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Abstract The problem of estimating origin-destination travel demands from partial
observations of traffic conditions has often been formulated as a network design
problem (NDP) with a bi-level structure. The upper level problem in such a
formulation minimizes a distance metric between measured and estimated traffic
conditions, and the lower level enforces user-equilibrium traffic conditions in the
network. Since bi-level problems are usually challenging to solve numerically,
especially for large-scale networks, we proposed, in an earlier effort (Nie et al.,
Transp Res, 39B:497–518, 2005), a decoupling scheme that transforms the O–D
estimation problem into a single-level optimization problem. In this paper, a novel
formulation is proposed to relax the user equilibrium conditions while taking users’
route choice behavior into account. This relaxation approach allows the development
of efficient solution procedures that can handle large-scale problems, and makes the
integration of other inputs, such as path travel times and historical O–Ds rather
straightforward. An algorithm based on column generation is devised to solve the
relaxed formulation and its convergence is proved. Using a benchmark example, we
compare the estimation results obtained from bi-level, decoupled and relaxed
formulations, and conduct various sensitivity analysis. A large example is also
provided to illustrate the efficiency of the relaxation method.
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1 Introduction

Knowing where and when people start their trips and where they are heading to is
one of the fundamental issues in transportation research. The success of building and
operating an efficient urban transportation system (urban planning, travel forecasting
and real-time traffic control/management, to name a few) relies on a sound
understanding of the spatial and temporal patterns of travel demands. Due to the
difficulty of directly measuring O–D travel demands, estimating them from limited
observations of traffic conditions on the road network has been attempted by
numerous researchers in the past three decades. This paper deals with the estimation
of static O–D demands, which concerns trips made over a relatively long time period
within which the traffic condition is assumed to be in a steady state.

Consider a traffic network represented as a graph G(N, A) where N and A are the
sets of nodes and links, respectively. Let R be the set of origins and S be the set of
destinations. Underlying the O-D estimation problem is the following measurement
equation:

Δq ¼ x ð1Þ
where

q is an o×1 vector of travel demands to be estimated;
x is an m×1 vector of measured traffic counts
Δ is an m×o assignment matrix whose entry represents the proportion of trips

between a given O–D pair using a given link.

The problem of static O–D estimation (SODE), in its simplest form, is to solve the
system 1 for q according to a given rule for determining the assignment matrix Δ.
Generally, Eq. 1 is underdetermined and thus does not yield a unique solution. To
resolve the problem, additional information should be supplied which includes but is
not limited to:

– A partial or complete historical O–D table, which is usually established from
existing survey data.

– Supplemented flow counts, including those made on cordon (or screen) lines
and turning counts at intersections.

– Vehicle identification data that provides link-to-link traffic counts or fractions.
– Path travel times obtained from probe vehicles.

In this research, both historical O–D information and observed paths travel times
are considered as inputs in addition to traffic counts. We do not consider the other
two data sources because they can be treated in a similar fashion as traffic counts.

When congestion effects are unimportant, the assignment matrix Δ may be
exogenously specified. This is known as the proportional-assignment approach (cf.
Chapter 12, Ortuzar and Willumsen 2001). This category includes gravity models
(e.g., Low 1972), information minimizing (Van Zuylen and Willumsen 1980),
entropy maximizing (Willumsen 1981) and generalized least squares (Cascetta
1984). The proportional-assignment methods assume that users’ route choices are
given and independent of the estimation process. This assumption causes an
inconsistency issue in congested networks, because the predetermined assignment
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matrix may not be replicated when the estimated O–D table is assigned onto the
network according to some route choice assumptions. A conventional way to resolve
this inconsistency is to introduce a traffic assignment component into the estimation
problem (see, e.g., Nguyen 1977; Gur et al. 1980; LeBlanc and Farhangian 1982;
Nguyen 1984; Fisk 1984, 1988; Yang et al. 1992; Yang 1995).

A SODE problem combined with traffic assignment falls into a general class of
network design problems (NDP) involving the interaction of two groups of decision
makers: network designers (known collectively as the leader) and network users
(known collectively as the follower). For the SODE problem, solving q from Eq. 1 is
interpreted as the leader problem whereas the follower problem is to determine Δ
from an assignment model based on the decision of the leader problem (i.e., the
estimated O–D table). How Δ is determined depends on the assumptions about
users’ route choice behavior. The most embraced behavioral assumption, known as
Wardrop’s first principle (Wardrop 1952), states that every user chooses the least cost
path(s) which produces the user-equilibrium (UE) flow pattern.

Due to the embedded UE conditions, this class of network design problems is
usually difficult to tackle from both analytical and computational perspectives.
Various heuristic algorithms have been proposed to produce acceptable solutions for
real-size problems. Most existing algorithms fall into one of four categories:

– Iterative optimization-assignment algorithms (Yang et al. 1992; Allsop 1974;
Gartner et al 1980).

– Sensitivity-based algorithms (Yang 1995).
– Global search algorithms (Abdulaal and LeBlanc 1979; Friesz et al. 1992, 1993).
– Algorithms based on mathematical program with equilibrium constraints (e.g.,

Tan et al. 1979; Lim 2002)

Most of the aforementioned NDP algorithms share two major limitations: they
may not attain global optimums and they have to solve the UE traffic assignment
problem iteratively. The second shortcoming substantially limits the practical value
of this approach where traffic assignment could not be efficiently solved, such as in
the dynamic case in which the lack of differentiability makes the solution
notoriously difficult. On the other hand, observed traffic flow patterns may not
strictly satisfy UE conditions in reality. Above all, the behavioral assumptions that
yield UE are too ideal to be realistic. What is more, the performance of a real traffic
system is influenced by many stochastic factors that are not modeled or not
adequately modeled by the UE models. This suggests that imposing strict UE
conditions in the SODE problem might be unnecessary and even inappropriate in
practice.

Motivated by the above observations, this paper formulates SODE as a one-level
problem without strictly enforcing the UE conditions. This formulation bypasses the
bi-level structure and its associated analytical and numerical difficulties, and is
amenable to more powerful solution methods. Path flows, rather than O–D demands
themselves, are employed as solution variables because the mapping from path flows
to link counts does not depend on a traffic assignment procedure. The use of path
flows as solution variables for the static O–D estimation problem was first seen in
Sherali et al. (1994). Obviously, O−D demands can be easily derived from path
flows.
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Using path flows, the system 1 can be rewritten as:

Pf ¼ x ð2Þ
where

f is a vector of used path flows; and
P is a path–link incidence matrix representing the assignment relationship.

In an earlier work, Nie et al. (2005) proposed a decoupled formulation based on
Eq. 2 in which paths used at UE (hence P) are determined exogenously using a
K-shortest path ranking procedure. The approach of Nie et al. (2005) avoids the
bi-level structure but requires all traffic counts to be available and travelers strictly
adhere to the UE principle. This strong assumption is relaxed in this paper. The
formulation to be proposed intends to identify a set of path flows that would
replicate available observations as closely as possible when loaded onto the network.
Users’ responses to traffic conditions are taken into account in the process of
identifying the path set. Namely, whether or not a path is “selected” depends on its
combined potential of improving the match of observations and satisfying users’
travel preferences.

In Section 2 the decoupled O–D estimation formulation is reviewed and a relaxed
formulation without route choice is briefly discussed. Sections 3 and 4 present the
relaxed formulation with route choice and its solution algorithms respectively.
Numerical results are discussed in Section 5.

2 The decoupled formulation

Let us denote the vector of UE link flow volumes as xe, the vector of observed traffic
counts as x and the vector of estimated traffic counts as x̂. A path flow pattern
corresponding to xe and its estimate are denoted as fe and f̂ , respectively. Each fe
corresponds to a UE path set Ke ¼ [Ke

rs; 8r; s, where Ke
rs is a set of paths used at UE

for the O−D pair rs.
Nie et al. (2005) showed that a best linear unbiased estimator for fe can be

obtained by solving the following decoupled problem 3, if (1) travellers adhere to
the Wardrop’s first principle so that x is a measurement of UE link volumes xe, (2)
traffic counts are available on all links and subject to no measurement errors, and (3)
active constraints (f=0) can be ignored.

min 0:5 Pef � xð ÞTT�1 Pef � xð Þ þ 0:5 Mef � qð ÞTS�1 Mef � qð Þ subject to f � 0

ð3Þ
where

Pe is a path-link incidence matrix corresponding to Ke;
Me is the OD-path incidence matrix corresponding to Ke;
q is a vector of historical O–D demands;
T is the covariance matrix associated with x; and
S is the covariance matrix associated with q.

This formulation, which determines Pe and Me independently according to UE
conditions from a K-shortest path ranking (KSPR) procedure, require that all links
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are measured and the measurements are without errors. While these assumptions
allowed us to study the analytical properties of the formulated problem and answered
interesting questions such as estimation efficiency and biases, they do seriously limit
the practical value of the method since in reality neither can one measure at all road
locations nor can one measure traffic flow with no errors. To relax these
assumptions, we first put aside the equilibrium conditions by including all paths
into the formulation. Then problem 3 is relaxed as follows:

min 0:5 Pf � xð ÞTT�1 Pf � xð Þ þ 0:5 Mf � qð ÞTS�1 Mf � qð Þ subject to : f � 0

ð4Þ
where f is a vector of flows on all simple (i.e., loop-free) paths, and P and M are
corresponding path-link incidence and path-OD incidence matrices, respectively.
Unlike Eq. 3, this problem includes flows on all paths as solution variables regardless
whether the paths belong to Ke or not. As such, the violation of equilibrium
constraints is expected because non-UE paths may receive positive flows during the
estimation process. We have the following results (see Nie 2006 for proofs).

Theorem 1 An optimal solution to problem 4 provides a linear unbiased estimator
for the UE path flows fe.

Theorem 2 The estimator given by problem 4 is always equally or less efficient
compared to that obtained from problem 3.

3 The relaxed formulation with route choice

Theorem 2 indicates that the over-specification is the cause of the inefficiency of the
estimator derived from the relaxed problem 4. Obviously, the more non-UE paths are
included, the less efficient the estimator would be. In real networks where the
number of non-UE paths is overwhelming, problem 4 may lead to fairly poor
estimates. It is important, therefore, to discourage the use of non-UE paths so that the
over-specification can be controlled to some extent. Since non-UE paths usually
have higher costs than UE paths, a natural way of achieving this is to add a proper
cost-related term into the objective function of Eq. 4. Physically, this term takes
users’ route choice behavior (i.e., their preference for shorter paths) into account and
thus prevents flows from dispersing over all paths.

Now the relaxed SODE problem 4 is reformulated as follows1:

min z fð Þ ¼ 0:5wx Pf � xð Þ2 þ 0:5wq Mf � qð Þ2 þ 1

θ

X
a

Z Paf

0
ta wð Þdw ð5Þ

1 In this section, covariance matrices of observation errors are removed from the formulation to simplify
the notation. Instead, each type of observation is associated with a scalar reflecting its own relative
confidence. This method, often seen in the literature (Yang 1995), is simpler and may better fit practical
situations for which covariance matrices of good quality are not typically available.

A Relaxation Approach for Estimating Origin–Destination Trip Tables 151



subject to

Pf ¼ x; P ¼ P1 � � � Pa � � � Pn½ �T ð6Þ

f � 0 ð7Þ
where

ta (.) is a convex and strictly increasing function of link volume xa; and
wx > 0 and wq > 0 are relative confidence scalars associated with traffic counts and

the historical O–D demands, respectively.

The third term in the objective function is a scaled Beckmann’s objective function
used in the UE traffic assignment problem (Beckmann et al. 1956). θ is a positive
scalar called dispersion parameter. The added Beckmann term in the objective
function penalizes traffic flow on non-UE paths, which helps reduce the loss of
estimation efficiency caused by non-UE paths. Note that the resulting flow pattern is
less “dispersed” for smaller θ because more flows are concentrated on low-cost
paths. In this sense θ is similar to the dispersion parameter used in the logit traffic
assignment model (Fisk 1980), from which its name is borrowed. The scalars wx and
wq reflect our confidence in the accuracy of the measurements and can be easily set
according to our knowledge of the accuracy of the corresponding measurements.
Determining a proper value for the dispersion parameter θ, howeve, is a tricky
problem. With the Beckmann term, flows are discouraged from not only paths with
higher costs, but indeed any path with a positive cost. Obviously, if θ goes to zero,
the relaxed estimation problem will produce f=0 as the optimum. Thus, θ should not
be set too small in order to avoid an underestimation. On the other hand, a very large
θ is not desirable as well. As θ gets larger, the relative preference for low-cost paths
diminishes, and the efficiency of the resulting estimator may degenerate because of
the inclusion of more non-UE paths. It is difficult to establish a theoretical bound for
a “proper” θ because it depends on a problem’s specific setting. A few heuristics for
selecting a proper θ are suggested in Section 5.1.2. The objective function z(f) in Eq. 5
is convex with respect to f because it is the sum of three convex functions (note that the
two quadratic terms of z(f) are surely convex and the Beckmann term is also convex;
see Sheffi 1985). Since it is defined on a nonnegative orthant, the above relaxed SODE
problem is a convex program, which implies that any local minimum would be a global
minimum. However, the optimal path solution of problems 5, 6, and 7 is not unique in
general.

We now turn to the optimality condition of the relaxed SODE problem. For any
given f ≥0, x > 0 and q > 0, the deviation on path k ∈ Krs is defined as

dkrs ¼ wx

X
a

dakrs dxa þ wqdqrs ð8Þ
where

dxa ¼ xa �ΣrΣsΣkδ
ak
rs f krs a 2 Ao

0 otherwise
;

(
ð9Þ
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dqrs ¼ qrs �Σk f krs if historical demand is given for the O� D pair rs
0 otherwise

�
; ð10Þ

δa; krs ¼ 1 if path k connecting O� D pair rs uses link a
0 otherwise

;

�
ð11Þ

xa is the traffic count on link a;
qrs is the historical demand for O–D pair rs;
f krs is the flow on path k ∈ Krs; and
Ao is a set of links on which traffic counts are available.

The path deviations function d �ð Þ ¼ . . . ; dkrs; . . .
� �T

: R Kj j
þ 7!R Kj j is a well-defined

mapping.

Proposition 1 The path deviation function d �ð Þ is linear, continuous and monotone.

Proof Note that d �ð Þ can be written in matrix form as

d fð Þ ¼ PTwx x� Pfð Þ þMTwq q�Mfð Þ ð12Þ

The RHS of Eq. 12 is clearly linear in f. Continuity and monotonicity then follow
from linearity.

The cost on path k ∈ Krs is denoted as ckrs ¼
P

ad
k
rsta Pafð Þ (Pa is defined in Eq. 6),

and we define c �ð Þ ¼ . . . ; ckrs; . . .
� �T

: R Kj j
þ 7!R Kj j as the path cost function.

The following theorem states the optimality conditions of the relaxed SODE
problem.

Theorem 3 f 2 R Kj j
þ is an optimal solution to problems 5, 6, and 7 if and only if

8r 2 R; s 2 S; k 2 K

f krs ckrs � θdkrs
� � ¼ 0

ckrs � θdkrs; f
k
rs � 0

(
ð13Þ

Proof Applying the KKT conditions, f solves the nonlinear optimization programs 5,
6, and 7 if and only if

rz fð Þ; fh i ¼ 0
rz fð Þ � 0

f � 0

Using Eq. 12, we have

rzk fð Þ ¼ wxP
T ðPf � xÞ þ wqM

T ðMf � qÞ þ 1

θ
cðfÞ ¼ 1

θ
cðfÞ � d fð Þ
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Replacing rz fð Þ in the above KKT conditions with this expression, and noting
that the dot product of rz fð Þ and f is zero , rzk fð Þf k ¼ 0; 8k, we get the
optimality conditions.

Remark 1 A path flow pattern that perfectly replicates all available observations
(i.e., d(f )=0) is not an optimal solution since path deviations must be positive to
equilibrate path costs at optimum. The existence of path deviation provides a route
choice mechanism for distinguishing paths of different costs. From the optimality
conditions we see that to equilibrate a path of higher cost requires a larger deviation
to be imposed than for paths of lower costs. Therefore, assigning more flows onto
the lower cost paths helps reduce the overall deviations (hence better objective
function values). Certainly individual paths with higher costs may be equilibrated
without necessarily increasing the total system deviation. Nonetheless, the above
mechanism works collectively to impose route differentiation.

Remark 2 Paths bid for flows against each other based on their costs, and such a
competition is not confined within each O–D pair (as in traffic assignment
problems). As a consequence, O–D pairs with shorter average travel times may be
assigned more flows than those with longer average travel times. This is somewhat
similar to the gravity trip distribution model that always assigns more flows to O–D
pairs having smaller friction factors. If such an effect is considered a bias, historical
O–D information may help reduce the preference for O–D pairs with smaller travel
times (costs) between them, should the historical O–D trip table contain reliable
information on the spatial distribution of traffic demand.

Remark 3 When θ is so small that the maximum possible deviation is not large
enough to equilibrate the minimum possible path cost, the estimated path flows will
approach nil. On the other hand, a large θ favors a solution that provides small total
deviations to satisfy the equilibrium conditions. This often means using more paths
and thus increasing the chances of having those high-cost paths in the solution.

The relaxed SODE problem can be further extended to incorporate travel times on
certain paths measured by probe vehicles. Such information is useful because traffic
counts often fail to reflect the demand level in over-saturated situations (note that
loop detectors cannot measure flow beyond capacity).

Let K denote the set of paths for which average travel costs (times) are measured,
and c a vector of measured travel costs. To account for the cost observations, another
quadratic term is added into the objective function as follows:

min z fð Þ ¼ 0:5wx pf � xð Þ2 þ 0:5wq Mf � qð Þ2þ0:5wpsp
X
k2K

ckrs fð Þ � ckrs
� �2

þ 1

θ

X
a

Z Paf

0
ta wð Þdw ð14Þ

subject to Eqs. 6 and 7.

154 Y. M. Nie, H. M. Zhang



Here wp>0 is the relative confidence parameter associated with path cost
observations, and sp is a positive scalar to balance the weight of cost and flow
deviations.

To derive the optimality condition, we need to obtain the gradient of the path cost
term. Let zp fð Þ ¼ wpsp

P
k2K ckrs fð Þ � ckrs
� �2

, we then have

@zp fð Þ
@f k 0rs

¼ wpsp
X
k2K

@ckrs fð Þ
@f k 0rs

ckrs fð Þ � ckrs
� �

; 8k 0 2 K

where

@ckrs fð Þ
@f k 0rs

¼
X
a

δkars δ
k 0a
rs

dτa xa ¼ Pafð Þ
dxa

To be consistent with our earlier formulations we now redefine the path deviation
dkrs as follows:

dkrs ¼ wx

X
a

dakrs dxa þ wqdqrs þ wpspdc
k
rs ð15Þ

where

dckrs ¼
X
k2K

@ckrs fð Þ
@f k 0rs

ckrs � ckrs fð Þ� �
The matrix form of the path deviation function in Eq. 12 becomes:

d fð Þ ¼ PTwx x� Pfð Þ þMTwq q�Mfð Þ þ wpspJc c� cð Þ ð16Þ

where Jc is the Jacobian matrix of c(f). Thus, the optimality conditions given in
Theorem 3 still applies in this extended model provided that d(f ) is defined by Eq. 16.
We note that the use of the path deviation function provides a flexible framework to
combine different observations together. The optimality condition is quite general and
may be applied even when the estimation problem cannot be cast as a mathematical
program (like in the dynamic case). However, zp(f ) is not necessarily a convex
function with respect to f. Thus, obtaining a global optimum for this extended problem
is difficult.

4 Solution algorithms

We shall first assume that a subset of paths has been selected to formulate the
relaxed SODE problem, which is called a restricted master problem (RMP). Then a
scheme is introduced in Section 4.2 to generate the collection of paths iteratively
such that the original problem (i.e., the one containing all paths) is optimally solved.
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4.1 Solve RMP

The restricted master problem of the relaxed SODE is defined on a nonnegative
orthant. The class of algorithms based on the projected antigradient direction can
take full advantage of such a simple constraint structure because projections can be
performed very efficiently.

The gradient of the objective function with respect to f krs is given by

gkrs �
@z fð Þ
@f krs

¼ 1

q
ckrs � dkrs ð17Þ

where dkrs is defined in Eq. (15). The projected anti-gradient direction eg ¼
. . . ; ekrs; . . .
� �

is expressed by

g ¼
Y

Rþn
�gð Þ;

where g ¼ . . . ; gkrs; . . .
� �

. That is,

~gkrs ¼ 0 if gkrs > 0 and f krs ¼ 0
�gkrs otherwise

�
ð18Þ

eg itself provides a natural candidate for the descent search direction e. Another
possible option for generating a search direction is to use the conjugate gradient,
which updates the search direction at iteration i, ei, by

ei ¼ egi þ rie
i�1 ð19Þ

The scalar ρi is called a deflection parameter and may be computed by (Sherali
and Park 2001)

ri ¼
egik k2egi�1k k2 ð20Þ

We proceed to derive the optimal step size l along the search direction given by e.
This equates to solving the following one-dimensional optimization problem

min
l

z f þ leð Þsubject to :f � 0 ð21Þ

The gradient of z(f+le) with respect to l is

@z f þ leð Þ
@l

¼ @z f þ leð Þ
@ f þ leð Þ ; e

� �
¼ 1

q
c f þ leð Þ � d f þ leð Þ; e

� �
ð22Þ

where d �ð Þ and c �ð Þ are the path deviation and cost functions defined before. Clearly,
the optimal step size is the one such that

@z f þ leð Þ
@l

¼ 0
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In general, an iterative procedure is needed to solve for the step size. We adopt a
bisection method (cf. Sheffi 1985).

We are now ready to summarize the projected antigradient (PAG) algorithm:

4.1.1 Algorithm PAG

Step 0. Initialization: set i=0, f i=0, ρi=0.
Step 1. Evaluate the projected antigradient eg using Eq. 18. If egk k2� "1, terminate

the procedure; otherwise, update the search direction ei using Eq. 19. To
use the conjugate gradient strategy, calculate ρi using Eq. 20.

Step 2. Obtain an optimal step size from a line search. To use the conjugate
gradient strategy, go to step 3 to update ρ; otherwise go to step 4.

Step 3. If l� lmaxj j < "2 (i.e., the obtained step size equals the maximum allowed
value), set ρi=0.

Step 4. Compute the new solution f iþ1 ¼ f i þ lei. If f iþ1 � f i
�� ��

2
< "3, terminate

the procedure; otherwise, set i ¼ iþ 1, and go to step 1.

4.2 Column generation

This section shows how a column generation scheme can be adopted to iteratively
build the restricted master problem (RMP). Assume that a restricted set of paths Kr is
given and the optimal solution f r is obtained by solving the corresponding RMP. We
concern ourselves with the following question: among the paths currently excluded
from Kr, which one should be included to optimally solve the original problem?
According to the optimality conditions, an unused path may be a candidate if it
satisfies the following condition.

ckrs � qdkrs < 0

Intuitively, the above condition presents a violation to the optimality condition. To
achieve as much improvement of the objective function as possible, the unused path
which violates the optimality condition the most should be added into Kr. In other
words, we want to solve the following minimization problem in search of such paths.

Find path k 2 K=Kr; such that k ¼ argmin ckrs f
rð Þ � θdkrs f

rð Þjckrs frð Þ < θdkrs f
rð Þ	 


This minimization problem can be solved using the following minimum-cost path
algorithm (MCPA).

4.2.1 Algorithm MCPA

Step 0. Set the general cost on each link a using

ma ¼
1

q
ta � wxdxa

where ta is link travel time and dxa is defined in Eq. 9.

A Relaxation Approach for Estimating Origin–Destination Trip Tables 157



Step 1. Find the minimum cost path k*rs for each O–D pair rs using μa as arc
weights. Denote the minimum cost as p*rs.

Step 2. Find the path k*1 ¼ argmin prs*þ wqdqrs
��8r; s	 


, where dqrs is defined in
Eq. 10. Set σ1 as the minimum general cost associated with k1*.

If observed path traversal times are not used

If σ1 < 0; return k*1 ; otherwise return NULL;

Otherwise, go to step 3.

Step 3. Find k*2 ¼ argmin 1
θc

k
rs � dkrs

��k 2 K
	 


, where dkrs is defined in Eq. 15. Set
σ2 as the minimum general cost associated with k*2 .

If σ1>σ2

if σ2 < 0; return k*2 ; otherwise; return NULL:

Otherwise

if σ1 < 0; return k*1 ; otherwise; return NULL:

Remark 4 If negative cycles do not exist, the shortest path tree problem can be
solved in polynomial time. If there are negative cycles (which is very likely to occur
in our problem since link weights can be negative), the shortest path problem is NP-
complete and thus may not be solved efficiently. Sherali et al. (1994) devised an
approximate method which transforms the shortest path problem into a minimum
cost network flow problem with bounded link capacities. A simpler but coarser
approximation is to force all negative link weights to zero in sep 2 to eliminate
negative cycles. Another alternative is to avoid column generation by creating a
subset of K-shortest paths before hand. For large-scale problems, the use of these
heuristics might be justified.

Remark 5 The algorithm MCPA generates only one path (with the minimum general
cost in all paths) during each iteration. This scheme is inefficient if the optimal path
set contains a large number of paths. As an alternative, new paths can be generated
for each O–D pair for each iteration. Note that when this strategy is employed, Step
3 in Algorithm MCPA can be ignored because dqrs is identical for the same O–D
pair. The all-OD-at-a-time strategy is an approximation and has a mixed effect on the
overall convergence of the column generation. On the one hand, it accelerates the
construction of a near-optimal path set. On the other hand, however, the strategy
may result in undesirable oscillations within the neighborhood of the optimum.
Intuitively a better strategy would be to use the approximate method to get to a near-
optimum quickly, and then switch to the exact method for fine tuning. The column
generation algorithm for solving the relaxed SODE problem is summarized in the
following.
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4.2.2 Algorithm column generation

Step 0. Initialization. Set i=0 and the estimated O–D matrix qi ¼ q. Initialize link
flow vector xi according to

xa ¼ xa a 2 Ao

0 a 2 A=Ao

�

If the historical O–D information q is available and of good quality, xa; a 2 A=Ao

may also be approximated by assigning q (e.g., based on user-equilibrium principle)
onto the network.

Step 1. Update path set. If i=0, generate a shortest path for each O–D pair using as
the weight on link a. This forms an initial restricted path set Kr; otherwise,
call Algorithm MCPA to get the minimum cost paths k*. If k 6¼ NULL,2

update Kr ¼ Kr [ k*; otherwise, terminate the procedure and the current f i

is the optimal solution. Set i ¼ iþ 1, go to step 2;
Step 2. Call algorithm PAG to solve the restricted master problem for f i.
Step 3. Update link volume xia, link traversal time t ia and estimated O–D table qi

based on f i. Remove all paths whose flows equal to zero from Kr. Go to
step 1.

Theorem 4 Algorithm column generation converges to the optimal solution of the
relaxed SODE problem.

Proof When RMP is solved successfully (step 2), the optimality conditions are
satisfied for all paths contained in Kr. We only need to check unused paths. If for all
unused paths we have ckrs � qdkrs, then the optimality condition 13 is completely
satisfied. Whenever ckrs < qdkrs is detected and so the corresponding path need to be
included into Kr, we claim that the improvement of the objective function is ensured.
To see this, note that the entry of the gradient corresponding to the new path,
@z
@f krs

¼ ckrs � qdkrs, is negative. Denote the current path vector as f i and the one with
the newly generated path f i+1. The direction derivative along f iþ1 � f i ¼
0; . . . ; f krs; 0; . . .
� �T

is

rz f i
� �

; f iþ1 � f i
� 

< 0

That is, assigning a sufficiently small flow onto the new path always decreases
the objective function. As the objective function is continuously improved when new
paths are included, the convergence of the algorithm is ensured.

2 k* is NULL means that no paths violating the optimality conditions can be found.
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5 Numerical examples

To establish a benchmark for the various formulations and solution algorithms
proposed in this paper, we first employ a small network studied in Yang (1995). A
larger example is reported in Section 5.2. In all cases, the link performance function
is the BPR function

ta ¼ t0a 1þ a
Xa

Ca

� �b
" #

where Ca is the capacity of link a and t0a is its free flow travel time. a and b are
parameters taking values of 0.15 and 4 respectively in this study.

5.1 Yang’s network

The topology of the network and the synthesized “true” O–D demand table are given
in Fig. 1. The capacity Ca and free flow travel time t0a of each link can be found in
Table 4 of Yang (1995). Let Ao ¼ 1; 3; 9f g, and the “true” and “observed” traffic
counts are

xe1
xe3
xe9

24 35 ¼
222:58
187:50
262:42

24 35; x1
x3
x9

24 35 ¼
215
190
265

24 35
Note that the “true” traffic counts are obtained from a static UE traffic

assignment and “observed” ones are generated by perturbing the “true” counts. For
the purpose of demonstration, the following parameters are used:

wx ¼ 1:0;wq ¼ 1:0;wp ¼ 2:0; sp ¼ 192:86

In using these parameters, we set the same confidence level for traffic counts and
historical O–D tables, and a higher confidence for path travel time observations (if
they are available). The value of sp is set such that the magnitude of the path cost
term in the objective function is roughly in the same order as the other two terms.

1
1 5

7

2

5

8

6

3

9

4

2 13

9

4

3 7

14

106

8 11

12
1

2

3 4
200 150

140 185

True O-DTable

Fig. 1 The example network
and “true” O–D table
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5.1.1 Basic results

In this section, we provide preliminary testing results of the decoupled and the relaxed
SODE problems. For comparison purposes, the result from the conventional bi-level
model is also presented. Note that our implementation of the bi-level model employs
path flows as solution variables. As a result, the formulation is slightly different than
the one shown in Yang (1995). Particularly, ours takes the following form

The Leader Problem : min wx Pf � xð Þ2 þ wq f � UTq
� �2

; subject to :f � 0

The Follower Problem : P;Uð Þ ¼ Γ qð Þ; q ¼ Mf

Here Γ �ð Þ represents the UE assignment, and P and U are the path-link incidence
matrix and path-OD usage matrix, respectively. U plays a similar role as the
influence factor matrix in Yang (1995), i.e., carrying over the equilibrium path usage
from the follower problem to the leader problem. Note that the dimension of U
equals that of MT (M is the path-OD incidence matrix). An iterative optimization-
assignment method is employed to solve this bi-level formulation.

The decoupled SODE problem is formulated as in Eq. 3 but the covariance
matrices T and S are simplified as

T ¼ wxI; S ¼ wqI

where I is an identity matrix with proper dimensions. For the relaxed SODE problem
solved in this subsection, the term associated with observed path costs is excluded.
Moreover, the dispersion parameter θ is set as 0.05. Due to the small size of the
problem, the relaxed SODE problem is solved by enumerating all paths. We shall
compare different column generation strategies later.

The estimated O–D tables and corresponding path flows for two different
historical O–D tables are reported in Tables 1 and 2. rt in the tables denotes the root
mean squared error (RMSE) of an estimated O–D table q̂, i.e.,

rt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΣrΣs qrs �q̂rs

� �2
o

s
ð24Þ

where qrs is the “true”O–Ddemand between the O–Dpair rs, and o is the number of O–D
pairs. rt measures the distance between the estimated and “true” O–D tables. ge measures
the violation of the user equilibrium conditions of the estimated path flow pattern, i.e.,

ge ¼
X
r

X
s

Σk f̂
k
rs ĉkrs �p̂rs
� �
q̂rs

 !
ð25Þ

where π̂rs is the estimated minimum travel time (cost) between O–D pair rs, f̂ krs and ĉkrs
are the estimated path flow and time (cost) respectively.

In both cases, the two approximate methods produced O–D estimates comparable
to the bi-level method. For the first case (Table 1), none of the three methods
achieved significant improvements, apparently because the historical O–D table is
already close to the true one. The bi-level method provided the best performance
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with about 5% RMSE improvement.3 For the second case (Table 2), all three
methods achieved about 50% RMSE improvement over the down-scaled historical
O–D table. The decoupled method obtained the smallest rt in this case.

As expected, the estimated path flow patterns obtained by the bi-level
method best satisfied the UE conditions in both cases (ge is the smallest).
Although the decoupled method only assigned positive flows to UE paths, the
resulting path flow pattern produced considerable violations of UE conditions.
This is not a surprise since the travel times are only used in the decoupled
method for identifying UE paths externally. The relaxed method obtained a path
flow pattern relatively similar to that of the bi-level method. Although the
relaxed method assigned a small amount of flow to path 11 (which does not
actually belong to Ke) in both cases, it obtained a path flow pattern more similar
to that of the bi-level method and achieved a much smaller ge compared to the
decoupled method. Apparently, the scaled Beckman function helps push the
estimated flow pattern to approach the UE flow pattern.

Interestingly, although the path flow pattern obtained by the decoupled
problem is far from equilibrium, the corresponding O–D estimate (Table 2) is
the closest to the true O–D table. This observation seems to indicate that a
solution better observing equilibrium conditions does not necessarily
correspond to better O–D estimates.

5.1.2 The effect of θ

We proceed to examine the impact of the dispersion parameter θ, which determines
the weight of the Beckman term in the relaxed SODE problem. The historical O–D
table used hereafter is the one reported in Table 2. As shown in Fig. 2, when 1/θ
increases from 0.001 to 0.5, the resulting path flow pattern more and more conforms
to the UE conditions (with less ge). This confirms the role of the Beckman term in
steering the estimated path flow solution toward a UE solution.

On the other hand, the estimated O–D table tends to move further away from the
true O–D table as 1/θ increases. As discussed before, the Beckman term will
discourage flows from not only paths with higher costs but indeed all paths with
positive costs. As a result, a large 1/θ will lead to significant underestimation and
hence large rt. Figure 2 shows that the change of rt is not sensitive to θ in the range
of [20, 1,000], whereas the equilibrium gap was significantly improved as θ
decreases from 1,000 to 20. For this example, θ=20 seems to provide a proper
tradeoff between equilibrium and underestimation. To some extent θ reflects the
traveler’s sensitivity to the congestion level, and thus may be correlated with the
dispersion parameter in the logit traffic assignment model (Fisk 1980). If a
dispersion parameter has been calibrated with real data for the logit assignment
model, it may also be employed in the relaxed SODE problem. If no calibrated
results exist, θ can be selected such that the magnitude of the Beckman term roughly
equals that of all deviation terms as a whole.

3 Our bi-level results range between those of IEA and SAB algorithms according to Table 5 in Yang
(1995). Such minor differences were expected since we use a different formulation.
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5.1.3 Using observed path travel times

In real applications reliable historical O–D demand information is often not
available. We show in this subsection that observed path travel times can be a good
alternative input under such a circumstance.

Results with and without observed path costs are compared in Table 3. When
neither historical O–D information nor path costs are available, the estimated O–D
table significantly deviated from the true one (rt is about 90). Particularly, the
demand for O–D pairs 2 and 3 is heavily underestimated whereas the demand for O–
D pairs 2–4 is heavily overestimated. The quality of the estimated O–D table was
significantly improved as observed costs on path 1, 8, 12 and 13 were brought into
the estimation, as shown in the table. Not only was rt reduced by 2/3, but also the
uneven demand distribution among O–D pairs 2 and 3 and 2–4 was fixed. Moreover,
the equilibrium gap was substantially improved (from 6.2 to 2.2).

5.1.4 Different path generation strategies

So far all the relaxed SODE problems have been solved by path enumeration. We
now examine three path generation strategies and see how they affect estimation
accuracy and convergence.

& Strategy I: the path generation strategy described in Algorithm MCPA.
& Strategy II: force negative link costs to zero to avoid negative cycles, as

described in Remark 4 in Section 4.2.
& Strategy III: generate one path for each O–D pair in each iteration to reduce the

total number of iterations, as described in Remark 5 in Section 4.2.

Table 4 compares the estimated O–D tables and path flows obtained from the
three different strategies to those obtained from path enumeration. As expected,
strategy I produced an estimated O–D table identical to that from path enumeration.
Interestingly, the estimated path flows from Strategy I do not completely agree with
the path enumeration case. This illustrates multiple optimums of the relaxed SODE
problem in terms of path flows. Both strategies II and III failed to identify path 8 as

Fig. 2 The impact of the dispersion parameter
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one of equilibrium paths, even though the failure apparently came from different
reasons. The resulting path flow pattern is significantly different than the path
enumeration case and subject to much higher violation of equilibrium conditions.
However, note that the O–D table estimated from these two simplified strategies is
actually “better” than the one obtained from Strategy I in terms of rt. This
contradiction reinforces the comment we made in Section 5.1.1.

Figure 3 compares the convergence process of the three strategies. Starting from
an initial set of four paths, strategy I spent about six main iterations to identify the
optimal solution which uses eight paths. The final objective function value is
identical to the path enumeration case. Strategy II took four main iterations and
ended up with an optimal set of six paths. Yet it did not achieve the true optimal
objective function value. Obviously, some critical paths were missed from the path
search as negative costs were screened out. Strategy III spent only three iterations to
converge, but also got stuck before the true optimality was attained. In a nutshell, the
approximated column generation strategies may substantially reduce the total
number of iterations (hence computational overhead), but usually not converge to
true optimality. For large-scale problems it might be worthwhile to adopt these
approximation schemes to improve the overall computational efficiency, particularly
when negative cycles are prevalent.

5.1.5 Non-UE traffic counts

In this experiment, traffic counts are obtained from a non-UE traffic assignment,
which first assigns 80% of traffic according to UE and then assigns the rest to the
free-flow shortest paths. The assignment yields observed (small perturbation was
applied) counts 200, 185, 290 for links 1, 3 and 9, respectively. Algorithmic
parameters remain same as those specified in Section 5.1.1. Table 5 compares the
estimation results from bi-level and relaxation approaches. As expected, the
performance of the bi-level approach degrades substantially (compared to Table 2

Fig. 3 A comparison of different column generation strategies
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where all settings are the same except traffic counts) when the underlying traffic
distribution does not observe UE. On the contrary, the relaxation approach seems
robust, providing OD estimates comparable to those obtained earlier (see Table 2
again). Considering that UE is an idealized condition that real world traffic may well
deviate from, one should exercise caution when applying the bi-level approach to
estimate O–D trip matrices, for the traffic counts used in the estimation may not
come from a route choice process that satisfies UE.

5.2 A larger example

In this section we test the relaxation method over a larger network. Randomly created
from a grid-network generator, the network has 400 links, 140 nodes, and 380 O–D
pairs carrying 78799.43 trips in total. Traffic counts are produced from a static UE
traffic assignment, and assumed to be available on all links with a v/c ratio higher than
0.5 (the number of links satisfying this condition is 139). Two different historical O–D
demand tables are used. In case I, the table is produced by multiplying each entry in the
“true” table by 1.2. In case II, the multiplier is a random variable following a uniform
distribution between −0.75 to 1.25. The following parameters are employed in the
calculation wx=1.0, wq=0.5, θ=0.02. In addition to rt, the indices adopted to
measure the quality of the O–D estimates include

& Total demand captured (TDC): TDC measures the ratio of the total estimated
demands to the total true demands, i.e.,

TDC ¼ ΣrΣsq̂rs
ΣrΣsqrs

The best possible TDC is 1, which implies that the true total demands are
perfectly captured.

& RMSE Improvement factor (RIF): RIF measure the ratio of the root mean square
error of the estimated O–D table (with respect to the true O–D table) to that of
the historical O–D table, i.e.,

RIF ¼
RMSE q̂; q

� �
RMSE q; qð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
r

P
s q̂rs � qrs

� �2
P

r

P
s qrs � qrsð Þ2

vuuut

Table 5 Estimated results based on non-UE traffic counts

O–D True Historical Bi-level Relaxed (0.05)

1->2 200 180 173.99 189.55
1->3 150 135 160.18 144.50
2->3 140 125 161.21 135.05
2->4 185 160 165.01 170.24
rt 0 19.2 20.18 9.77
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& RMSE improvement ratio (RIR): RIR is the percentage of O–D pairs for which
the estimated demand is “closer” to the true demand than the historical demand,
i.e.,

RIR ¼
P

r

P
s n

t
rs

mao
; ntrs ¼ 1 if

q̂trs � qtrs
qtrs � qtrs

�����
����� < 1; and 0 otherwise

Table 6 summarizes the results in two cases (each corresponds to a different
historical O–D table) for both the relaxation and bi-level methods. Note that the
column generation strategy is not employed in the relaxation method due to the
likely existence of negative cycles. Instead, a predefined path set is formed using
the first five shortest paths of each O–D pair. Interestingly, the bi-level method did
not work well in this experiment. It only improved 3.4% of 380 O–D pairs in the
first case and none in the second. A closer examination of the results indicates that
the bi-level method has been trapped in the neighborhood of the historical O–D
table. The symptom is that the estimated O–D table is very similar to the one used as
the “target” while the link traffic counts are far from being well replicated (RMSEs
of estimated link counts are 596.42 and 108.16 in cases I and II respectively). The
relaxation method, however, did not seem to experience the same difficulties. As
shown in Table 5, the relaxation method improved 67.7 and 36.6% of all O–D pairs
in case I and II respectively, which is much better than the bi-level method. Note that
the overall RMSE was improved only in the first case (RIF ¼ 0:62 < 1). In the
second case the overall RMSE was slightly increased (RIF ¼ 1:17 > 1:0) even
though more than 1/3 of O–D pairs have an improved RMSE. Moreover, the link
traffic counts were better replicated in the relaxation method (RMSEs of estimated
link counts are about 2–5% of those obtained from the bi-level method).

As for the computational efficiency, the bi-level method was terminated after five
and two major iterations in cases I and II, consuming about 3 and 0.4 s of CPU time
respectively. It should be pointed out that these small numbers of iterations might be
caused by the aforementioned “traps” forbidding further progress. The relaxation
method, on the other hand, spent 5,000 iterations (the maximum allowed number of
iterations) in both cases (approximately equal to 35 to 40 s CPU time) to achieve a

Table 6 Estimation results for the large grid network

Case I Case II

Bi-level Relaxation Bi-level Relaxation

TDC (%) 119.46 103.46 100.51 98.83
rh 54.8 54.8 31.63 31.63
rt 64.57 34.18 31.63 36.94
RIF 1.2 0.62 1 1.17
rl 596.42 11.83 108.16 6.29
RIR (%) 3.4 67.6 0.0 36.6

rh RMSE of the historical O–D demand table, rt RMSE of the estimated O–D demand table, rl RMSE of
the estimated link traffic counts
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satisfactory convergence. The seemingly slow convergence of the relaxation method
is partly due to the redundant paths included in the solution set. As observed, a large
amount of iterations were needed to clear flows on those paths. Second but more
important, the step size along the anti-gradient direction tends to be rather small in
order to observe the feasibility, particularly when the solution gets into the
neighborhood of the optimal solution. A more suitable nonlinear program solver
might significantly accelerate the convergence of the relaxation method. Finally, the
computational expense per iteration of the bi-level method is roughly 20 to 40 times
higher than that of the relaxation method in this case. As this extra effort is tied to
solving the equilibrium problem, it increases with the size of the problem and the
difficulty of finding equilibrium solutions. As a result, the relaxation method might
outperform the bi-level method computationally for large size problems in which
finding good equilibrium solutions is time-consuming.

6 Conclusions

Conventional formulations for the O–D estimation problems have a bi-level structure
which poses both analytical and computational difficulties. Such a bi-level
formulation is particularly problematic when applied in the dynamic context when
an efficient solution procedure does not exist to perform traffic assignment—the
lower level problem. This study proposes a strategy which relaxes the equilibrium
conditions but still takes users’ route choice behavior into account. The relaxation
strategy intends to discourage the use of non-equilibrium paths by incorporating the
Beckmann’s cost function into the objective. In addition to traffic counts, the relaxed
formulation can incorporate other observations such as historical O–D information
and path travel times measured from probe vehicles. We proposed a solution
procedure based on column generation for the relaxed formulation and proved its
convergence.

Using a benchmark example, we compared the estimation results obtained from
bi-level, decoupled and relaxed formulations. Our sensitivity analysis confirmed the
role of the Beckman term in steering the estimated path solution toward a UE
solution and demonstrated how such a role is affected by the dispersion parameter.
The results also showed that using observed path travel times helped improve the
estimation quality, in the absence of good historical O–D information. A larger
example was also tested to demonstrate the efficiency of the relaxation method.

Applying the relaxation strategy to the dynamic O–D estimation problem is an
immediate next step and an on-going research. Other directions for further
investigations include to consider other behavioral assumptions such as stochastic
user equilibrium, and to develop a proper calibration procedure for the dispersion
parameter.
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