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Abstract This paper proposes a network-based model for investigating the optimal
transit fare structure under monopoly and oligopoly market regimes with uncertainty
in the network. The proposed model treats the interaction between transit operators
and transit passengers in the market as a two-level hierarchical problem with the
transit operator sub-model at the upper-level and the transit passenger sub-model at
the lower-level. The upper-level problem is to determine the fare structure so as to
optimize the objective function of the transit operators, whereas the lower-level
problem represents the path choice equilibrium of the transit passengers. In order to
consider the uncertainty effects on transit network, the proposed model incorporates
the unreliability component of transit services into the passenger disutility function,
which is mainly due to variations of the in-vehicle travel time and the dwelling time
of transit vehicles at stops. With the use of the proposed model, a numerical example
is given to assess the impacts of the market regimes and the unreliability of the
transit services on the optimal transit fare structure.
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Notation
G modified transit network with G=(N, S )
N set of nodes representing centroids and transit stops, in which passengers can

board, alight or change vehicles
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S set of links in the transit network G; S=S1∪S2
S1 set of transit links which connect two transit stops
S2 set of walking links including the access links from origin to transit stops or

the egress links from alighting points to destination
W set of network origin-destination (OD) pairs, wZW
Rw set of paths connecting OD pair wZW in the transit network
Pw
r probability that path r is chosen for a trip between OD pair wZW

θ parameter representing the perception variation of passengers on travel
disutility

ur expected travel disutility on path r
us expected travel disutility on link s
δsr indicator variable; it equals to 1 if link s is on path r, and 0 otherwise
hr passenger flow on path r
vs passenger flow on link s
Sw expected minimum disutility between OD pair wZW
gw total resultant passenger demand between OD pair wZW; gw=Gw(Sw)
g0w potential (or latent) passenger demand between OD pair wZW
πw parameter of demand sensitivity to travel disutility between OD pair wZW
L set of transit lines in the transit network
pls fare of line l on link s
Nl number of vehicles or fleet size on line l
C0
l fixed operating cost of line l

C1
l operating cost per vehicle-hour on line l

K set of transit operators in the transit network
Lk set of transit lines operated by operator k
Фk profit of transit operator k
As set of attractive lines on link s
Ts actual travel time on link s; a random variable with mean ts [i.e. ts=E(Ts)]

and standard deviation σs

Ts1 actual in-vehicle travel time on link s; a random variable with mean ts1 [i.e.
ts1=E(Ts1)] and standard deviation σs1

Ts2 actual waiting time on link s; a random variable with mean ts2 [i.e. ts2=E
(Ts2)] and standard deviation σs2

gs in-vehicle crowding discomfort cost on transit link s
f (σs) unreliability cost of transit services on link s; a function of the standard

deviation σs of the travel time on link s
τ1, τ2 parameters for converting the different quantities to the same unit
ρs, σs parameters for measuring the relationship between mean and variance of

travel time
t0s free-flow travel time on link s
tls mean in-vehicle travel time of line l passing through link s
xls probability of passengers on link s choosing line l
fl frequency of line l; a random variable with mean E(fl) and standard deviation

σ(fl)
fs total frequency on link s; a random variable with mean E(fs) and standard

deviation σ(fs); fs ¼
P

l2As
fl

gls in-vehicle discomfort cost of line l passing through link s
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gl0s baseline discomfort level or riding quality of line l passing through link s
vls passenger flow of line l passing through link s
vls passenger flow competing with vls for the same common capacity of line l on

link s
vs passenger flow competing with vs for the same common capacity on link s
κ l capacity of transit vehicle on line l
Kl capacity of line l; Kl=κlfl
Ks total vehicle capacity on link s; Ks ¼

P
l2As

Kl

i(s) tail node of link s
Alþ
i sð Þ set of links going out from node i(s) on which line l is included as an

attractive line but link s is excluded
A
l
i sð Þ set of links on which line l is included as an attractive line, with origin node

before i(s) and end node after i(s)
l1 parameter for measuring the degree of unreliability of transit services
tsþ �ð Þ walking time in direction + (−) on walkway s with bi-directional flows
Cs capacity of physical walkway s under unidirectional flow conditions
Γl cycle journey time of a transit vehicle on line lZL; a random variable with

mean E(Γl(v)) and standard deviation σ(Γl(v))
dtnl vð Þ dwelling time for the transit vehicle at node n on line l; a random variable

with mean dtnl vð Þ and standard deviation s dtnl vð Þ� �
h vector of path passenger flow; h ¼ hr; r 2 Rw;w 2 Wð Þ
v vector of link passenger flow; v ¼ vs; s 2 Sð Þ
p vector of transit fare; p ¼ pls; s 2 S1; l 2 L

� �
g vector of OD demand; g ¼ gw;w 2 Wð Þ

1 Introduction

Recently, optimizing transit fare structure has been advocated as an efficient means
of coordinating transit passenger demand and alleviating traffic congestion in Hong
Kong (Zhou et al. 2005). This can be attributed to the fact that Hong Kong, a city of
more than 6.9 million people with a land area of only 1,095 km2, has a well-
established and extensive transit network with a variety of transit services. A large
proportion of the population uses transit services as the main mode of transportation.
Over 90% of the 11 million daily trips in Hong Kong are made on privately operated
public transit services (Transport Department 2003). In this highly competitive and
profitable environment, it is, therefore, crucial for transit operators to optimize and
design their fare structures carefully to compete with other operators to maximize
their own profits.

The optimization and design of transit fare structure have been extensively
studied from the perspective of transportation economics (Kocur and Hendrickson
1982; Yang and Woo 2000; Yang et al. 2001) and network equilibrium (Lam and
Zhou 2000; Zhou et al. 2005). However, most of these existing studies have
considered only time and cost-related attributes as explanatory variables of the
quality of transit services. Service reliability has often been ignored in describing the
quality of transit services. The empirical studies that have been conducted by Allen
et al. (1985) and Frima et al. (1998), however, have found that reliability is one of
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the most important factors for measuring the quality of transit services. Transit
passengers consider not only time and cost-related factors but also the reliability of
the services in their travel decision making.

The unreliability of transit services can be caused by uncertainty in line-haul (or
in-vehicle) travel time and/or transit vehicle dwelling time at stops. The uncertainty
of the line-haul travel time, particularly for the bus mode, may be due to variations
of the congestion level on the road network as a result of the time of day, day of the
week, and/or season. The uncertainty of the dwelling time of transit vehicles at stops
may be due to the fluctuations in passenger volumes boarding and alighting at stops.
The sources of these uncertainties in transit services can be referred to as recurrent
congestion. Non-recurrent congestion, which is caused by unexpected irregular and
random incidents, such as traffic accidents, vehicle breakdowns, road work, signal
failure, or adverse weather, is another important source that induces the unreliability
of transit services (Yin et al. 2004). In this paper, attention is given to the effects of
recurrent congestion on transit services and the effects of non-recurrent congestion
are left for future studies.

The aforementioned sources of transit service uncertainty lead to variability of the
transit service frequency and subsequently the fluctuation of passenger waiting times
at transit stops. Thus, transit passengers have to incorporate more redundancy or an
additional time margin into their travel schedules to accommodate the possible
uncertainty of transit services (Jackson and Jucker 1981; Hall 1983).

Although the existing reliability studies mainly focus on the auto (or highway)
network, the issues of reliability of transit services have recently attracted
considerable attention. Tisato (1998) studied the effects of unreliable bus services
on the subsidy requirements. Carey (1999) proposed various measures of schedule
reliability for improvements of transit services. Bell et al. (2002) adopted an
absorbing Markov chain model for the transit assignment problem so as to analyze
the reliability of transit networks. Yin et al. (2004) introduced the concept of waiting
time reliability, i.e., the probability that the average waiting time of passengers is less
than a given threshold, as a complement of the schedule reliability measure. Chien et
al. (2007) developed a probabilistic model to optimize disseminated real-time bus
arrival information for pre-trip passengers.

The previous related studies on transit reliability mainly stemmed from the
operator’s point of view and the key focus was on the assessment of the reliability of
transit services. Little attention has been paid to assessing the impacts of the
reliability factor on the travel behavior of passengers, i.e., modeling the effects of
transit service reliability from the passenger’s perspective. This is a very important
consideration indeed to improve the design and planning of transit services to
accommodate the needs of passengers.

This paper incorporates the uncertainty effects of transit services into an
investigation of the optimal transit fare structure under the monopoly and oligopoly
market regimes. The three objectives of this paper are (1) to propose a network-
based model that explicitly incorporates the unreliability of transit services in the
route choice decisions of passengers, (2) to determine the optimal transit fare
structure under different market regimes and compare the efficiency of different
market regimes in terms of total system profit and social welfare, and (3) to ascertain
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the effects of the unreliability of transit services on the optimal market fares and on
the market shares among the competing transit services.

In the proposed model, there are two types of agents: transit operators and transit
passengers. Transit operators compete for passengers by adjusting their fare
structures. In response to the fare structures that are determined by transit operators,
transit passengers select the transit route that minimizes their perceived disutility of
travel. This results in the interplay between operator and passenger equilibrium
problems. To consider the uncertainty effects of transit services, the model that is
proposed in this paper explicitly incorporates the reliability factor of transit services
into the travel decisions of passengers. To enhance the realism of the modeling
framework, the transit vehicle dwelling time at the stops due to passenger boarding
and alighting and the walking delays on walkways are explicitly represented by
flow-dependent functions. In addition, passenger demand elasticity and passenger
discomfort due to crowding within transit vehicles are also considered in the model.

The remainder of this paper is organized as follows. In Section 2, some basic
concepts and assumptions are described. Section 3 presents the model formulation.
Section 4 provides a numerical example to illustrate the application of the proposed
model. Finally, conclusions are given in Section 5 together with recommendations
for further studies.

2 Basic considerations

2.1 Some useful concepts

A transit network is composed of a set of transit lines and stations (nodes) at which
passengers can board, alight, or change vehicles. A transit line is a group of vehicles
that run back and forth between two transit stops, and can be described by the
frequency of the vehicles and the vehicle types (e.g., bus or metro). A line segment is
any portion of a transit line between two consecutive stations. All vehicles in the
same line going through the same sequence of transit stops are on the same itinerary.
A line section is any portion of a transit line between two (not necessarily
consecutive) transit stops of its itinerary.

In a transit network, different transit lines can run in parallel for parts of their
itineraries and have stations in common. In other words, there exist the overlapping
routes that share the same transit stops while running on common segments. The
existence of the common lines or attractive lines problem poses a challenge to transit
network modeling. De Cea and Fernandez (1993) adopted the concept of route
sections to simplify the calculation of common lines. A transit route is defined as a
path that a transit passenger can follow in the transit network to travel between any
two nodes. In general, a transit route can be identified by a sequence of nodes, with
the first node as the origin of the trip and the final node as the destination. All of the
intermediate nodes represent the transfer points on this route. The section between
two consecutive transfer nodes is referred to as a route section or link. Therefore, a
transit route, which is also referred to as a path in this paper, can be described as a
series of route sections or links.
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Figure 1 gives a simple example to illustrate these concepts. In Fig. 1(a), a transit
network with one origin–destination (OD) pair and four lines is represented in terms
of lines and itineraries. Figure 1(b) shows the modified transit network, which is
represented in terms of route sections or links. With the concept of the route section
or link, a primitive transit network is transformed into a simplified network that is
described by a set of nodes and a set of links. Figure 1(b) also shows that there are
two types of links in the transit network: the links (route sections) between two stops
or nodes, which are referred to as the transit links in this paper, and the walking
links, i.e., the access links from origin centroids to transit stops or the egress links
from alighting points to destination centroids. For example, links s1, s2, s3, s4, s5, and
s6 in Fig. 1(b) are transit links, and links (O, N1) and (N4, D) are walking links.

2.2 Assumptions

To facilitate the presentation of the essential ideas without loss of generality, the
following basic assumptions are made in this paper.

A1 There are two types of agents in the transit network: transit passengers and
transit operators. Accordingly, two interrelated competitive equilibria exist, i.e.,
the competitive equilibrium among transit operators and the competitive travel
choice equilibrium of transit passengers.

A2 Transit passengers make their route choice decisions in a stochastic manner
based on the tradeoff between the service quality or travel disutility of different
transit services. The disutility of travel is measured by a weighted combination
of the travel time, monetary cost, in-vehicle crowding discomfort, and
unreliability cost of transit services. The unreliability of transit services is
affected by variations of the in-vehicle travel time and transit vehicle dwelling
time at transit stops, which lead to variability of the transit service frequency
and thus the fluctuation of the passenger waiting times at transit stops. The

Lines and itineraries: 
L1: N1 , N4  
L2: N1 , N2 , N3 

L3: N2 , N3 , N4 

L4: N3 , N4  

L2 L2 

L3 

N2 N4O DN3

L4 

L3 
N1 

L1

s3(L2) 

Attractive lines 
Link 

s1(L1) 

N2O D N3N1 N4

s2(L2) 

s4(L2, L3) s5(L3, L4)

s6(L3) 

a

b

Fig. 1 (a) The original transit network. (b) The modified transit network
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passenger discomfort measure and waiting time are mainly due to passenger
crowding within transit vehicles and transit stops, respectively.

A3 The common line problem in the transit network leads passengers at a transit stop
to face multiple alternative transit lines. Hence, passengers cannot decide
beforehand which line to board between any pair of two consecutive transfer
stops on their journeys. Passengers can choose not to board the vehicle that arrives
first and wait for the next vehicle with express service to minimize their total
journey time. In this paper, it is assumed that the passengers who are boarding or
waiting on a transit link will be allocated to each line in the set of attractive lines
that is associated with that link in the proportion of their mean frequencies
(Nguyen and Pallottino 1988; De Cea and Fernandez 1993; Uchida et al. 2005).

A4 It is assumed that the uncertainty of transit services is caused by recurrent
congestion. The effects of non-recurrent congestion are not considered in this
paper. The uncertainty of transit services is modeled on the basis of the em-
pirical studies of Richardson and Taylor (1978) and Taylor (1982), i.e., the
actual link travel time follows the independent normal distribution, and the
relationship between the mean, ts, and standard deviation, ss, of the link travel
time satisfies σs ¼ ρs ts

�
t0s � 8s

� � ffiffiffi
ts

p
, where t0s is the free-flow travel time on

link s, and ρs and 8s are link-dependent parameters that can be calibrated by
observed data.

A5 An elastic demand function is used to represent the responses of passengers to
changes in the disutility of travel (or generalized costs of travel) due to traffic
congestion and/or transit operator strategies. The crowding effect within the
transit vehicles can be modeled by a discomfort cost function (Spiess and
Florian 1989; Wu et al. 1994; Lo et al. 2003).

3 Model formulation

According to A1, there are two types of agents in the transit market; namely transit
passengers and transit operators. The transit operators optimize their fare structures
to achieve their own objective, whereas the transit passengers choose the transit
service that minimizes their perceived disutility of travel. This induces two
interrelated competitive equilibria, i.e., the competitive travel choice equilibrium of
transit passengers, which is described as transit passenger path flow sub-model, and
the competitive equilibrium among transit operators, which is described as transit
operator optimal fare sub-model. In the following, we in turn formulate these two
sub-models.

3.1 Transit passenger path flow sub-model

3.1.1 Transit passenger path choice equilibrium

Consider a transit network G=(N, S), where N is the set of all nodes (transit stations)
and S is the set of all links, including the transit links between two transit stops and
the walking links from origin centroids to transit stops or alighting points to
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destination centroids. Let W be the set of OD pairs, wZW, and Rw be the set of paths
(routes) between OD pair wZW. In a multinomial logit-based stochastic user
equilibrium (SUE), the probability Pw

r that path r is chosen between OD pair wZW
is given by (see, e.g., Sheffi 1985)

Pw
r ¼ exp �θurð ÞP

r2Rw

exp �θurð Þ ; 8r 2 Rw;w 2 W ð1Þ

where the parameter θ represents the variation of passenger perception on travel
disutility. The higher the value of θ, the smaller the variation of passenger per-
ception, and vice versa. The (expected) travel disutility ur on path r can be expressed
as the sum of all of the (expected) travel disutilities on links along this path, i.e.,

ur ¼
X
s2S

usdsr; 8r 2 Rw;w 2 W ð2Þ

where us is the expected travel disutility on link s. δsr=1 if link s is on path r
between OD pair w, and 0 otherwise.

As stated in A2, the travel disutility us on link s is composed of the in-vehicle
travel time, waiting time, crowding discomfort, fare, and access/egress time (i.e.,
walking time). In order to consider the uncertainty effects, which is mainly due to
variations of the in-vehicle travel time and the dwelling time of transit vehicles at
stops, the unreliability cost of transit services is explicitly incorporated into the
disutility function. For the detailed definition of the link travel disutility in the transit
network, readers may refer to Appendix A.

Therefore, the passenger flow, hr, on path r can be computed by

hr ¼ gwP
w
r ; 8r 2 Rw;w 2 W ð3Þ

where gw is the total resultant passenger demand between OD pair w. Hence, the
passenger flow, vs, on link s can be expressed as the sum of the flows on the paths
that are related to link s, i.e.,

vs ¼
X
w2W

X
r2Rw

hrdsr; 8s 2 S ð4Þ

According to the random utility theory, the expected minimum disutility, Sw, between
OD pair w can be measured by the following log-sum formula (Oppenheim 1995),

Sw ¼ � 1

θ
ln
X
r2Rw

exp �θurð Þ; 8w 2 W ð5Þ

Consequently, the total resultant passenger demand gw between OD pair w can be
defined by a continuous and monotonically decreasing function Gw �ð Þ of the travel
disutility Sw for the OD pair concerned, i.e.,

gw ¼ Gw Swð Þ; 8w 2 W ð6Þ
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3.1.2 Equivalent fixed-point formulation

According to Eqs. (1)–(6), it can be inferred that the transit passenger path flow hr,
∀rZRw,wZW is the function of the expected path travel disutility ur, ∀rZRw,wZW,
which is the function of the expected link travel time ts, ∀sZS in terms of the
equations that are defined in Appendix A, which is in turn the function of the link
flow vs, ∀sZS, and thus the function of the path flow hr, ∀rZRw,wZW, itself
according to Eq. (4). Therefore, the proposed model can be formulated as a fixed-
point problem with regard to the path flows.

Proposition 1 The transit network equilibrium conditions (1)–(6) for a given
strategy set of transit operators are equivalent to finding a vector h such that the
following fixed-point problem holds.

h* � F h*
� �

� 0; h* 2 4 ð7Þ

with F hð Þ ¼ gwPw
r ; 8r 2 Rw;w 2 W

� �
and 4 ¼ hj P

r2Rw

hr ¼ gw; 8w 2 W

( )
.

It should be pointed out that the link travel time functions and the elastic demand
functions that are defined in this paper are assumed to be continuous. As a result, the
feasible set Ω is closed because the OD demand is bounded, thus there exists at least
one solution to the fixed-point problem (7) according to the Brouwer’s fixed-point
theory. Moreover, it is easily proved that the uniqueness of the model solution can be
guaranteed if all of the link travel time functions and the elastic demand functions
are strictly monotone (Patriksson 1994; Zhou et al. 2005). The fixed-point problem
(7) can be solved effectively by using a solution algorithm recently proposed by
Huang and Li (2007), which is based on the method of successive averages in
conjunction with the logit-type assignment process.

3.2 Transit operator optimal fare sub-model

3.2.1 Profit function of transit operators

The fare structures adopted by transit operators would have significant impacts on
the route choice decisions of passengers and subsequent effects on the passenger
flow distribution in the transit network, and thus, on the profits of transit operators.
The net profit of a transit operator is the total revenue that is generated from the
passenger fares minus the total transit service operating costs.

Suppose that there are K transit operators and Lk is the set of transit lines that is
operated by operator k, then the net profit, Φk, of operator k can be expressed as

Φk p; v pð Þð Þ ¼
X
s2S

X
l2As\Lk

plsv
l
s �
X
l2Lk

C0
l þ NlC

1
l

� �
; 8k 2 K ð8Þ

where As is the set of attractive lines on link s and l 2 As \ Lk means that line l that
is provided by operator k passes through link s. pls and vls are the fare and the
passenger flow of line l on link s, respectively. p and v are the vectors of the fare and
the passenger flow, respectively. Nl is the number of transit vehicles on line l, C0

l is
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the fixed operating cost of line l, and C1
l is the operating cost per vehicle-hour on

line l. The first term on the right-hand side of Eq. (8) represents the total revenue of
operator k. The second term represents the total costs of operator k, which consist of
the fixed cost C0

l and the variable operating cost NlC1
l that is proportional to the total

vehicle hours (Chien and Schonfeld 1998; Yang and Woo 2000).

3.2.2 Market equilibrium

With the aforementioned assumptions and model, we now investigate the optimal
transit fare structure under the following scenarios: the monopoly market (with profit
maximization), the social optimum and the oligopolistic competitive market.

Monopoly market The monopoly market in this paper refers to the situation at which
all transit lines are operated by a single profit-driven firm or agency to which the
monopoly rights have been conferred by the government. Under this monopoly
condition, the profit-maximizing firm will determine the transit fare structure to
maximize its net profit that is generated from the operation of the whole transit
system. The optimal fare structure under the monopoly market can then be
determined by

max
p

X
k2K

Φk p; v pð Þð Þ ð9Þ

where v(p) is obtained by solving the following transit passenger flow sub-model
(note that v relates to h by Eq. (4))

h* � F h*
� �

¼ 0; h* 2 4 ð10Þ

The proposed monopoly model (9)–(10) is actually a mathematical program with
equilibrium constraints or a bi-level programming problem (Luo et al. 1996).

Social optimum Similar to the monopoly market with profit maximization, the social
optimum case assumes that the transit market is managed by a single operator but
with an objective to maximize the total social welfare. The total social welfare (SW)
per unit period is defined as the sum of the surplus of consumers and the net profit of
the transit operator. Thus, the social optimum solution is derived by

max
p

SW p; g pð Þ; v pð Þð Þ ¼ α1

X
w2W

Z gw pð Þ

0
G�1

w uð Þdu� α1

X
w2W

gw pð ÞSw pð Þ

þ
X
k2K

Φk p; v pð Þð Þ ð11Þ

where g(p) and v(p) solve the following transit passenger flow sub-model (note that
g and v relate to h by Eqs. (3) and (4) respectively)

h*� F h*ð Þ ¼ 0; h* 2 4 ð12Þ
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The parameter α1 in Eq. (11) is the value of time for evaluation purposes. The
first and second terms on the right-hand side of Eq. (11) are the total utilities of
travelers and the expected total disutility (including transit fares) incurred by all
passengers in the transit market, respectively. The net of these two terms is the net
user benefit. The last term is the profit of the transit operator that is determined by
Eq. (8).

Oligopoly market The oligopoly market refers to the situation in which transit
services are provided by a number of independent transit operators. Each of the
operators seeks to optimize its fares to maximize its own profits. This leads to an
oligopolistic competitive equilibrium, or Cournot–Nash game, for which the
equilibrium fare structure can be obtained by

max
pk

Φk pk ; p�k ; v pk ; p�k
� �� �

; 8k 2 K ð13Þ

where v(pk, p−k), which relates to h by Eq. (4), is obtained by solving

h*� F h*ð Þ ¼ 0; h* 2 4 ð14Þ

In the objective function (13), pk represents the oligopolistic competitive solution
of the transit fares for operator k, and p−k represents that of the other operators
excluding k.

The oligopolistic competitive equilibrium can also be represented as

Φk pk*; p�k*; v pk*; p�k*
� �� � � Φk pk ; p�k*; v pk ; p�k*

� �� �
; 8pk ; k 2 K ð15Þ

where v(pk, p-k) is given by Eq. (14) in virtue of Eq. (4). Inequality (15) implies that
at equilibrium no operator can increase its own profit by unilaterally changing fares.
Model (13) or (15) can further be formulated as an equivalent variational inequality
problem (Zhou et al. 2005).

Finally, it should be mentioned that all of the above bi-level optimization
problems with transit passenger flow sub-model at the lower-level can be solved
using some heuristic approaches such as the sensitivity analysis based algorithm
(Yang 1997) and simulated annealing algorithm (Li et al. 2007).

4 Numerical studies

To facilitate the presentation of the essential ideas and contributions of this paper, the
proposed model is applied to an example transit network. This numerical example is
intended to determine the optimal transit fare under different market regimes and to
compare the efficiency of different market regimes. It is also used to ascertain the
effects of the unreliability of transit services on the optimal market fares and on the
market demand shares among the competing transit services.
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4.1 Data input

The example transit network is shown in Fig. 2(a). It consists of two OD pairs (A–B
and B–A), six transit stops (bus stations C, D, E, and F, and metro stations P and Q),
four bus lines (L1, L2, L3, and L4), one metro line (L5), and four bi-directional
walking links (A–C, A–P, B–F, and B–Q). L1(1), L1(2), and L1(3) are the line segments
of L1 between C and D, between D and E, and between E and F, respectively. L2(1)
and L2(2) are the line segments of L2 between C and D and between D and E,
respectively. L3(1) and L3(2) are the line segments of L3 between D and E and
between E and F, respectively. Without loss of generality, it is assumed that the in-
vehicle travel times between two consecutive nodes are equal for both directions.
The basic input data for the numerical example are given in Tables 1 and 2,
respectively. Figure 2(b) shows the modified example transit network.

 Walk link Bus line Metro line Zone centroid 

L1(1) B A C D E

P Q

L2(2) L2(1) L4 

L3(1) L3(2) 

L5 

L1(2) L1(3) F 

a

Bus link Metro link Zone centroid Walk link 

A C1  D1 E1 F1

 Q

a1(L1) 

a2(L1,L2) a3(L1,L2,L3) a4(L1,L3,L4) 

a5(L1,L2) a6(L1,L3) 

a7(L5) 

B 

P 

b

Fig. 2 (a) The example transit network. (b) The modified example network
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The elastic demand function for each OD pair is specified as

gw ¼ g0w exp �pwSwð Þ; 8w 2 W ð16Þ
where g0w is the potential demand between OD pair w, and πw is a parameter that
reflects the demand sensitivity to the travel disutility by OD pair.

It is assumed in this numerical example that the potential demand for each OD
pair is 5,000 (pass/h). The average speed of travel by bus is 25 km/h and by metro is
60 km/h. It is also assumed that there are two terminals for each of the transit lines,
and that the stationary time at each terminal of the bus lines is 0.1 h and the
stationary time at each terminal of the metro line is 0.05 h. The free-flow walking
time and the capacity for each of the walking links are 0.15 (h) and 5,000 (pass/h),
respectively. The baseline discomfort level for all of the in-vehicle links is assumed
to be zero. The other model parameters are: α1=50, β1=120, α2=0.5, β2=120, +1=
0.15, +2=0.15, n1=3.0, n2=3.0, B=0.15, x=-0.24, y=5.71, l1=1.0, l2=1.0, θ=0.9,
and π=0.5. In the following analyses, unless specified otherwise, the input data
above are considered as the reference or base case.

4.2 Analyses of numerical results

Monopolistic solution in a fully unregulated transit market We first consider the
monopolistic solution in which there exists only one profit-maximizing firm or agency
that operates the transit services in the market. Figure 3 displays the contours of the
total system net profit and social welfare when the bus and metro fare levels are
varied. It can be observed in Fig. 3 that different combinations of bus and metro fare
levels can lead to three possible outcomes: positive profit, neutral profit, or negative
profit. The profit-maximizing solution is given by solving the monopoly problem (9)–
(10). The solution occurs at point G with the fare rate of $0.71 and $0.92 for bus and
metro rides, respectively, with the maximum profit of $4,923 per hour.

Social optimum solution We now look at the social optimum solution for this
numerical example. From the social welfare perspective, efficient allocation is a

Table 1 Basic input data for the example transit network

Basic data Bus line Metro line

L1(1) L1(2) L1(3) L2(1) L2(2) L3(1) L3(3) L4 L5

Length of line (km) 8.5 8.5 8 7.5 7 7.5 7 7 15
Number of vehicles 14 14 14 11 11 6 6 3 3
Vehicle capacity (pass/veh) 120 120 120 120 120 120 120 120 400

Table 2 Basic input data for the model coefficients

Ca 8a ρa

In-vehicle travel time 1.0 0.9 0.1, Bus; 0.01, Metro
Waiting time 2.0 0.9 0.5, Bus; 0.25, Metro
Walking time 1.8 0.9 0.05
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combination of bus and metro fares that would maximize the social welfare as
defined by Eq. (11). Figure 3 shows that the social optimum occurs at point H with
the fare rate of $0.39 and 0.41 for bus and metro rides, respectively, which results in
a social surplus of $470,099 per hour. However, the social optimum solution entails
a deficit of $3,979 per hour for the total transit operation, with $456 per hour for bus
operation and $3,523 per hour for metro operation. Therefore, in order to achieve the
social optimum, a form of subsidy to the transit operator is required. Figure 3 also
indicates that welfare loss occurs with the combination of high fare levels for metro
and/or bus rides. It is because this fare combination would lead to the result that the
total social costs of the transit system cannot be offset by its benefit.

Oligopolistic competitive solution The oligopolistic competitive solution can be
determined at the point with the maximum profits for both bus and metro operators
in terms of Eq. (13) or (15). Figure 4 plots the profit contours of bus and metro
operators in the space of the fare structures of the bus and metro operators. Point M,
which is shown in Fig. 4, is the intersection between the two red and dashed curves
that pass through the vertices of the profit contours for the bus and metro operators,
respectively. The fares of the bus and metro operators at point M are, respectively,
$0.57 per unit distance and $0.76 per unit distance, which results in the profits of
$2,010 per hour and $2,087 per hour for the bus and metro operators, respectively.

It should be pointed out that point M can be confirmed as an oligopolistic
competitive equilibrium solution by checking whether point M satisfies Eq. (15). In
fact, the two red and dashed curves that pass through the vertices of the profit
contours are the response curves to profit maximization of one operator in response
to the fare change of the other operator. Specifically, as the fare rate of the bus
operator is fixed at $0.57 per unit distance, the metro operator has to set the fare rate
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at $0.76 per unit distance to maximize its own profit; any other fare settings for the
metro operator would lead to a lower profit, and vice versa. Therefore, point M
represents the situation at which neither operator has an incentive to change its fares,
which implies that Eq. (15) is satisfied at point M. In addition, it can be seen in
Fig. 4 that point M is located within the common positive profit area of the bus and
metro operators.

In Figs. 3 and 4, it can be observed that the total profits and the social welfare
generated by oligopolistic competition solution lie between those by the monopoly
solution and the social optimum solution.

The effects of transit service unreliability on optimal market fares Table 3 illustrates
the impacts of the transit service unreliability on the optimal fare structure under
different market conditions, including the monopoly, social optimum and oligopo-

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Bus fare per unit distance ($/km)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

M
et

ro
 fa

re
 p

er
 u

ni
t d

is
ta

nc
e 

($
/k

m
)

Metro operator’s
zero profit curve 

Bus operator’s 
zero profit curve

Oligopolistic 
competitive solution

0.76 

0.57 

M 

Bus operator’s profit Metro operator’s profit 

Fig. 4 Oligopolistic solution
with fare competition between
bus and metro operators

Table 3 The impacts of transit service unreliability on the market equilibrium solutions

Monopoly
solution

Oligopoly
solution

Social optimum
solution

Degree of transit service unreliability (l1) l1=0.0 l1=1.0 l1=0.0 l1=1.0 l1=0.0 l1=1.0
Bus fare ($/km) 0.67 0.71 0.50 0.57 0.29 0.39
Metro fare ($/km) 0.85 0.92 0.61 0.76 0.26 0.41
Total profit ($/h) 14,005 4,923 11,834 4,097 −1,751 −3,979
Bus profit ($/h) 14,819 2,326 13,349 2,010 7,008 −456
Metro profit ($/h) −814 2,597 −1515 2,087 −8,759 −3,523
Total demand (pass/h) 3,308 2,576 4,254 3,035 5,883 4,079
Bus demand (pass/h) 1,725 848 2,125 1,011 2,745 1,167
Metro demand (pass/h) 1,582 1,728 2,129 2,024 3,137 2,912
Social welfare ($/h) 553,633 371,218 650,047 420,436 717,852 470,099
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listic competition. It is noted in Table 3 that as the level of transit services degrades
from a fully reliable level (i.e. l1=0.0) to a less reliable level (i.e. l1=1.0), the
optimal market fares go up for a given market regime. The interesting phenomenon
can be explained by the supply-demand equilibrium curves, as shown in Fig. 5. In
fact, the degradation of the transit service level implies that the supply curve for
transit services moves from S1 to S2. With the same demand curve D, the market
equilibrium point would thus move from A to B, implying that the total transit
demand decreases from gA to gB, and the transit fare rises from pA to pB.

Table 3 also shows that as the level of transit services descends, the total system net
profits, total transit demand and total social welfare decrease. Moreover, the
degradation of the transit service level would cause that the bus operator’s profit
decreases but the metro operator’s profit increases. This is because with the degraded
transit services, the bus demand dramatically decreases, whereas the metro demand
only slightly changes. Therefore, with the increasing fare level from pA to pB, the
metro operator’s profit gets an increase instead.

The effects of bus service unreliability on transit market demand share Finally, we
examine the effects of the degree of the unreliability of the bus service on the
resultant transit demand and market share when the unreliability of the metro service
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is fixed at the level of l1,metro=1.0. As shown in Fig. 6, when the bus service is fully
reliable (i.e. l1,bus=0.0), the passenger demand for the bus service is greater than that
for the metro service. As the degree of the unreliability of the bus service increases,
the resultant total transit demand and the bus demand decrease and the metro
demand increases. Furthermore, when the bus service degrades to a much lower
level of reliability (i.e. l1,bus=5.0), the bus operator will be driven out of the transit
market, and the metro operator will dominate the whole transit market.

5 Conclusions

In this paper, a network-based model that explicitly incorporates the unreliability of
the transit services was proposed to study the optimal transit fare structure under
various market regimes. The effects of passenger crowding on the dwelling time of
transit vehicles at stops and the walking time on bi-directional walkways were also
considered in the proposed model, together with the passenger demand elasticity and
the passenger discomfort due to crowding within the transit vehicles. The optimal
solutions that correspond to the monopoly, social optimum, and oligopolistic
competition were analyzed and compared. The proposed model provides a useful
tool for modeling a competitive transit market and evaluating transit policies at the
strategic level.

A numerical example was used to examine the efficiency of different transit
market regimes and to ascertain the effects of the unreliability of transit services.
Some new insights and important findings are obtained. (1) The oligopolistic
competitive solution lies between the monopoly solution and the social optimum
solution in terms of the total system profits and social welfare. (2) A form of subsidy
is required to compensate the deficit of the transit operator under the welfare
maximization regime. (3) The degradation of the transit service level would lead to
an increasing optimal fare structure for a given market regime. (4) An operator will
be driven out of the transit market when the service that is provided by that transit
operator degrades to a level that is sufficiently less reliable than that of the
competing transit services.

Several directions for future research are suggested as follows: (1) to extend the
proposed model to a multimodal transportation network in which the interaction
between the auto and transit modes can be considered (Boyce 2007); (2) to consider
the risk-taking behavior of passengers towards uncertainty (Bell and Cassir 2002;
Szeto et al. 2006; Bell 2007); (3) to assess the performance of the system using the
concept of travel demand satisfaction reliability (Heydecker et al. 2007), and (4) to
optimize and design transit networks in which both the recurrent and non-recurrent
congestion are considered.
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Appendix

Appendix A. Link travel disutility

As stated in Section 2.1, there are two types of links in the transit network G=(N, S);
namely, transit links and walking links. Let S1 and S2 represent the set of transit links
and the set of walking links, respectively, and thus S ¼ S1 [ S2. In the following, we
define in turn the travel disutility functions for the two types of links.

Transit link travel disutility

The travel disutility us on transit link s, measured in generalized time units, consists
of the following four generalized travel cost components: travel time, transit fare, in-
vehicle crowding discomfort, and perceived cost of the unreliability of transit
services, i.e.,

us ¼ E Tsð Þ þ 1

a1
ps þ b1

a1
gs þ b2

a2
f ssð Þ; 8s 2 S1 ð17Þ

where Ts is the random variable of (actual) travel time on transit link s. E(Ts) and σs
are the mean and the standard deviation of Ts, respectively. ps and gs are the transit
fare and the in-vehicle crowding discomfort cost on transit link s, respectively. The
parameters α1, β1 and β2 are, respectively, the value of time, the value of
discomfort, and the value of reliability of passengers, which are all measured in
monetary value per unit time. The function f �ð Þ measures the cost of service
unreliability, which is a function of the standard deviation, σs, of the travel time on
transit link s (Noland et al. 1998).The mean travel time E(Ts) on transit link s
comprises the mean in-vehicle travel time E(Ts1) and the mean waiting time E(Ts2)
on link s, i.e.,

E Tsð Þ ¼ t1E Ts1ð Þ þ t2E Ts2ð Þ; 8s 2 S1 ð18Þ
where Ts1 and Ts2 are the random variables of the actual in-vehicle travel time and
the actual waiting time on link s, respectively. The parameters (C) are the reciprocal
substitution factors for converting the different time components to the same unit.
For the purpose of presentation, let ts=E(Ts), ts1=E(Ts1), and ts2=E(Ts2), then Eq.
(18) can be rewritten as

ts ¼ t1ts1 þ t2ts2; 8s 2 S1 ð19Þ
Next, we define the mean in-vehicle link travel time ts1, the mean waiting time ts2,

the crowding discomfort cost gs, and the unreliability cost f (σs) of transit services.

Mean in-vehicle link travel time

According to A4 in Section 2.2, the actual in-vehicle link travel time is an independent
normally distributed random variable with mean ts1 and standard deviation σs1. The
mean in-vehicle travel time ts1 on link s can be estimated in terms of the mean in-
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vehicle travel times of all attractive lines on link s (De Cea and Fernandez 1993;
Uchida et al. 2005), i.e.,

ts1 ¼
X
l2As

tlsx
l
s; 8s 2 S1 ð20Þ

where xls is the probability of passengers on link s choosing line l. tls is the mean in-
vehicle travel time of passengers using line l on link s, which is assumed to be a
constant that is dependent on the length of line l.

We now derive the probability xls of passengers on link s choosing line l for
traveling. Note that the transit service frequency fs on link s can be formulated as the
sum of the service frequencies of all attractive lines on link s, i.e.,

fs ¼
X
l2As

fl; 8s 2 S1 ð21Þ

As the transit line frequency fl is a random variable that is dependent on the level
of the reliability of transit services, the link frequency fs is also a random variable
with

E fsð Þ ¼
X
l2As

E flð Þ; 8s 2 S1 ð22Þ

where E( fl) and E( fs) are the mean service frequencies of line l and link s,
respectively.

Consequently, according to A3 in Section 2.2, the probability xls of passengers on
transit link s choosing line l can be approximated by the proportion of the mean
frequency of line l to the mean frequency of link s, i.e.,

xls ¼
E flð Þ
E fsð Þ ¼

E flð ÞP
l2As

E flð Þ ; 8l 2 As; s 2 S1 ð23Þ

where E( fl) can be determined according to Appendix B.

In-vehicle crowding discomfort cost

In general, passenger discomfort is affected by the degree of crowding in transit
vehicles. Similar to (20), the crowding discomfort cost on link s can be estimated in
terms of the mean discomfort costs of all attractive lines on link s, i.e.,

gs ¼
X
l2As

glsx
l
s; 8s 2 S1 ð24Þ

where gls is the in-vehicle discomfort cost of line l on link s.
According to Spiess and Florian (1989); Wu et al. (1994), and Lo et al. (2003),

the in-vehicle crowding discomfort cost, gls, which is measured in terms of
generalized time units, on line l passing through link s can be expressed in the
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form of the Bureau of Public Roads (BPR) type function with regard to the mean in-
vehicle travel time, passenger volume, and vehicle capacity on the line, i.e.,

gls ¼ tls gl0s þ g1
vls þ vls
Kl

� �n1� �
; 8l 2 As; s 2 S1 ð25Þ

where gl0s is the baseline discomfort level or riding quality of line l passing through
link s, and +1 and n1 are the positive calibrated parameters of the in-vehicle
discomfort function. vls is the passenger flow using line l on link s, and can be
estimated by

vls ¼ vsx
l
s; 8l 2 As; s 2 S1 ð26Þ

where vs is the passenger flow on link s.
In Eq. (25), the capacity Kl of transit line l can be calculated by

Kl ¼ kl fl; 8l 2 L ð27Þ
where L is the set of transit lines and κl is the vehicle capacity on line l.

vls is the passenger flow that competes with vls for the same common capacity of
line l passing through link s. It consists of two components: (1) the number of
passengers boarding at node i(s) (i.e., the tail node of link s), all other links that
include line l as an attractive line, i.e., the first term on the right-hand side of Eq.
(28) below; and (ii) the passenger volume boarding line l at a node before i(s) and
alighting after i(s), i.e., the second term on the right-hand side of (28) below. vls can
be represented as

vls ¼
X
e2Alþ

i sð Þ

vle þ
X
e2A

l
i sð Þ

vle; 8l 2 As; s 2 S1 ð28Þ

where Alþ
i sð Þ is the set of links going out from node i(s) on which line l is included as an

attractive line but link s is excluded, and A
l
i sð Þ is the set of links on which line l is

included as an attractive line, with an origin node before i(s) and an end node after i(s).

Mean waiting time

The waiting time that is experienced by a transit passenger includes the waiting time
for the arrival of the transit vehicle and the overload delay at stops due to the
insufficient capacity of the arriving vehicle. The former depends on the arrival
distribution of passengers and the average arrival frequency of the vehicles on the
wait link, and the latter depends on the passenger volumes boarding the same link
and those already in the arriving vehicles. Similar to De Cea and Fernandez (1993)
and Lo et al. (2003, 2004), the average waiting time ts2(vs) on link s can be described
as the following volume-delay function,

ts2 vsð Þ ¼ E
a2

fs

� �
þ g2

vs þ vs
Ks

� �n2

; 8s 2 S1 ð29Þ

where α2, +2, and n2 are positive calibrated parameters. The value of α2 is dependent
on the distributions of transit vehicle headways and passenger arrival times. The
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typical value of α2 adopted in the literature is 0.5 with assumptions of a uniform
random arrival distribution of the passengers and of a constant transit vehicle headway
(Lam and Morrall 1982). The first term on the right-hand side of Eq. (29) represents
the expected waiting time of passenger for the next arriving vehicle, while the second
term captures the boarding congestion effect at the transit stops.

In Eq. (29), Ks is the total capacity of the transit vehicles on link s, and

Ks ¼
X
l2As

Kl; 8s 2 S1 ð30Þ

where the capacity Kl of line l can be given by Eq. (27).
vs is the passenger volume waiting to get on link s, and vs is the passenger volume

competing with vs for the same common capacity on link s, which can be calculated by

vs ¼
X
l2As

vls; 8s 2 S1 ð31Þ

where the passenger flow vls can be determined by Eq. (28).
Similar to the derivation of the expected line frequency in Appendix B, the mean

E a2
fs

� �
, which is frequency-dependent and used in Eq. (29), can be calculated by

E
a2

fs

� �
¼ a2E

1

fs

� �
¼ a2

E fsð Þ 1þ s fsð Þð Þ2
E fsð Þð Þ2

 !
; 8s 2 S1 ð32Þ

where the mean E(fs) and variance s fsð Þð Þ2 of fs can be given by, respectively,

E fsð Þ ¼
X
l2As

E flð Þ; 8s 2 S1 ð33Þ

s fsð Þð Þ2¼
X
l2As

s flð Þð Þ2; 8s 2 S1 ð34Þ

where E(fl) and σ(fl) can be determined according to Appendix B.

Measure of the unreliability of transit services

As stated in Eq. (17), the unreliability cost of transit services can be measured by the
function f (σs) of the standard deviation σs. In this paper, for simplicity, we define

f ssð Þ ¼ l1ss; 8s 2 S1 ð35Þ
where l1 measures the degree of the unreliability of transit services. The larger the
value of l1, the less reliable the transit services, and vice versa.

Similar to Eqs. (18) or (19), the variance s2
s of the travel time on transit link s is the

sum of the variances of the in-vehicle link travel time and waiting time on link s, i.e.,

s2
s ¼ t1ss1ð Þ2þ t2ss2ð Þ2; 8s 2 S1 ð36Þ

where σs1 and σs2 are the standard deviations of the in-vehicle travel time and
waiting time on link s, respectively. They can be determined according to the
relationship between mean and variance, as shown in A4 in Section 2.2.
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Walking disutility function

The walking times for access to or egress from transit stops are often assumed to be
flow independent in the previous literature (Wu et al. 1994). However, the empirical
study of Lam et al. (2003) showed that on a bi-directional walkway with heavy
opposing pedestrian flows, both the capacity of the walkway and the pedestrian
walking speeds can be reduced significantly, particularly in the minor flow direction.

On the basis of their empirical studies, Lam et al. (2003) proposed a generalized
walking time function to account for the bi-directional flow effects on the walkways
under different flow conditions, ranging from free-flow to congested situations.
Following Lam et al. (2003), the (expected) generalized walking time function that is
used in the proposed model is

tsþ �ð Þ vsþ ; vs�ð Þ ¼ t0s þ B vsþ �ð Þ= vsþ þ vs�ð Þð Þx vsþ þ vs�ð Þ=Csð Þy; 8s 2 S2 ð37Þ

where s+ and s− are two walking links that represent the physical walkway s, tsþ �ð Þ is
a unit of the walking time in direction + (−) on walkway s with bi-directional flows,
t0s is the free-flow walking time on walkway s, and Cs is the capacity of the physical
walkway s under unidirectional flow conditions. B, x, and y are the parameters to be
calibrated with observed data.

Similar to Eq. (35), we can define the uncertainty cost that is caused by the
fluctuation of walking time on the congested walkways as below.

f ssð Þ ¼ l2ss; 8s 2 S2 ð38Þ

where 12 measures the degree of the uncertainty of the walking time. Again, the
standard deviation σs of the walking time on walking link s can be determined
according to the relationship between mean and variance, as shown in A4 in
Section 2.2.

Consequently, the walking disutility for access to or egress from transit stops can
be formulated as the sum of the walking time and the uncertainty cost that is caused
by the fluctuation of the walking time, i.e.,

us ¼ ts þ b2
a1

f ssð Þ; 8s 2 S2 ð39Þ

where the walking time ts on link s can be calculated by Eq. (37).

Appendix B. Random transit line frequency

As stated in A2 in Section 2.2, the variations of the in-vehicle travel time and the
dwelling time of transit vehicles at stops can cause variability of the transit service
frequency. Hence, the line frequency fl is a random variable and its mean and
variance are derived as follows.
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Let Nl be the number of vehicles on line lZL, and Γl(v) be the cycle journey time
of a transit vehicle on line lZL, and then the line frequency fl can be obtained by

fl ¼ Nl

Γ l vð Þ ; 8l 2 L ð40Þ
where v is the vector of passenger flows in the transit network.

The cycle journey time Γl(v) of a transit vehicle on line lZL is composed of the
line-haul travel time, terminal time, and dwelling delays at transit stops (Fernandez
and Marcotte 1992; Lam et al. 2002). The uncertainties of the line-haul travel time
and the dwelling time of transit vehicles at stops would lead to the variation of the
cycle journey time. Hence, Γl(v) is a random variable, and its mean E(Γl(v)) and
variance (σ(Γl(v)))

2 can be calculated by, respectively,

E Γ l vð Þð Þ ¼ ζt0l þ
X
m2l

tml þ
X
n2l

dt
n
l vð Þ; 8l 2 L ð41Þ

s Γ l vð Þð Þð Þ2¼
X
m2l

sm
l

� �2 þX
n2l

s dtnl vð Þ� �� �2
; 8l 2 L ð42Þ

where t0l is the constant terminal time on line l and ζ is the number of terminal times
on the circular line. mZl and nZl imply that line segment m and transfer node n lie
on transit line l, respectively. tml and sm

l are the mean and standard deviation of the
travel time on line segment m on transit line l, respectively. dtnl vð Þ and s dtnl vð Þ� �

are
the mean and standard deviation of the dwelling time dtnl vð Þ at node n on line l,
respectively.

According to Lam et al. (1998), the transit vehicle dwelling time at a transit stop
is governed by the number of boarding and alighting passengers, i.e., the total
interchanging passenger volumes. The expected dwelling time can be expressed as a
function with regard to the boarding and alighting volumes (Yin et al. 2004),

dtnl vð Þ ¼ max dtnl0; η0 þ η1Bo
n
l þ η2Al

n
l

� �
; 8l 2 L ð43Þ

where dtnl0 is the minimal (scheduled) dwelling time of line l at stop n. Bonl and Alnl
are, respectively, the number of passengers boarding and the number of passengers
alighting line l at stop n, and they can be determined by the method that is outlined
in the study of Lam et al. (2002). The coefficients (η) are the positive parameters,
which can be calibrated by the observed data (Lam et al. 1998, 2002).

From (40), for a given value of Nl, the mean E(fl) and variance (σ(fl))
2 of the line

frequency fl can be given by, respectively,

E flð Þ ¼ E
Nl

Γ l vð Þ
� �

¼ NlE
1

Γ l vð Þ
� �

; 8l 2 L ð44Þ

s flð Þð Þ2¼ s
Nl

Γ l vð Þ
� �� �2

¼ N 2
l s

1

Γ l vð Þ
� �� �2

; 8l 2 L ð45Þ

Applying a quadratic Taylor series approximation to Eqs. (44) and (45), we then have
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Proposition B.1 The mean and variance of the transit line frequency fl can be
calculated by, respectively,

E flð Þ ¼ Nl

E Γ l vð Þð Þ 1þ s Γ l vð Þð Þð Þ2
E Γ l vð Þð Þð Þ2

 !
; 8l 2 L ð46Þ

s flð Þð Þ2¼ N2
l

s Γ l vð Þð Þð Þ2
E Γ l vð Þð Þð Þ4 ; 8l 2 L ð47Þ

where E(Γl(v)) and σ(Γl(v)) can be calculated by Eqs. (41) and (42), respectively.

Proof For the purpose of presentation, let 1
X ¼ 1

Γ l vð Þ, and then a quadratic Taylor
series approximation of 1

X around X0=E(X) can be represented as

1

X
¼ 1

X0
� 1

1!X 2
0

X � X0ð Þ þ 2

2!X 3
0

X � X0ð Þ2þ � � � ð48Þ

Taking the expectation on both sides of Eq. (48) and ignoring higher order terms
yield

E
1

X

� �
¼ 1

X0
� 1

X 2
0

E X � X0ð Þ þ 1

X 3
0

E X � X0ð Þ2
� �

ð49Þ

Because E X � X0ð Þ ¼ 0 and E X � X0ð Þ2
� �

¼ s Xð Þð Þ2, Eq. (49) can be written
as

E
1

X

� �
¼ 1

E Xð Þ þ
s Xð Þð Þ2
E Xð Þ3 ¼ 1

E Xð Þ 1þ s Xð Þð Þ2
E Xð Þð Þ2

 !
ð50Þ

Taking the variance on both sides of Eq. (48) and ignoring higher order terms, we
obtain

s
1

X

� �� �2

¼ s Xð Þð Þ2
E Xð Þð Þ4 ð51Þ

Substituting 1
X ¼ 1

Γ l vð Þ into Eqs. (50) and (51), Eqs. (44) and (45) then become (46)
and (47), respectively. This completes the proof of Proposition B.1.
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