then,

k = Cc

Co
=

2α

a − d
α

a − d/2
+ α

a − d
+ b − α

a − d

= 2

Z + 1 + a − d
a − d/2

= 2

Z + 3 − 2

2 − ρ

,

where ρ = d/a, with 0 < ρ < 1, and Z = b(a − d)/α − 1, with Z ≥ 0.
2. Consider the combinations of values of α, a, d, and b such that Z = 0.

Note that, with Z = 0, k is a continuous and strictly increasing function of
ρ with the domain 0 < ρ < 1 and the range 1 < k < 2. Therefore, for every
value of k, s.t. 1 < k < 2, the corresponding value of ρ is found, and then,
combinations of values of α, a, d, and b that satisfy ρ = d/a and Z = b(a −
d)/α − 1 = 0 can be obtained, which describe Cohen–Kelly networks that
are also reduced Cohen–Kelly networks. Thus, it is seen that, for every
value of k, s.t. 1 < k < 2, there exist Cohen–Kelly networks which have
that value of k. It is also seen that the worst-case value, 2, of the measure
k of coincident cost degradation due to adding Link 5 is asymptotically
reached in certain reduced Cohen–Kelly networks as ρ approaches 1.

3. Next, consider the case where a, d, and thus ρ are given. Recall that
0 < ρ < 1. Then, a value of Z , Zρ = ρ/(2 − ρ) > 0, gives that k = 1. Note
that k is continuous and strictly decreasing in Z with the domain Z ≥ Zρ

and the range 0 < k ≤ 1. It is seen that, given a, d, and thus ρ, for every
value of k, s.t. 0 < k ≤ 1, the corresponding value of Z ≥ Zρ is found, and
then, combinations of values of α and b that satisfy Z = b(a − d)/α − 1
can be obtained, which describe model Cohen–Kelly networks along with
the values of a and d given at the beginning of 3). Thus, it is seen that, for
every value of k, s.t. 0 < k ≤ 1, there exist Cohen–Kelly networks which
have that value of k. That is, k can be nearly equal to 0, and then κ = log2 k
can decrease without bound to −∞.

4. Combining 2) and 3) above, it is seen, therefore, that for any value of
k, s.t. 0 < k < 2, there exist Cohen–Kelly networks that have the value
of k. Furthermore, from 2), it is seen that the worst-case value, k = 2,
is asymptotically reached in certain reduced Cohen–Kelly networks as ρ

approaches 1. �	
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This result is complementary to the result (Roughgarden 2006b) which
shows that the degree of degradation can take on countably many values
increasing as the size of the network, in terms of the number of nodes,
increases. In our case, this result shows that, for a network of a fixed size, the
degradation can also take on a continuum of values up to its bound.

Remark 1 In the above proof, it is seen, in 3), that the degree of coincident
cost improvement can increase without bound (i.e., k 
 0) in some Cohen–
Kelly networks, with b ≥ α/(a − d) or Z ≥ 0, as b → ∞ with α, a, and d fixed.
On the other hand, in 2), in reduced Cohen–Kelly networks with τ = 0, the
ratio of the paradox (k) approaches 2 as ρ → 1, which means asymptotically
infinite link costs.

Define the degree κ = log2 k. Thus, k = 2κ . Then, adding link 5 leads to
the cost improvement of 2|κ| times if κ ≤ 0 (i.e., k ≤ 1), and leads to the cost
degradation of 2|κ| times if κ ≥ 0 (i.e., k ≥ 1). Thus, unlimited large values of
|κ| can be considered for κ < 0. That is, the cost improvement (−κ) occurs
without bounds.

The above result shows that −∞ < κ < 1 which is equivalent to 0 < k < 2.

Corollary 1 The degree of coincident cost improvement for all users by adding
connections to Wardrop systems can increase without bound. �	

4.2 Nash network

A situation in which a Nash equilibrium results on a network is as follows.
For each OD pair, there is one decision maker, or an atomic player, that
strives to minimize the cost for that OD pair. Before adding connections, each
decision maker has no choice since there is only one available path. After
adding connections, decision maker i chooses the proportion of its flow, di,
to forward to other nodes, i.e., the values of xij, so as to minimize its own cost.

We then have the following result.

Theorem 2 For any value of 0 < k < 1, there exists a Nash system which
achieves that value.

Proof Consider the following Nash network with n = 3 nodes, 1, 2, and 3:
packet arrival rates to origin nodes 1 and 2, respectively, are d1 = d2 = d > 0.
Before adding connections, there are l = 2 links 1 and 2, and links 1 and 2,
respectively, connect nodes 1 and 2 to node 3, the destination nodes. Denote
the delay (cost) of passing through link i by Di. which is defined as follows:

D1( f1) =
{

D, for 0 ≤ f1 ≤ d,

δ, for f1 > d,
(5)

D2( f2) = D (constant).
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Consider adding connections, that is, links 12 and 21, respectively, for
forwarding packets from nodes 1 to 2 and from nodes 2 to 1. Let the forwarding
costs, Gij (i �= j), which is the cost of forwarding a job from node i to node j,
be defined as follows:

G12 = G21 = 0.

(This system is topologically identical to the distributed systems [see Fig. 3 in
the next section] with the number of nodes being 2.) Furthermore, let 0 < δ <

D = �.
We can easily show the degree of cost improvement for this case is k = k1 =

k2, and any value of 0 < k < 1 is given by a suitable choice of δ and D.
D1, D2, G12, and G21 are nonincreasing. Then, clearly, x∗ = (x∗

11, x∗
12,

x∗
21, x∗

22) = (1, 0, 1, 0) is a Nash equilibrium after adding connections, and

C1(x∗) = δ, C2(x∗) = δ.

Note, however, that, before adding connections,

C1(x∗) = D, C2(x∗) = D,

Therefore, k1 = k2 = δ/D < 1, and both users 1 and 2 have coincident cost
improvements by adding connections, and the best-case degree can increase
without bound as δ/D → 0.

Thus, we have seen that there exist Nash networks that achieve any value of
the degree of coincident cost improvement for all users by adding connections
to the networks. �	

Corollary 2 There exist Nash systems for which the degree of coincident cost
improvement for all users increases without bound.

5 Distributed computing systems

This section discusses, in particular, models of distributed systems, like grids
(Foster and Kesselman 1998). Load balancing of jobs among nodes in distrib-
uted systems can be modeled as a routing in some specific networks (Kim and
Kameda 1990; Kameda et al. 1997a). It has been shown that the degree of the
Braess-like coincident cost degradation can increase without bound in Nash
equilibria (Kameda and Pourtallier 2002) on this type of network.

5.1 Assumptions

A network equivalent to a distributed system consists of n origins and one
destination, with each origin being connected to the destination through one
separate link, which is often called ‘node’. Routing in this network is equivalent
to load balancing in a distributed computer system (Tantawi and Towsley 1985;
Kim and Kameda 1990; Kameda et al. 1997a). Note that the load balancing
policies considered here are static in nature.
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Fig. 3 The model of a
distributed system
for n = 3

Node 1

Node 2 Node 3

d1

d2 d3

G31(x)

G31(x)

G32(x)

G21(x)

G23(x)

D1( f1)

D3( f3)D2( f2)

G12(x)

Since there is a single destination, we denote the total flow of OD pair
from source node i as di. Before adding connections, there is only one path
for each OD pair. Hence, initially, the network has only links from the origin
nodes to the destination, and looks like a star. After adding connections (see
Fig. 3), flow may be forwarded to other nodes. Let the flow from origin i to
node j be dixij. Then, xij is a fractional flow, so that 0 ≤ xij ≤ 1, i, j = 1, 2, . . . , n
and

∑
j=1...n xij = 1. Denote by x the vector (x11, x12, . . . , x1n, x21, x22, . . . , xnn),

i.e., the resulting strategy profile.
The resulting flow fi from node i to the destination, i = 1, 2, . . . , n, is

fi =
∑

j=1...n

d jx ji. (6)

Thus, given the entire strategy profile x, the cost Ci(x) for the flow associated
with OD pair i is the sum of the costs on the direct, original, paths to the
destination and the costs on the forwarding links. Note that the flow on the
direct links may come from multiple sources once forwarding links are added.
We have

Ci(x) =
∑

j=1...n

xijCij(x). (7)

where

Cii(x) = Di( fi), (8)

Cij(x) = D j( f j) + Gij(x), for j �= i. (9)

The above definitions come from the following. In distributed computing
systems, the delay experienced by a forwarded job can be further broken down
into its two contributions: the job processing time on the node at which it is
eventually processed, denoted Di, and the delay associated with the forwarding
of the job from node i to another node, j, Gij.

To reflect real distributed computer systems, we assume that the job process-
ing time on the node Di is increasing and convex in fi and that the delay
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associated with the forwarding of the job from node i to another node, j, Gij

is non-decreasing and convex in x.
(One origin and one destination networks are discussed by a number of

people (Orda et al. 1993; Koutsoupias and Papadimitriou 1999)).
It is further assumed that, for all i, j, k, i �= j �= k �= i,

Gij(x) < Gik(x) + Gkj(x). (10)

The above inequality implies that a job forwarded from a node is not for-
warded again to another node. That is, we consider distributed systems in
which every two nodes are directly connected (Tantawi and Towsley 1985;
Kameda et al. 1997a). For example, a distributed system in which each node is
connected to an Ethernet LAN satisfies the condition (10).

5.2 Wardrop equilibrium in distributed systems

We consider an individual optimization scheme for the systems of this cate-
gory. Each infinitesimal (nonatomic) user optimizes its own costs by choosing
its path to the destination. The situation where each such user minimizes
its costs, given the decisions of other users, is a Wardrop equilibrium or
a Wardrop system. As stated previously, in Wardrop equilibrium, all used
paths between an OD pair have equal cost, and this holds for every OD pair
simultaneously.

The following result shows that there exists no paradox on distributed
computing networks at Wardrop equilibrium.

Theorem 3 The costs of all users neither degrade nor improve coincidently by
adding connections to any Wardrop distributed computing system.

Proof The proof makes use of a decomposition of nodes similar to that
of Kameda et al. (Zhang et al. 1992; Tantawi and Towsley 1985; Kameda
et al. 1997a). After adding connections to the distributed computing Wardrop
system, nodes are one of the following types:

1. idle (Rd): The node forwards jobs and does not process any jobs. That is,
fi = 0.

2. active (Ra): The node forwards jobs and does not receive any jobs. But,
the node processes a part of the jobs that originate at that node. That is,
di > fi > 0.

3. neutral (N): The node processes jobs locally without forwarding or receiv-
ing jobs. That is, di = fi.

4. sink (S): The node receives jobs from other nodes but does not forward
any jobs. That is, fi > di.

There does not exist such a node that both sends and receives jobs. Indeed,
suppose that the converse is true, and there exists a node i that forwards jobs
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to node j and also receives jobs from node k. Then, it must hold that the node
processing costs satisfy:

Di( fi) ≥ D j( f j) + Gij(x), (11)

Dk( fk) ≥ Di( fi) + Gki(x) = Cki. (12)

Then, from Eq. (10), we have that Cki = Di( fi)+Gki(x)≥ D j( f j)+Gij(x)+
Gki(x) > D j(x j) + Gkj(x) = Ckj. That is, Cki > Ckj. So, xki = 0, and node i does
not receive jobs from node k, hence a contradiction.

Now, denote by Co
i and Cc

i , respectively, the cost for origin i before and after
adding connections to the network. Recall that Di is non-decreasing for all i.
We have two cases to consider: coincident cost degradation, and coincident
cost improvement.

1. (Cost degradation) Assume that adding connections to a system in ques-
tion brings about coincident cost degradation to all OD pairs.
Suppose that there exists an idle or active node i after adding connections,
then Co

i = Di(di) ≥ Di( fi) = Cc
i . That is, OD pair i suffers no cost degra-

dation. Thus, we see that there can exist neither idle nor active nodes.
Then, since there exist neither idle nor active nodes, there must exist no
sink node, but only neutral nodes. That is, no coincident cost degradation
occurs for any OD pair from adding connections to the distributed com-
puting system in Wardrop equilibrium.

2. (Cost Improvement) Assume now that adding connections to a network in
question brings about coincident cost improvement to all OD pairs.
Suppose that there exists a sink node i, then Co

i = Di(di) ≤ Di( fi) = Cc
i ,

which implies no cost improvement for OD pair i. Thus, there exists no
sink node.
Then, since there exists no sink node after adding connections, then there
must exist neither idle node nor active node, but again, only neutral nodes.
That is, no coincident cost improvement occurs for any OD pair from
adding connections to the distributed computing network in Wardrop
equilibrium. �	

5.3 Nash equilibrium in distributed systems

A situation in which a Nash equilibrium results on a distributed systems is as
follows. There are n origin nodes with a single destination. One origin node
and the destination node compose an OD pair. For each OD pair, there is one
decision maker, or an atomic player, that strives to minimize the cost for that
OD pair. Before adding connections, each decision maker has no choice since
there is only one available path. After adding connections, decision maker
i chooses the proportion of its flow, di, to forward to other nodes, i.e., the
values of xij, so as to minimize its own cost. As is already shown (Kameda
and Pourtallier 2002), if the system strives to keep in Nash equilibrium, there
exist a homogeneous system (as described in details by the next subsection)
with any size of degree of the paradox by adding connections the system. Due
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to the difficulty of solving Nash equilibria, there has not been obtained any
further simple results on this model.

5.4 Coincident cost improvement in homogeneous distributed
computing systems

Let us now consider a homogeneous distributed computing network of n origin
nodes with a single destination. Each node has d units flow it wishes to process.
Recall the notation given in Section 5.1. As before, xij denotes the flow sent
from origin i to node j, and when i = j, then the flow is sent from node i, to
the destination, i.e., processed on node i. The cost on a link from node i to
the single destination is Di, but since the network is homogeneous, Di = D j =
D for all nodes i, j. The forwarding costs, Gij, will be referred to as before
as G (> 0).

It has been shown that, for homogeneous distributed computing systems,
the degree of coincident cost degradation by adding connections can increase
without bound in Nash equilibria (Kameda and Pourtallier 2002), as noted in
the previous subsection. That is, for any value of k > 1, there exists a homoge-
neous Nash distributed computing system that has that value of degradation.
However, we show next that under any static load balancing policy adding
connections to homogeneous Nash distributed computing systems can bring
no coincident cost improvement for all users.

Theorem 4 No static load balancing policy in homogeneous distributed systems
can bring about coincident cost, or mean response time, improvement for all
users by adding connections.

Proof Note first that cost experienced by each node i before adding con-
nections is equal to Ci = D(d). Now, assume on the contrary that there is
forwarding of flows and that the resulting strategy profile is given by x ≥ 0.
Then, since the forwarding of jobs may cause non-zero communication costs,
from Eq. (7), we have the cost of each OD pair k for all k as

Ck(x) ≥ xk1 D( f1) + xk2 D( f2) + · · · + xkn D( fn). (13)

Then, by summing up Eq. (13) for all k, we have

n∑
k=1

dCk(x) ≥
n∑

k=1

fk D( fk). (14)

If we show

D(d) ≤
n∑

k=1

fk

nd
D( fk), (15)
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then, from Eq. (14), we have
n∑

k=1

Ck(x) ≥ nD(d). (16)

Then, it cannot hold that Ck(x) < D(d) for all k coincidently, which means that
it cannot hold that after adding connections all users enjoy cost (mean response
time) improvement coincidently.

We shall show Eq. (15) as follows.

Let us now denote αk = fk

nd
. Note that we have the following properties of

the αk: 0≤ αk ≤ 1, k = 1 . . . n, and
∑

k=1...n

αk = 1, since
∑

k=1...n

fk = nd. Therefore,

rewriting the inequality, we must prove that

D(d) ≤
n∑

k=1

αk D( fk).

Observe that
n∑

k=1

αk fk =
n∑

k=1

fk

nd
fk =

n∑
k=1

f 2
k

nd
is strictly convex and quadratic

in fk and takes its minimum at f ∗
i = f ∗

j , for all i, j = 1 . . . n. Thus, at the
minimum, since f ∗

i = f ∗
j = f ∗ and

∑n
k=1 f ∗ = nf ∗ = nd, we have that f ∗

k = d.

So α∗
k f ∗

k = d/n for all k = 1 . . . n. Thus, we can bound the sum,
n∑

k=1

αk fk, by the

value d, i.e.,

d ≤
n∑

k=1

αk fk.

Then, since D(·) is non-decreasing and convex, we have that

D(d) ≤ D

(
n∑

k=1

αk fk

)
≤

n∑
k=1

αk D( fk),

which proves Eq. (15) and, thus, our result.

Remark 2 From the above, we see that under any static load balancing policy,
not only noncooperatively but also cooperatively, it is impossible that all users
benefit coincidently from adding connections to homogeneous distributed
computing systems. �	

6 Concluding remarks

The present paper has examined Wardrop and Nash systems. Recall that we
have considered systems with fixed numbers of nodes. The results imply the
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following: For Wardrop systems, the degree of coincident cost improvement
may increase without bound by adding connections in spite of the fact that
no Wardrop system has been found for which the degree of coincident cost
degradation can increase without bound. On the other hand, for Nash systems,
the degrees of both coincident cost improvement and degradation can increase
without bound.

In particular, we have seen that in Wardrop systems representing heteroge-
neous distributed computing systems, there is neither cost improvement nor
cost degradation coincidently for all users by the addition of connections. On
the other hand, while it has already been shown that Nash systems representing
homogeneous distributed computing systems may experience cost degradation
for all users when adding connections, we show here that homogeneous
distributed systems, under any load balancing policies including cooperative
and noncooperative ones, cannot experience cost improvement for all users
coincidently by adding connections.
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