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Abstract We consider several equilibrium formulations for the problem of
managing spatially distributed auction markets of a homogeneous commod-
ity, which are joined by transmission lines in a network. At each market,
traders and buyers are determined by their price functions and choose their
offer/bid values. We present equivalent variational inequality, optimization,
and saddle point formulations of this problem. The corresponding models
possess a special structure of constraint and cost functions and lead to different
decomposition schemes. We propose proximal and splitting type methods and
discuss their properties and preliminary computational results.

Keywords Spatial auction markets · Variational inequalities ·
Decomposition methods · Proximal method · Alternating direction method

1 Introduction

Spatial equilibrium problems are usually utilized for describing complex sys-
tems when the distributed spatial location of their elements must be taken
into account. In particular, these problems appeared to be very suitable for
modeling various complex competitive economic systems; see e.g. Harker
(1985), Nagurney (1999) and references therein. Rather recently, the necessity
to make essential transformations in energy sectors discovered many new
challenges; see e.g. Ilic et al. (1998), Zaccour (1998), Alanne and Saari (2006).
For this reason, new kinds of spatial models devised to overcome difficulties
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related to deregulating and restructuring energy sectors have received con-
siderable attention; see e.g. Wei and Smeers (1999), Metzler et al. (2003),
Nagurney and Matsypura (2006) and references therein. Since most parts
of the energy sector are attributed to natural monopolies, perfect compe-
tition seems a strong assumption there and most models are based upon
imperfect competition assumptions, hence, represent non-cooperative game
problems. As a result, these models are formulated as Nash–Cournot non-
cooperative games, variational inequalities, or optimization problems with
equilibrium constraints. They appeared suitable for the situation where any
explicit regulation of the energy market can be neglected. At the same time,
the situation where a state permits mass privatization in the energy sector, but
keeps certain tools for influence in this field, deserves a separate consideration.
Usually, the auction market mechanisms are utilized in this case; see e.g.
Anderson and Philpott (2002), Beraldi et al. (2004) and references therein.
Note that the general auction models are mainly formulated as non-
cooperative game problems; see e.g. Weber (1985). Hence, rather complex be-
havior of separate markets (participants) and the presence of network capacity
and balance constraints may again lead to very complicated mathematical
problems such as global optimization problems with equilibrium constraints
or mixed integer programming problems, which have usually a great number
of variables.

In this paper, we develop the approach to modeling auction markets, which
was proposed in Konnov (2006, 2007a, b), where variational inequality models
of separate auction markets with general price functions were described, i.e.
these models allow for rather complex behavior of traders and buyers. The first
goal of the paper is to suggest rather simple variational inequality problems
for modeling a system of spatially distributed auction markets joined by trans-
mission lines in a network subject to joint capacity and balance constraints,
with taking the account behavior of participants within each auction market.
Clearly, this task is essentially more complicated in comparison with that of a
separate auction market. The second goal of the paper is to develop efficient
methods for investigation and solution of spatial auction market problems via
the presented variational inequality models.

In this paper, we propose several equivalent formulations of the above
problem, some of them involving algorithmically defined mappings. Being
based on these properties, we propose iterative solution methods, which reflect
decomposition schemes adjusted essentially to peculiarities of the structure of
the problem and to possible large dimensionality. We illustrate work of the
methods by computational results.

2 Single auctions of a homogeneous commodity

We first investigate properties of a single auction market of a homogeneous
commodity. Denote by I and J the index sets of traders and buyers at this
auction. For each i ∈ I, the i-th trader chooses some offer value xi in his
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capacity segment [0, αi] and has a price function gi(xi). Similarly, for each j ∈ J,
the j-th buyer chooses some bid value y j in his capacity segment [0, β j] and
has a price function h j(x j). Therefore, the prices of participants may depend
on offer/bid values. Denote by u the value of external excess demand for this
market. That is, u reflects the excess demand of external economic agents who
do not participate explicitly in the auction process, but agree with its price.
Then we can define the feasible set of offer/bid values

D =
{

(x, y)

∑
i∈I

xi − ∑
j∈J

y j − u = 0;
xi ∈ [0, αi], i ∈ I, y j ∈ [0, β j], j ∈ J

}
,

where x = (xi)i∈I, y = (y j) j∈J . The solution of the auction problem consists in
finding a feasible volume vector (x∗, y∗) ∈ D and a number p∗ such that

gi(x∗
i )

⎧⎨
⎩

≥ p∗ if x∗
i = 0,

= p∗ if x∗
i ∈ (0, αi),

≤ p∗ if x∗
i = αi,

i ∈ I, (1)

and

h j(y∗
j)

⎧⎨
⎩

≤ p∗ if y∗
j = 0,

= p∗ if y∗
j ∈ (0, β j),

≥ p∗ if y∗
j = β j,

j ∈ J; (2)

where p∗ is the auction clearing price. That is, zero offer (bid) values cor-
respond to traders (buyers) whose prices are greater (less) than the auction
price, and the maximal offer (bid) values correspond to traders (buyers) whose
prices are less (greater) than the auction price. The prices of other participants
are equal to the auction price and their values may be arbitrary within their
capacity bounds, but should be subordinated to the balance equation.

In Konnov (2006) (see also Konnov 2007a, b), the following strong relation
between the above auction market problem and a variational inequality was
established.

Proposition 1

(a) If (x∗, y∗, p∗) satisfies Eqs. (1) and (2) and (x∗, y∗) ∈ D, then (x∗, y∗)
solves the variational inequality: Find (x∗, y∗) ∈ D such that∑

i∈I

gi
(
x∗

i

) (
xi − x∗

i

)−
∑
j∈J

h j
(
y∗

j

)(
y j − y∗

j

) ≥ 0 ∀(x, y) ∈ D. (3)

(b) If a pair (x∗, y∗) solves the problem in Eq. (3), then there exists p∗ such
that (x∗, y∗, p∗) satisfies Eqs. (1) and (2).

Moreover, it was also noticed that the set of possible auction prices p∗ in
Eqs. (1) and (2) coincides with the set of Lagrange multipliers corresponding
to the balance constraint ∑

i∈I

xi −
∑
j∈J

y j − u = 0.
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Thus, we can associate to each value of u the set of the corresponding auction
prices, denoted by P(u). Clearly, P(u) need not be a singleton in general and
we thus obtain the multivalued inverse excess supply mapping for the auction
market since u is also the excess supply from the market. In order to obtain
additional properties of this mapping, we utilize monotonicity properties of
the functions gi and −h j, which seem rather natural. In fact, from Eq. (1)
we conclude that if the i-th trader announces a price gi = gi(xi) and an offer
xi, then he agrees to sell any smaller volume with the same price, hence any
smaller volume is not associated with a greater price, and the function gi is
monotone. Similarly, it follows from Eq. (2) that if the j-th buyer announces a
price h j = h j(y j) and a bid y j, then he agrees to purchase any smaller volume
with the same price, hence any smaller volume is not associated with a smaller
price, and the function −h j is monotone.

For this reason we can suppose that all the functions gi, i ∈ I and −h j, j ∈ J
are continuous and monotone. Then we can define convex differentiable func-
tions μi : [0, αi] → R, i ∈ I and concave differentiable functions η j : [0, β j] →
R, j ∈ J such that

μ′
i(xi) = gi(xi) and η′

j(y j) = h j(y j). (4)

Therefore, the variational inequality in Eq. (3) is replaced with the convex
optimization problem:

minimize
∑
i∈I

μi(xi) −
∑
j∈J

η j(y j)

subject to (x, y) ∈ D. (5)

Since the cost function in Eq. (5) is nothing but the difference between the
sold and paid amounts within the market, which can be treated as the negative
profit of the auction manager, the problem in Eq. (5) maximizes this profit
subject to the balance and participants’ capacity constraints.

Proposition 2 If Eq. (4) holds, then under the above assumptions Eqs. (3) and
(5) are equivalent.

It also follows that P(u) is nothing but the solution set of the dual optimiza-
tion problem of Eq. (5) and we can utilize the usual perturbation analysis. Let
us define the perturbation function ϕ(u), which determines the optimal value
in Eq. (5) dependent of the perturbation u. Then (see e.g. Sukharev et al. 1986,
Chapter 6 and Minoux 1989, Chapter 6) ϕ is a convex function, u 	→ P(u) is a
maximal monotone mapping, and P(u) is the subdifferential of ϕ at u.

This result allows us to determine the inverse mapping U(p) = P−1(u), i.e.

U(p) = {u | p ∈ P(u)} .

It is also the subdifferential mapping of the function ψ(p) = ϕ∗(p), which
is conjugate for ϕ (see e.g. Aubin 1984, Corollary 4.1). Observe that the
computation of values of U(p) is easier in comparison with P(u). In fact, given
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a number p∗ = p, we should find offer/bid values x∗
i and y∗

j separately from
Eqs. (1), (2) and after set

U(p) =
∑
i∈I

x∗
i −

∑
j∈J

y∗
j .

Clearly, p 	→ U(p) is the excess supply mapping of the market and it is multi-
valued in general since Eqs. (1) and (2) admit many solutions. These properties
of the mappings P and U can be used in creating more general spatial auction
market models.

3 Spatial equilibrium models

Let us consider the model of n spatially distributed markets of a homogeneous
commodity, which are joined by two-directional links in a network. For each
k-th auction market, we denote by Ik and Jk the index sets of traders and
buyers, respectively. Also, each i-th trader chooses his offer value xi ∈ [0, αi]
and has a price function gi(xi), i ∈ Ik. Similarly, each j-th buyer chooses his
bid value y j ∈ [0, β j] and has a price function h j(y j), j ∈ Jk. Let uk denotes the
value of the external excess demand and simultaneously the internal excess
supply for the k-th market, then we can define the feasible offer/bid volume
set for this market:

D(k)(uk) =
{(

x(k), y(k)

) ∑
i∈Ik

xi − ∑
j∈Jk

y j − uk = 0,

xi ∈ [0, αi], i ∈ Ik; y j ∈ [0, β j], j ∈ Jk

}
,

where x(k) = (xi)i∈Ik , y(k) = (y j) j∈Jk . Given a value uk, the solution of the k-
th auction problem consists in finding a feasible pair of vectors (x∗

(k)
, y∗

(k)
) ∈

D(k)(uk) and a number p∗
k such that

gi(x∗
i )

⎧⎨
⎩

≥ p∗
k if x∗

i = 0,

= p∗
k if x∗

i ∈ (0, αi),

≤ p∗
k if x∗

i = αi,

i ∈ Ik; (6)

and

h j(y∗
j)

⎧⎨
⎩

≤ p∗
k if y∗

j = 0,

= p∗
k if y∗

j ∈ (0, β j),

≥ p∗
k if y∗

j = β j,

j ∈ Jk; (7)

where p∗
k is the auction clearing price. This problem was investigated in the

previous section. In what follows, we will utilize the following assumption on
the price functions.

(A1) The functions gi, i ∈ Ik and −h j, j ∈ Jk, k = 1, . . . , n are monotone and
continuous.

From (A1) we in particular obtain that there exist convex continuously differ-
entiable functions μi : [0, αi] → R, i ∈ Ik and η j : [0, β j] → R, j ∈ Jk such that
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Eq. (4) holds for k = 1, . . . , n. Now, combining Propositions 1 and 2, we obtain
the same equivalence result.

Proposition 3 Let assumption (A1) hold.

(a) If (x∗
(k)

, y∗
(k)

, p∗
k) satisfies Eqs. (6) and (7) and (x∗

(k)
, y∗

(k)
) ∈ D(k)(uk), then

(x∗
(k)

, y∗
(k)

) solves the variational inequality∑
i∈Ik

gi
(
x∗

i

) (
xi − x∗

i

)−
∑
j∈Jk

h j
(
y∗

j

)(
y j − y∗

j

) ≥ 0 ∀(x(k), y(k)) ∈ D(k)(uk)

(8)

and the equivalent convex optimization problem:

minimize
∑
i∈Ik

μi(xi) −
∑
j∈Jk

η j(y j)

subject to (x(k), y(k)) ∈ D(k)(uk). (9)

(b) If (x∗
(k)

, y∗
(k)

) solves the problem in Eq. (8) (or Eq. (9)), then there exists p∗
k

such that (x∗
(k)

, y∗
(k)

, p∗
k) satisfies Eqs. (6) and (7).

Moreover, if we denote by ϕk(u∗
k) the optimal value in Eq. (9), then the

function ϕk is convex and its subdifferential at uk coincides with the set of all
the auction clearing prices Pk(uk) obtained from Eqs. (6) and (7), i.e.,

∂ϕk(uk) = Pk(uk),

hence the mapping uk 	→ Pk(uk) is maximal monotone.
We now turn to writing general equilibrium conditions for the network of

auction markets. Denote by A the set of all the links (arcs) joining the markets.
Let fa denote the commodity flow along arc a = (k, l) and let [γ ′

a, γ
′′
a ] be the

segment of feasible flows, where γ ′
a ≤ 0, γ ′′

a ≥ 0 and the negative value of fa

indicates the reverse direction of the flow. For a given node k, we denote by
A+

k and A−
k the sets of incoming and outgoing arcs at k. Next ca( fa) denotes

the cost of shipment of one unit of commodity along arc a ∈ A. By using the
mappings Pk we can write the usual spatial equilibrium conditions as follows:
Find u∗ ∈ R

n, f ∗ ∈ F such that

∃p∗
k ∈ Pk(u∗

k), k = 1, . . . , n;(
ca
(

f ∗
a

)+ p∗
k − p∗

l

) (
fa − f ∗

a

) ≥ 0 ∀ fa ∈ [γ ′
a, γ

′′
a

]
, a ∈ A;∑

a∈A−
k

f ∗
a −

∑
a∈A+

k

f ∗
a − u∗

k = 0; (10)

where u∗ = (u∗
1, . . . , u∗

n), f ∗ = ( f ∗
a )a∈A, F = ∏

a∈A
[γ ′

a, γ
′′
a ]; see e.g. Harker (1985),

Nagurney (1999), and Konnov (2007b). These relations reflect the absence of
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profit from shipment of commodity between each pair of nodes and the flow
balance at each node. The above problem can be also converted in the usual
variational inequality format.

Proposition 4 The problem in Eq. (10) is equivalent to the variational inequal-
ity: Find ( f ∗, u∗) ∈ V and p∗

k ∈ Pk(u∗
k), k = 1, . . . , n such that

∑
a∈A

ca( f ∗
a )
(

fa − f ∗
a

)+
n∑

k=1

p∗
k

(
uk − u∗

k

) ≥ 0 ∀( f, u) ∈ V, (11)

where

V =
⎧⎨
⎩( f, u) ∈ F × R

n
∑

a∈A−
k

fa −
∑

a∈A+
k

fa − uk = 0, k = 1, . . . , n

⎫⎬
⎭ .

Proof Writing the necessary and sufficient optimality conditions for Eq. (11)
(see e.g. Konnov 2007b, Proposition 11.7), we obtain(

ca
(

f ∗
a

)+ λk − λl
) (

fa − f ∗
a

) ≥ 0 ∀ fa ∈ [γ ′
a, γ

′′
a

]
, a = (k, l) ∈ A;

p∗
k − λk = 0, p∗

k ∈ Pk
(
u∗

k

)
, k = 1, . . . , n;∑

a∈A−
k

f ∗
a −

∑
a∈A+

k

f ∗
a − u∗

k = 0, k = 1, . . . , n;

for f ∗ ∈ F, u∗ ∈ R
n and some numbers λk, k = 1, . . . , n. But these relations are

equivalent to Eq. (10), as desired. ��

We introduce the following natural assumptions on transmission costs.

(A2) The functions ca, a ∈ A are monotone and continuous.

Then there exist convex continuously differentiable functions σa : [γ ′
a, γ

′′
a ] →

R, a ∈ A such that

σ ′
a( fa) = ca( fa),

and Eq. (11) becomes a variational inequality problem with monotone inte-
grable mappings. Therefore (see e.g. Sukharev et al. 1986, and Minoux 1989),
Eq. (11) is equivalent to a convex nondifferentiable optimization problem, as
the following proposition states.

Proposition 5 Let assumptions (A1) and (A2) hold. Then Eq. (11) is equivalent
to the optimization problem:

minimize
∑
a∈A

σa( fa) +
n∑

k=1

ϕk(uk)

subject to ( f, u) ∈ V. (12)
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It follows that we can apply the well known convex nonsmooth optimization
methods (see e.g. Shor 1979 and Kiwiel 1985) in order to find a solution of the
spatial auction market problem above. The corresponding iterative subgradi-
ent schemes for Eq. (12) can be viewed as certain two-level decomposition
methods (see e.g. Shor 1979 and Minoux 1989) where network flows are upper
level variables, offer/bid volumes are lower level variables, and excess supplies
are interface variables.

Equation (10) represents the so-called quantity formulation of the spatial
equilibrium problem. By using the excess supply mapping Uk(pk) we can write
the so-called price formulation: Find vectors p∗ ∈ R, f ∗ ∈ F such that

∃u∗
k ∈ Uk

(
p∗

k

)
, k = 1, . . . , n;(

ca
(

f ∗
a

)+ p∗
k − p∗

l

) (
fa − f ∗

a

) ≥ 0 ∀ fa ∈ [ f ′
a, f ′′

a

]
, a ∈ A;∑

a∈A−
k

f ∗
a −

∑
a∈A+

k

f ∗
a − u∗

k = 0, k = 1, . . . , n; (13)

where p∗ = (p∗
1, . . . , p∗

n). Since

Uk(pk) = P−1
k (uk),

we have the equivalence result.

Proposition 6 Equations (10) and (13) are equivalent.

However, taking into account the result of Section 2 and assumptions (A1)
and (A2), we can reduce Eq. (13) to a saddle point problem. In fact, let us
consider the bifunction

M( f, p) =
∑
a∈A

σa( fa) +
n∑

k=1

pk

⎛
⎝∑

a∈A−
k

fa −
∑

a∈A+
k

fa

⎞
⎠−

n∑
k=1

ψk(pk), (14)

where Uk(pk) = ∂ψk(pk), i.e. ψk(pk) = ϕ∗
k(pk). Clearly, under (A1) and (A2),

the function M is convex in f and concave in p. Next, we can consider the
saddle point problem: Find ( f ∗, p∗) ∈ F × R

n such that

M
(

f ∗, p
) ≤ M

(
f ∗, p∗) ≤ M

(
f, p∗) ∀ f ∈ F, ∀p ∈ R

n; (15)

when Eq. (13) gives the necessary and sufficient optimality conditions for this
problem.

Proposition 7 Let assumptions (A1) and (A2) hold. Then Eqs. (13) and (14)–
(15) are equivalent.

Therefore, the price formulation leads to the convex–concave nonsmooth
saddle point problem, which can be also solved with certain iterative methods;
see e.g. Shor (1979) and Minoux (1989). Again we then obtain two-level
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decomposition schemes where prices serve as interface variables between
levels.

However, both the formulations yield nonsmoothness and high dimension-
ality due to the presence of network flow variables, which can cause certain
difficulties in creating rapidly convergent iterative sequences. For this reason,
decomposition schemes without nonsmooth functions would have certain
advantages.

4 Constrained spatial auction market problem

In order to construct a general spatial auction market model, we collect
optimality conditions from both the network and market levels. Set x =
(xi)i∈Ik,k=1,...,n; y = (y j) j∈Jk,k=1,...,n;

X =
n∏

k=1

∏
i∈Ik

[0, αi] and Y =
n∏

k=1

∏
j∈Jk

[0, β j].

The problem is to find a collection (x∗, y∗, f ∗, p∗, u∗) ∈ X × Y × F × R
n × R

n

such that Eqs. (6) and (7) hold true for k = 1, . . . , n, and also

∑
i∈Ik

x∗
i −

∑
j∈Jk

y∗
j − u∗

k = 0 for k = 1, . . . , n; (16)

∑
a∈A−

k

f ∗
a −

∑
a∈A+

k

f ∗
a − u∗

k = 0 for k = 1, . . . , n; (17)

ca
(

f ∗
a

)+ p∗
k − p∗

l

⎧⎪⎪⎨
⎪⎪⎩

≥ 0 if f ∗
a = γ ′

a,

= 0 if f ∗
a ∈ (γ ′

a, γ
′′
a

)
,

≤ 0 if f ∗
a = γ ′′

a ,

a = (k, l) ∈ A; (18)

(cf. Eqs. (10), (13)). Comparing all the formulations, we obtain the common
equivalence result.

Proposition 8 The problem of finding (x∗, y∗, f ∗, p∗, u∗) satisfying Eqs. (16),
(17) and (18) and Eqs. (6) and (7) for k = 1, . . . , n, is equivalent to Eq. (10)
and also to Eq. (13).

Observe that Eq. (17) implies the total material balance equation

n∑
k=1

u∗
k =

n∑
k=1

⎡
⎣∑

a∈A−
k

f ∗
a −

∑
a∈A+

k

f ∗
a

⎤
⎦ = 0,
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which can be in principle added to Eqs. (16), (17) and (18). We now intend to
present a simpler formulation of spatial auction problems. Set

W =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(x, y, f )
∈ X × Y × F

( ∑
a∈A−

k

fa − ∑
a∈A+

k

fa

)

−
(∑

i∈Ik

xi − ∑
j∈Jk

y j

)
= 0, k = 1, . . . , n

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

and consider the problem of finding a triplet (x∗, y∗, f ∗) ∈ W such that

n∑
k=1

⎡
⎣∑

i∈Ik

gi
(
x∗

i

) (
xi − x∗

i

)−
∑
j∈Jk

h j
(
y∗

i

) (
y j − y∗

j

)⎤⎦
+
∑
a∈A

ca
(

f ∗
a

) (
fa − f ∗

a

) ≥ 0 ∀(x, y, f ) ∈ W. (19)

Theorem 1

(a) If (x∗, y∗, f ∗) solves Eq. (19), there exist numbers p∗
k and u∗

k, k = 1, . . . , n
such that (x∗, y∗, f ∗, p∗, u∗) satisfies Eqs. (16), (17) and (18) and Eqs. (6)
and (7) for k = 1, . . . , n.

(b) If (x∗, y∗, f ∗, p∗, u∗) satisfies Eqs. (16), (17) and (18) and Eqs. (6) and (7)
for k = 1, . . . , n, then (x∗, y∗, f ∗) is a solution of Eq. (19).

Proof First of all we write the Karush–Kuhn–Tucker optimality conditions for
Eq. (19) (see e.g. Konnov 2007b, Proposition 11.7):

(x∗, y∗, f ∗, p∗) ∈ X × Y × F × R
n,

n∑
k=1

⎡
⎣∑

i∈Ik

gi
(
x∗

i

)
(xi − x∗

i ) −
∑
j∈Jk

h j
(
y∗

i

) (
y j − y∗

j

)⎤⎦

+
∑
a∈A

ca
(

f ∗
a

) (
fa − f ∗

a

)+
n∑

k=1

p∗
k

⎡
⎣∑

a∈A−
k

(
fa − f ∗

a

)− ∑
a∈A+

k

(
fa − f ∗

a

)

−
∑
i∈Ik

(
xi − x∗

i

)+∑
j∈Jk

(
y j − y∗

j

)⎤⎦≥0

∀(x, y, f ) ∈ X × Y × F; (20)

and ⎛
⎝∑

a∈A−
k

f ∗
a −

∑
a∈A+

k

f ∗
a

⎞
⎠−

⎛
⎝∑

i∈Ik

x∗
i −

∑
j∈Jk

y∗
i

⎞
⎠ = 0, k = 1, . . . , n. (21)
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That is, if (x∗, y∗, f ∗) solves Eq. (19), then there exists p∗ ∈ R
n such that

Eqs. (20) and (21) hold true. Conversely, if (x∗, y∗, f ∗, p∗) satisfies Eqs. (20)
and (21), then (x∗, y∗, f ∗) is a solution of Eq. (19). Thus, we should show the
equivalence between Eqs. (6) and (7), (16) and (18) and (20) and (21). Note
that Eq. (20) can be replaced with the following system of partial variational
inequalities:(

gi(x∗
i ) − p∗

k

) (
xi − x∗

i

) ≥ 0 ∀xi ∈ [0, αi], i ∈ Ik, k = 1, . . . , n;(
p∗

k − h j(y∗
j)
) (

y j − y∗
j

)
≥ 0 ∀y j ∈ [0, β j], j ∈ Jk, k = 1, . . . , n;(

ca( f ∗
a ) + p∗

k − p∗
l

) (
fa − f ∗

a

) ≥ 0 ∀ fa ∈ [γ ′
a, γ

′′
a

]
, ∀a = (k, l) ∈ A. (22)

However, Eq. (22) is equivalent to Eqs. (6) and (7) for k = 1, . . . , n and
Eq. (18). Next, Eqs. (16) and (17) clearly give Eq. (21), whereas Eq. (21) allows
us to find u∗

k, k = 1, . . . , n from Eqs. (16) and (17) then must hold. The proof is
complete. ��

So, we can solve the variational inequality of Eq. (19) instead of the
system Eqs. (6) and (7), (16), (17) and (18). Again, the numbers p∗

k here
are precisely the Lagrange multiplies of the balance constraints in Eq. (21).
Under assumptions (A1) and (A2) we can derive the equivalence to the convex
optimization problem:

minimize
n∑

k=1

⎡
⎣∑

i∈Ik

μi(xi) −
∑
j∈Jk

η j(y j)

⎤
⎦+

∑
a∈A

σa( fa)

subject to (x, y, f ) ∈ W, (23)

where μi : [0, αi] → R, i ∈ Ik, −η j : [0, β j] → R, j ∈ Jk, k = 1, . . . , n, and σa :
[γ ′

a, γ
′′
a ] → R, a ∈ A, are convex differentiable functions such that

μ′
i(xi) = gi(xi), η

′
j(y j) = h j(y j), σ

′
a( fa) = ca( fa); (24)

since Eq. (19) then represents the necessary and sufficient optimality condi-
tions for the problem in Eq. (23).

Proposition 9 Suppose that assumptions (A1) and (A2) hold. Then Eqs. (19)
and (23) are equivalent, where the functions μi, η j, and σa are defined in Eq. (24).

Observe that Eq. (23) maximizes the profit of the manager of the spatially
distributed auction market system subject to the material balance and capacity
constraints, with taking into account the transmission costs (cf. Eq. (5)).

Remark 1 We chose the network with two-directional edges as one of possible
presentations of the spatial problems, which is more suitable for implemen-
tation in solution methods. Of course, all the above results remain true for
some other representations, say, for graphs with one-directional arcs, where
one edge is replaced by two arcs.
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5 Dual decomposition methods

In the previous section we showed that the general spatial auction market
problem is reduced to the variational inequality of Eq. (19) or to the convex
optimization problem of Eq. (23). Therefore, we can in principle utilize a great
number of the corresponding iterative methods (see e.g. Facchinei and Pang
2003; Konnov 2007b; Minoux 1989; Polyak 1983; and Sukharev et al. 1986)
to find a solution. However, the problem has a decomposable structure and we
are interested in applying methods which can take into account this peculiarity.
More precisely, the dual type methods seem rather efficient since they allow us
to find explicitly the auction clearing prices as well. One of the most known is
the Uzawa method (Arrow et al. 1958), Chapter 10, which can be treated as
the subgradient ascent method for the dual problem:

maximize �(p)

subject to p ∈ R
n, (25)

where

�(p) = min
(x,y, f )∈X×Y×F

⎧⎨
⎩

n∑
k=1

⎛
⎝∑

i∈Ik

μi(xi) −
∑
j∈Jk

η j(y j)

⎞
⎠

+
∑
a∈A

σa( fa) +
n∑

k=1

pk

⎛
⎝∑

a∈A−
k

fa −
∑

a∈A+
k

fa

⎞
⎠

−
⎛
⎝∑

i∈Ik

xi −
∑
j∈Jk

y j

⎞
⎠
⎫⎬
⎭ . (26)

Finding a solution in Eq. (26) is very simple since it decomposes into a number
of one-dimensional optimization problems. However, the function � may
be nonsmooth if the functions μi, −η j, and σa are non strictly convex. The
well-known way to overcome this drawback consists in replacing the usual
Lagrangian in Eq. (26) with an extended one. Then an analogue of Eq. (25)
becomes a smooth optimization problem, but the decomposable structure is
destroyed and the inner problem is not decomposed into one-dimensional
ones; see e.g. Polyak (1983) and Minoux (1989).

For this reason, the combination of the proximal point method (Martinet
1970; Rockafellar 1976) and the dual Uzawa type method seems rather suit-
able. In fact, the proximal point method replaces the initial problem in Eq. (23)
by a sequence of regularized problems, so that, at the s-th iteration, we solve
the dual regularized problem

maximize �s(p)

subject to p ∈ R
n, (27)
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where

�s(p) = min
(x,y, f )∈X×Y×F

⎧⎨
⎩

n∑
k=1

⎡
⎣∑

i∈Ik

(
μi(xi) + 0.5λs

(
xi − xs−1

i

)2
)

−
∑
j∈Jk

(
η j(y j) − 0.5λs

(
y j − ys−1

j

)2
)⎤⎦

+
∑
a∈A

[
σa( fa) + 0.5λs

(
fa − f s−1

a

)2
]

+
n∑

k=1

pk

⎡
⎣
⎛
⎝∑

a∈A−
k

fa−
∑

a∈A+
k

fa

⎞
⎠−

⎛
⎝∑

i∈Ik

xi−
∑
j∈Jk

y j

⎞
⎠
⎤
⎦
⎫⎬
⎭

=
n∑

k=1

⎡
⎣∑

i∈Ik

min
xi∈[0,αi]

(
μi(xi) + 0.5λs

(
xi − xs−1

i

)2 − pkxi

)

−
∑
j∈Jk

max
y j∈[0,β j]

(
η j(y j) − 0.5λs

(
y j − ys−1

j

)2 − pk y j

)⎤⎦
+

∑
a=(k,l)∈A

min
fa∈[γ ′

a,γ
′′
a ]

(
σa( fa) + 0.5λs

(
fa − f s−1

a

)2 + (pk − pl) fa

)
. (28)

Again, the inner problem in Eq. (28) decomposes into simple one dimensional
problems, but the function �s in Eq. (21) is now differentiable and concave if
(A1) and (A2) are fulfilled.

In fact, if (xs(p), ys(p), f s(p)) denotes the solution triplet of the inner
problem in Eq. (28), then

∂�s(p)

∂pk
=
⎛
⎝∑

a∈A−
k

f s
a(p) −

∑
a∈A+

k

f s
a(p)

⎞
⎠−

⎛
⎝∑

i∈Ik

xs
i (p) −

∑
j∈Jk

ys
j(p)

⎞
⎠

for k = 1, . . . , n. Since Eq. (27) is an unconstrained differentiable maximiza-
tion problem, we can apply one of the conjugate gradient methods (see e.g.
Polyak 1983) for faster convergence. Next, in the case where all the functions
are affine, the proximal point method above finds a solution in a finite number
of iterations; see Polyak and Tretyakov (1974), Bertsekas (1975). At the
same time, we observe that this combined proximal-dual approach includes
an additional iteration level, requires a careful selection of the regularization
parameter λs and accuracies of solving the problems in Eqs. (27), (28) and of
the linesearch procedure in the conjugate gradient method.
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6 Alternating direction method

The idea of the alternating direction method consists in combining the
Douglas–Rachford splitting method, which was proposed for systems of linear
equations (Douglas and Rachford 1956) and further extended to inclusions
(Lions and Mercier 1979), and the augmented Lagrangian method for con-
strained optimization problems; see Gabay and Mercier (1976), Eckstein and
Bertsekas (1992). Being applied to the inclusion

0 ∈ P(x) + Q(x), (29)

where P and Q are maximal monotone operators, the Douglas–Rachford
splitting method generates an iteration sequence {xk} in conformity with
the rule

xk+1 = Jλ
P ◦ (2Jλ

Q − I
)

xk + (
I − Jλ

Q

)
xk, (30)

where I is the identity map, Jλ
P = (I + λP)−1 is the resolvent operator, λ >

0 is an iteration parameter. If Eq. (29) is solvable, then iterations (Eq. (30))
converge to a solution of Eq. (29) with any positive λ; see Lions and Mercier
(1979), Theorem 1. The alternating direction method represents an adjustment
of the above splitting method for special structured problems. Namely, being
applied to the optimization problem

minimize f1(x) + f2(y)

subject to Ax − By = 0, x ∈ X, y ∈ Y; (31)

where f1 and f2 are convex functions, A and B are some matrices, X and Y
are convex and closed sets, this method is written as follows:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

xk+1 = argminx∈X

{
f1(x) + 〈

zk, Ax
〉+ r

2

∥∥Ax − Byk
∥∥2
}

,

yk+1 = argminy∈Y

{
f2(y) − 〈

zk, By
〉+ r

2

∥∥Axk+1 − By
∥∥2
}

,

zk+1 = zk + r
[
Axk+1 − Byk+1

] ;
(32)

where z is the vector of dual variables (multipliers) and r > 0 is the iteration
parameter. If we write the augmented Lagrangian for the problem of Eq. (31):

M(x, y, z) = f1(x) + f2(y) + 〈z, Ax − By〉 + r
2
‖Ax − By‖2, (33)

then Eq. (32) corresponds to a modified multiplier method, where the first
two relations define the (block) Gauss–Seidel iteration with respect to primal
variables (x, y), whereas the third relation is the standard multiplier update
rule. However, the penalty term in Eq. (33) again destroys the decomposable
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structure of the problem and this fact leads to certain difficulties in imple-
mentation of iterations in Eq. (32). In Eckstein and Fukushima (1994), it
was proposed to enhance properties of the method by somewhat enlarging its
dimensionality and splitting its constraints. Following this approach, we intend
to propose an alternating direction method for the spatial auction market
problem of form Eq. (23). To this end, we rewrite Eq. (23) briefly as follows:

minimize ϕ(z)

subject to Az = 0, z ∈ Z ; (34)

where z = (x, y, f ), Z = X × Y × F, the matrix A has n rows and N columns,
where N is the dimensionality of z. Set

w =
(

x̃, ỹ, f̃
)

and q =
(

x̄, ȳ, f̄
)

and write the equivalent representation of Eq. (34):

minimize f1(Aw) + f2(z)

subject to z = w; (35)

where

f1(u) =
{

0 if u = 0 ∈ R
n,

+∞ otherwise;
and

f2(z) =
{

ϕ(z) if z ∈ Z ,

+∞ otherwise.

The method of Eq. (32) applied to the problem of Eq. (35) can be defined
as follows. Starting from the initial point z0 = (x0, y0, f 0) ∈ Z , construct se-
quences {zs}, {ws}, and {qs} in conformity with the rules:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ws+1 = argminw∈RN

{
f1(Aw) + 〈

qs, w
〉+ r

2

∥∥w − zs
∥∥2
}

,

zs+1 = argminz∈RN

{
f2(z) − 〈

qs, z
〉+ r

2

∥∥ws+1 − z
∥∥2
}

,

qs+1 = qs + r
(
ws+1 − zs+1

) ;
(36)

with r > 0.
Clearly, updating q does not cause any difficulties. We now consider

updating w and z in Eq. (36) in more detail.
First of all we note that the first problem in Eq. (36) is equivalent to the

following:

minimize
〈
qs, w

〉+ r
2

∥∥w − zs
∥∥2

subject to Aw = 0; (37)
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whose solution can be found by the explicit formulas:

ws+1 = zs + r−1
(

ATλ − qs) ,
where

λ = (
AAT)−1

A
(
qs − rzs) .

Note that AAT is an n × n matrix, which can be made non-degenerate by
adding some artificial variables. For this reason, the problem of Eq. (37) can
be resolvable rather easily.

In turn, the second problem in Eq. (36) is rewritten as follows:

minimize
n∑

k=1

⎡
⎣∑

i∈Ik

μi(xi) −
∑
j∈Jk

η j(y j)

⎤
⎦+

∑
a∈A

σa( fa)

− 〈qs, z〉 + r
2

∥∥ws+1 − z
∥∥2

subject to z ∈ Z .

Clearly, this is a completely separable problem, which is equivalent to the
series of the following one-dimensional problems:

minimize μi(xi) − x̄s
i xi + 0.5r

(
xi − x̃s+1

i

)2

subject to 0 ≤ xi ≤ αi for i ∈ Ik, k = 1, . . . , n;

minimize − η j(y j) − ȳs
jy j + 0.5r

(
y j − ỹs+1

j

)2

subject to 0 ≤ y j ≤ β j for j ∈ Jk, k = 1, . . . , n;

minimize σa( fa) − f̄ s
a fa + 0.5r

(
fa − f̃ s+1

a

)2

subject to γ ′
a ≤ fa ≤ γ ′′

a for a ∈ A.

Under assumptions (A1) and (A2) these problems have unique solutions
which can be found very easily.

After obtaining a solution of the problem in Eq. (23), the auction clearing
prices are found from Eqs. (6), (7), and (18).

7 Computational results

In order to check the performance of the above methods we implemented
them in Delphi with double precision arithmetic and carried out several series
of computational experiments. More precisely, we select five examples of
spatial auction market problems with different topology structures. Since their
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Table 1 n is the number of markets (nodes), m is the total number of traders, l is the total number
of buyers, N is the total number of edges

Ex.1 Ex.2 Ex.3 Ex.4 Ex.5

n 5 19 6 10 20
m 285 106 32 50 100
l 5 7 32 49 98
N 4 18 5 12 24

data files are very bulky, we only outline here their basic parameters. The
dimensionalities are given in Table 1. The data in Examples 1 and 2 were
taken from real electricity markets. The topologies of the graphs in Examples
1–3 are trees, whereas the graphs in Examples 4 and 5 involve cycles. In all
the examples, the prices were fixed and all the links were supposed to be
costless. For instance, the graph of Example 5 is given in Fig. 1. The numbers
of participants in this example were distributed as follows:

(i) traders (6, 6, 5, 5, 6, 4, 5, 4, 4, 5, 6, 6, 5, 5, 6, 4, 5, 4, 4, 5),
(ii) buyers (6, 6, 5, 6, 6, 6, 3, 4, 4, 3, 6, 6, 5, 6, 6, 6, 3, 4, 4, 3).

The fixed prices were taken in the segment [40, 80], all the minimal offer/bid
bounds were set to be zero, the maximal offer/bid bounds were taken in the
segment [100, 1,500].

Fig. 1 Example 5: topology
with edge capacities

1

[300] 2 [300]

3

[400]

4

[300]

5

[1000]

6[1000]

7

[700]
8

[700]
[500]

9

[500]

10

[500]

11 [700]

12

[800]

[500]

13

[900]

14

[700]

15

[700]
[500]

16

[700]

17

[500]
18

[700]

19

[900]

20

[700]
[500]



522 I. V. Konnov

Table 2 itprox is the number of proximal iterations, iter is the total number of the conjugate
gradient method iterations, – indicates that the total number of iterations exceeds the maximal
value = 1,500

(PCG) Ex.1 Ex.2 Ex.3 Ex.4 Ex.5

δ = 0.1
itprox 22 280 169 91 93
iter 201 913 226 242 278

δ = 0.01
itprox 78 – – 149 119
iter 236 – – 273 290

In all the cases, we took the zero starting point. Since a comparatively low
accuracy is sufficient for application, we utilized the accuracy values δ = 0.1
and δ = 0.01 for both the methods.

First we tested the combined proximal point and dual conjugate gradient
method (PCG for short), described in Section 5. We chose the usual Polyak–
Polak–Ribière variant of the conjugate gradient method; see e.g. Polyak
(1983). We fixed the stepsize λs ≡ 0.2 and chose the norm of violations of
conditions Eqs. (20) and (21) as accuracy measure. The results are given in
Table 2.

Next we tested the alternating direction method (ADM for short) described
in Section 6. Here we chose the value

max
{∥∥ws+1 − ws

∥∥ ,
∥∥zs+1 − zs

∥∥ ,
∥∥ws+1 − zs+1

∥∥}
as accuracy measure. The results are given in Table 3.

In all the cases, the processor solution time did not exceed 1 s. In general,
the results of both the methods were satisfactory for application. They gave us
the optimal offer/bid values for each market as well as the optimal commodity
flows along arcs. Besides, (PCG) yielded directly all the auction clearing prices.
As to (ADM), they were obtained easily from Eqs. (6), (7), and (18), as
indicated in the end of Section 6. Also, the presence of cycles in the system
topology did not cause any difficulties. At the same time, we noticed that
(PCG) required more careful tuning of parameters such as the stepsize and
the accuracies of linesearches and solutions of the inner problem in Eq. (27),
even for the same test problem with different values of δ. Managing (ADM)
appeared to be simpler.

Table 3 iter is the total
number of iterations

(ADM) Ex.1 Ex.2 Ex.3 Ex.4 Ex.5

δ = 0.1
r 5 0.3 0.1 0.1 0.1
iter 1,126 1,195 151 144 193

δ = 0.01
r 5 0.3 0.1 0.1 0.1
iter 1,789 1,821 188 199 273
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8 Conclusions

In this paper, we suggested a new model of a system of spatially distributed
auction markets joined by transmission lines with joint capacity and balance
constraints and with rather complex behavior of traders and buyers within
each auction market. Namely, we showed that this model was formulated as
a simple variational inequality problem. Besides, we proposed several equiva-
lent formulations of the above problem as non-smooth convex optimization or
convex–concave saddle point ones. This enables us to apply the well-developed
tools for investigation and solution of spatial auction market problems. In
particular, we proposed two iterative solution methods, namely, the combined
dual-proximal and modified alternating direction ones, which preserved the
decomposable structure of the problem and can be used in the case of its
possible large dimensionality. They gave us the optimal commodity flows and
offer/bid values for each market as well as all the auction clearing prices. The
computational results confirmed rather rapid convergence and applicability of
both the methods.

Of course, this approach admits further extensions and modifications. The
author hopes to consider them in some forthcoming works.
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