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Abstract

Based on the well-known concept of single-period equilibrium in an electricity market, this paper defines, analyzes
and illustrates the concept of a multi-period equilibrium. Within this equilibrium framework and a multi-period
horizon, market participants simultaneously optimize their respective individual and conflicting objectives. Con-
straints involving prices can be incorporated into the problems of the market participants. To avoid the limitations
imposed by the necessary use of binary variables to model on/off decisions, the conditions to attain a multi-period
equilibrium are formulated through Benders decomposition, which allows for efficiently solving the resulting equi-
librium problem. The proposed procedure is illustrated using a realistic case study based on the IEEE Reliability
Test System.
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1. Introduction

Based on the well-known concept of (single-period) equilibrium, this paper defines and
analyzes the concept of a multi-period equilibrium in a pool-based electricity market.

In a pool-based electricity market, producers submit bids to the market operator consisting
of energy blocks and their corresponding minimum selling prices for every hour of the mar-
ket horizon and every unit (producer bidding stacks), while consumers submit energy blocks
and their corresponding maximum buying prices for every hour of the market horizon and
every demand (consumer bidding stacks). In turn, the market operator clears the market
using an appropriate market-clearing procedure, which results in hourly prices, and pro-
duction and consumption schedules. The market-clearing procedure may embody network
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constraints or not. We consider that it does, and the resulting prices are therefore nodal
or locational marginal prices (LMP) (Schweppe et al., 1988). Background on electricity
markets can be found in Ilic et al. (1998), Sheblé (1999) and Shahidehpour et al. (2002).

A single-period equilibrium is defined as the (single-period) producer/consumer energy
transaction levels and their associated prices that result in maximum profit for every pro-
ducer, maximum utility for every consumer, and maximum social welfare overall.

A multi-period equilibrium is defined as the producer/consumer energy transaction levels
and their associated prices that result in maximum profit for every producer, maximum utility
for every consumer, and maximum social welfare for the whole multi-period framework,
while inter-temporal constraints including start-up and shut-down of units and ramping
limits are enforced. Additionally, fixed, start-up and shut-down costs are considered (as
modeled in Wang and Shahidehpour (1994) or Arroyo and Conejo (2000)).

The single-period equilibrium can be obtained considering the set of continuous opti-
mization problems corresponding to the maximum profit of producers, maximum utility of
consumers and maximum social welfare of the independent system operator (ISO), and cor-
responding optimality conditions (Bazaraa et al., 1993) resulting in a linear complementary
problem (Cottle et al., 1992) easy to solve (Cottle et al., 1992; Hobbs, 2001; Júdice et al.,
2002).

On the contrary, the multi-period equilibrium embodies binary decisions, i.e., starting
up and shutting down units, and therefore optimality conditions cannot be directly applied.
To avoid such limitations while retaining the advantages of using optimality conditions for
each of the market participants, we define the multi-period equilibrium problem through
Benders decomposition, which allows separating binary from continuous decisions.

In some electricity markets, a computationally challenging yet realistic aspect is that
producers declare minimum profit requirements for their respective units. The minimum
profit requirements are used in some markets, as in the electricity market of mainland Spain,
OMEL (2005). We study the effect of imposing minimum profit requirements (or any other
price-related nonlinear constraints) on generating units in a multi-period equilibrium model.
Note that if constraints involving products of quantities and prices are included, the problem
is no longer linear. Once the market is cleared, units not meeting profit constraints should
be expelled from the market.

In short, this paper (i) defines the concept of a multi-period equilibrium, (ii) describes a
procedure to formulate the conditions needed to attain it, (iii) describes techniques to include
minimum profit conditions for generating units in such equilibrium, and (iv) proposes an
efficient solution algorithm to compute the multi-period equilibrium considering minimum
profit conditions. We believe these are novel contributions.

This paper can be seen as an extension to the previous work on single-period equilibrium
by Garcı́a-Bertrand et al. (2005) towards a multi-period framework through the use of
decomposition techniques. This work is related to the body of literature pertaining to equi-
librium analysis, which includes, among others, Hobbs (2001), Motto and Galiana (2002),
Motto et al. (2002b) and O’Neill et al. (2005). Its contribution consists in the formulation
of the conditions for a multi-period market equilibrium and a procedure to compute it, in-
cluding minimum profit conditions for generating units. If minimum profit requirements for
units are not included, the model we present is equivalent in a centralized environment to a
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multi-period optimal power flow (see, for instance, Baldick (1995), Ma and Shahidehpour
(1999) or Alguacil and Conejo (2000)).

A multi-period market equilibrium tool is of interest for producers and consumers because
it allows both of these groups to compute their respective market situations in equilibrium
once the behavior of competitors has been hypothesized. This tool might also interest
regulators for the strategic analysis of market procedures and rules.

The rest of this paper is organized as follows. In Section 2 the multi-period equilibrium
problem is formulated using Benders decomposition. Section 3 provides an efficient solution
technique to solve the problem formulated in 2. In Section 4 a realistic case study is analyzed
and relevant results are reported. Specifically, the differences between a multi-period equi-
librium without considering minimum profit conditions and a succession of single-period
equilibria, and the effect of imposing minimum profit constraints to the multi-period equi-
librium problem are discussed. Section 5 provides several noteworthy conclusions. Finally,
the notation used throughout the paper is provided in an Appendix.

2. Formulation using Benders decomposition

The multi-period equilibrium problem includes continuous and binary variables and is
formulated using the Benders decomposition technique (Benders, 1962) and (Geoffrion,
1972). In the current context, this technique decomposes the original problem into a mixed-
integer linear programming problem and a nonlinear programming problem.

If binary variables are fixed to given values, the multi-period equilibrium problem, cor-
responding to the status for the generating units defined by binary variables, can be solved
through a nonlinear programming problem, the subproblem. In turn, the master problem
defines the on/off status for the generating units by solving for the corresponding binary
variables.

The solution of the subproblem provides useful information about the quality of the values
of the binary variables related to the on/off status of the units, defined at the master problem.
In turns, this information is used by the master problem to refine the on/off status for the
generating units of the producers. The Benders decomposition applied to the problem at
hand is illustrated in figure 1. The formulations of the subproblem and the master problem
are stated below.

2.1. Subproblem: Multi-period equilibrium for fixed status (binary) variables

The multi-period equilibrium is defined by the optimality conditions for the problems of
the producers, for the problems of the consumers, and for the problem of the ISO, in every
period of the market horizon, while satisfying coupling constraints. It should be noted that
we use optimality conditions (complementarity theory) to be able to include constraints on
prices, i.e., on dual variables; to be able to include minimum profit conditions for generating
units. This feature enhances the capabilities of the model we propose.

A producer is the owner of one or more generating units located throughout the network,
while a consumer exhibits one or more demands. Any generating unit is located at a node
of the network and its production is described using several power blocks with associated
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Figure 1. Structure of Benders decomposition.

linear production costs. Analogously, any demand is located at a node and its consumption
is described using several power blocks with associated linear utilities. The ISO clears the
market maximizing the net social welfare. The problems of the producers, the consumers
and the ISO are defined below. Coupling constraints, which link a period with the following
and previous ones, are also considered in the problems of the producers. For the sake of
clarity, we consider a single unit and a single demand per node in the formulation. To
consider more than one unit/demand per node is straightforward but at the cost of obtaining
a more obscure formulation. However, in the case study, we consider a varying number of
units/demands per node.

2.1.1. The problems of the producers. We first consider producer f that owns units indexed
by the set G f . We assume that the objective for producer f is to maximize its profit, which
results in the following linear programming problem for the whole multi-period framework.

Maximize
∑

t∈T

∑

i∈G f

NGi∑

b=1

[
ρi (t) − λC

Gib(t)
]
PGib(t) (1a)

subject to
NGi∑

b=1

PGib(t) ≤ Pmax
Gi vi (t) : αi (t); ∀i ∈ G f ; ∀t ∈ T (1b)

NGi∑

b=1

PGib(t) ≥ Pmin
Gi vi (t) : βi (t); ∀i ∈ G f ; ∀t ∈ T (1c)
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PGib(t) ≤ Pmax
Gib (t) : φib(t); ∀i ∈ G f ; b = 1, . . . , NGi − 1; ∀t ∈ T (1d)

NGi∑

b=1

PGib(t) −
NGi∑

b=1

PGib(t − 1) ≤ Rup
i vi (t − 1) + Rsu

i [vi (t) − vi (t − 1)]

+Pmax
Gi [1 − vi (t)] : τi (t); ∀i ∈ G f ; ∀t ∈ T (1e)

NGi∑

b=1

PGib(t − 1) −
NGi∑

b=1

PGib(t) ≤ Rdn
i vi (t) + Rsd

i [vi (t − 1) − vi (t)]

+Pmax
Gi [1 − vi (t − 1)] : ψi (t); ∀i ∈ G f ; ∀t ∈ T (1f)

PGib(t) ≥ 0; ∀i ∈ G f ; b = 1, . . . , NGi ; ∀t ∈ T . (1g)

We note that the decision variables of this problem are the amounts of power to be
generated by each unit i in each block b, and time t , i.e., PGib(t); and that the prices ρi (t)
are fixed values for the producer but variables in the larger overall equilibrium problem.
Also, the status variables vi (t) are constants defined at the master problem level.

The objective function (1a) represents the total profit of producer f which is to be
maximized subject to a capacity limit (1b) and a minimum power output (1c) for each unit
and each period of time, a capacity limit (1d) for each block of each unit and each period of
time, the available maximum and minimum power output of a unit taking into account the
start-up and shut-down ramp limits, and the ramp-up and ramp-down limits, (1e) and (1f),
respectively, and nonnegative levels of power to be generated by unit i in block b and time
t , (1g). Note that constraints (1e) and (1f) link a period with the following and previous
ones. Equation (1d) is not imposed on block NGi to avoid redundancy with Eq. (1b). The
dual variables of constraints (1b), (1c), (1d), (1e) and (1f) are given respectively by αi (t),
βi (t), φib(t), τi (t) and ψi (t). Note that the dual variables of constraints appear in the right
of these constraints following a colon in the problem formulation.

Fixed, start-up and shut-down costs are not incorporated in the objective function because
these are constant values in this subproblem.

Due to the fact that binary variables are fixed, the optimality conditions (Bazaraa et al.,
1993) for the problem of each producer decompose by unit, and are similar for all producers.
Therefore, the conditions below comprise all units of all producers. These conditions can
be interpreted as finding generation power block levels PGib(t) and dual variables αi (t),
βi (t), φib(t), τi (t) and ψi (t) such that,

0 ≤ λC
Gib(t) − ρi (t) + αi (t) − βi (t) + φib(t) + τi (t) − τi (t − 1) + ψi (t − 1)

−ψi (t) ⊥ PGib(t) ≥ 0; ∀i ∈ G; b = 1, . . . , NGi ; ∀t ∈ T (2a)

0 ≤ Pmax
Gi vi (t) −

NGi∑

b=1

PGib(t) ⊥ αi (t) ≥ 0; ∀i ∈ G; ∀t ∈ T (2b)

0 ≤
NGi∑

b=1

PGib(t) − Pmin
Gi vi (t) ⊥ βi (t) ≥ 0; ∀i ∈ G; ∀t ∈ T (2c)

0 ≤ Pmax
Gib − PGib(t) ⊥ φib(t) ≥ 0; ∀i ∈ G; b = 1, . . . , NGi − 1; ∀t ∈ T

(2d)
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0 ≤ Rup
i vi (t − 1) + Rsu

i [vi (t) − vi (t − 1)] + Pmax
Gi [1 − vi (t)] −

NGi∑

b=1

PGib(t)

+
NGi∑

b=1

PGib(t − 1) ⊥ τi (t) ≥ 0; ∀i ∈ G; ∀t ∈ T (2e)

0 ≤ Rdn
i vi (t) + Rsd

i [vi (t − 1) − vi (t)] + Pmax
Gi [1 − vi (t − 1)] −

NGi∑

b=1

PGib(t − 1)

+
NGi∑

b=1

PGib(t) ⊥ ψi (t) ≥ 0; ∀i ∈ G; ∀t ∈ T . (2f)

By convention, the symbol ⊥ indicates that the product of the variable used to derive the
corresponding optimality condition and the associated equation must be zero, i.e., 0 ≤ x ⊥
y ≥ 0 is equivalent to x y = 0, 0 ≤ x and 0 ≤ y .

2.1.2. The problems of the consumers. Next, we consider the problem of consumer q
whose set of demands is indexed by Dq . We assume that such a consumer can be modeled
as maximizing its economic utility for the whole multi-period framework, resulting in the
following linear programming formulation.

Maximize

∑

t∈T

∑

i∈Dq

NDi∑

k=1

[
λU

Dik(t) − ρi (t)
]
PDik(t) (3a)

subject to

NDi∑

k=1

PDik(t) ≥ Pmin
Di (t) : σi (t); ∀i ∈ Dq ; ∀t ∈ T (3b)

PDik(t) ≤ Pmax
Dik (t) : ϕik(t); ∀i ∈ Dq ; k = 1, . . . , NDi ; ∀t ∈ T (3c)

PDik(t) ≥ 0; ∀i ∈ Dq ; k = 1, . . . , NDi ; ∀t ∈ T . (3d)

The objective function (3a) represents the economic utility for consumer q. Equation (3b)
represents the minimum load that must be supplied, with the dual variable of this equation
being σi (t). Equation (3c) represents the maximum power in each block of each demand
and each period of time, and its dual variable is ϕik(t). Equation (3d) imposes the constraint
that the power to be consumed by demand i in block k in time t is nonnegative.

The optimality conditions (Bazaraa et al., 1993) for this optimization problem decompose
by demand and by time, and are similar for each consumer. Therefore, the conditions below
comprise all demands of all consumers. They can be interpreted as finding demand power
blocks PDik(t) and dual variables σi (t) and ϕik(t) such that,

0 ≤ ρi (t) − λU
Dik(t) − σi (t) + ϕik(t) ⊥ PDik(t) ≥ 0;

∀i ∈ D; k = 1, . . . , NDi ; ∀t ∈ T (4a)
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0 ≤
NDi∑

k=1

PDik(t) − Pmin
Di (t) ⊥ σi (t) ≥ 0; ∀i ∈ D; ∀t ∈ T (4b)

0 ≤ Pmax
Dik (t) − PDik(t) ⊥ ϕik(t) ≥ 0; ∀i ∈ D; k = 1, . . . , NDi ; ∀t ∈ T . (4c)

2.1.3. The problem of the ISO. Lastly, the ISO clears the market by seeking maximum
social welfare for all time periods considered and enforcing transmission capacity limits.
The problem of the ISO is formulated as the following linear program.

Maximize

∑

t∈T

∑

i∈D

NDi∑

k=1

λB
Dik(t)P̃Dik(t) −

∑

t∈T

∑

i∈G

NGi∑

b=1

λB
Gib(t)P̃Gib(t) (5a)

subject to

−
NGi∑

b=1

P̃Gib(t) +
NDi∑

k=1

P̃Dik(t) +
∑

j∈
i

Bi j [δi (t) − δ j (t)] = 0 : ρi (t);

∀i ∈ N ; ∀t ∈ T (5b)

Bi j [δi (t) − δ j (t)] ≤ Pmax
i j : γi j (t); ∀i ∈ N ; ∀ j ∈ 
i ; ∀t ∈ T (5c)

P̃Gib(t) − PGib(t) = 0 : µGib(t); ∀i ∈ G; b = 1, . . . , NGi ; ∀t ∈ T (5d)

P̃Dik(t) − PDik(t) = 0 : υDik(t); ∀i ∈ D; k = 1, . . . , NDi ; ∀t ∈ T (5e)

δi (t) ≤ 2π : �i (t); ∀i ∈ N ; ∀t ∈ T (5f)

δi (t) ≥ 0; ∀i ∈ N ; ∀t ∈ T . (5g)

The objective function (5a) is the net social welfare (Takayama and Judge, 1971). It is
subject to enforcing power balance at every node (5b), line capacity limits (5c), that the
power generated and demanded in the problem of the ISO are equal to the power generated
and demanded in the problems of the producers and consumers, (5d) and (5e), respectively,
and bounds on voltage angles, (5f) and (5g).

Note that power generation and demand variables are replicated to make the problems of
the producers and consumers compatible with the problem of the ISO.

Note that security constraints, either deterministic (Motto et al., 2002a) or probabilistic
(Bouffard and Galiana, 2004), can be incorporated into the formulation of the problem of
the ISO. Moreover, transmission losses can also be incorporated (Yuandong and Hobbs,
1998; Motto et al., 2002a; de la Torre et al., 2003). Based on numerical experience, adding
losses does not significantly change results. Losses are considered in the case study in
Section 4. However, losses are not taken into account in the formulation presented above
for the sake of clarity.

The optimality conditions (Bazaraa et al., 1993) for problem (5) are to find the generation
power blocks levels P̃Gib(t), the demand power blocks levels P̃Dik(t), voltage angle δi (t)
and dual variables ρi (t), γi j (t), µGib(t), υDik(t) and �i (t) such that

0 = λB
Gib(t) − ρi (t) + µGib(t); ∀i ∈ G; b = 1, . . . , NGi ; ∀t ∈ T (6a)

0 = ρi (t) − λB
Dik(t) + υDik ; ∀i ∈ D; k = 1, . . . , NDi ; ∀t ∈ T (6b)
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0 ≤
∑

j∈
i

[Bi j (ρi (t) − ρ j (t)) + Bi j (γi j (t) − γ j i (t))] + �i (t) ⊥ δi (t) ≥ 0;

∀i ∈ N ; ∀t ∈ T (6c)

−
NGi∑

b=1

P̃Gib(t) +
NDi∑

k=1

P̃Dik(t) +
∑

j∈
i

Bi j [δi (t) − δ j (t)] = 0; ∀i ∈ N ; ∀t ∈ T

(6d)

0 ≤ Pmax
i j − Bi j [δi (t) − δ j (t)] ⊥ γi j (t) ≥ 0; ∀i ∈ N ; ∀ j ∈ 
i ; ∀t ∈ T

(6e)

P̃Gib(t) − PGib(t) = 0; ∀i ∈ G; b = 1, . . . , NGi ; ∀t ∈ T (6f)

P̃Dik(t) − PDik(t) = 0; ∀i ∈ D; k = 1, . . . , NDi ; ∀t ∈ T (6g)

2π − δi (t) ≥ 0 ⊥ �i (t) ≥ 0; ∀i ∈ N ; ∀t ∈ T . (6h)

Free dual variables, P̃Gib(t), P̃Dik(t), ρi (t), µGib(t) and υDik(t), are associated with
Eqs. (6a), (b), (d), (f) and (g), respectively.

2.1.4. Minimum profit condition. Next, we consider the minimum profit condition below
for each generating unit that declares such a condition. This minimum profit condition can
be used to internalize fixed and other costs that do not directly appear in the bidding stack.
Minimum profit conditions have the form,

∑

t∈T

NGi∑

b=1

[
ρi (t) − λC

Gib(t)
]
PGib(t) −

∑

t∈T

(
C fx

Givi (t) + csu
Gi(t) + csd

Gi(t)
) ≥ Ki ; ∀i ∈ Gon

(7)
where Ki is a positive constant that represents the minimum profit for generating unit i for
the whole multi-period framework.

Note that condition (7) only enforces minimum profit when the unit is online. If the
minimum profit condition is very restrictive, the generating unit might be expelled from the
market.

Note also that Eq. (7) is nonlinear because the left-hand side is the sum of bilinear terms.
Minimum profit constraints such as (7) are used in some actual markets (OMEL, 2005) to
ensure peaker profitability and to promote generation capacity investment.

2.1.5. Formulation of the subproblem. The market equilibrium, if binary variables are
fixed to given values, is determined by the mixed-linear complementarity problem (LCP)
defined by the optimality conditions for the problems of the producers, the consumers
and the ISO, conditions (2), (4) and (6), respectively. This mixed-linear complementarity
problem can be solved using an equivalent quadratic programming problem (Cottle et al.,
1992). This quadratic problem is extended to include the minimum profit constraints for
the units that declare such condition, turning the subproblem into a nonlinearly constrained
nonlinear programming problem. The above is done considering all time periods. Moreover,
to facilitate the decomposition and to improve computational behavior, social welfare is
subtracted from the objective function. Note that subtracting this term does not alter the
solution of the problem. That is,
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minimize

ZME −
∑

t∈T

∑

i∈D

NDi∑

k=1

λB
Dik(t)PDik(t) +

∑

t∈T

∑

i∈G

NGi∑

b=1

λB
Gib(t)PGib(t) (8a)

subject to

1. Optimality conditions of all problems of producers: constraints (2).
2. Optimality conditions of all problems of consumers: constraints (4).
3. Optimality conditions of the problem of the ISO: constraints (6).
4. Minimum profit conditions

∑

t∈T

NGi∑

b=1

[
ρi (t) − λC

Gib(t)
]
PGib(t) −

∑

t∈T

(
C fx

Giv̄i (t) + csu
Gi(t) + csd

Gi(t)
) ≥ Ki ;

∀i ∈ Gon. (8b)

5. Fixed binary variables:

v̄i (t) = v
(ν)
i (t) : κvi (t); ∀i ∈ G; ∀t ∈ T . (8c)

The first term of the objective function (8a), ZME, corresponds to the summation of all the
inequality constraints of (2), (4) and (6), multiplied by their respective dual variables. Note
that ZME should be zero at an optimal solution, corresponding to an actual LCP solution.

The last Eq. (8c), enforces the on/off status of the units to the values obtained in the
master problem at the present iteration. Note that superscript ν is the iteration counter for
the overall problem.

It should be noted that the term that expressed the social welfare

∑

t∈T

∑

i∈D

NDi∑

k=1

λB
Dik(t)PDik(t) −

∑

t∈T

∑

i∈G

NGi∑

b=1

λB
Gib(t)PGib(t)

is subtracted from the objective function to avoid a null objective function value that might
provoke convergence problems in the Benders master problem. Recall that the Benders
master problem reconstructs from below the objective function of the problem expressed
as a function of the complicating variables. Numerically, we have experienced a better
behavior subtracting the social welfare term shown above.

2.2. Master problem

The master problem provides the on/off status for the associated generating units by giving
values to the binary variables. This problem refines the on/off status for the generating
units of the producers using information provided by the solutions of the subproblem.
Additionally, fixed, start-up and shut-down costs are incorporated into the objective function
of this problem. The master problem at iteration ν is defined by the following mixed-integer
linear programming problem.
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Minimize

α +
∑

t∈T

∑

i∈G

(
C fx

Givi (t) + csu
Gi (t) + csd

Gi (t)
)

(9a)

subject to

1. Benders cuts:

α ≥ Z (�)
SUB +

∑

t∈T

∑

i∈G

(
κ

(�)
vi (t)

[
vi (t) − v

(�)
i (t)

])
; � = 1, . . . , ν − 1. (9b)

2. Start-up and shut-down cost constraints for generating units:

csu
Gi (t) ≥ C su

Gi [vi (t) − vi (t − 1)]; ∀i ∈ G; ∀t ∈ T (9c)

csu
Gi (t) ≥ 0; ∀i ∈ G; ∀t ∈ T (9d)

csd
Gi (t) ≥ C sd

Gi [vi (t − 1) − vi (t)]; ∀i ∈ G; ∀t ∈ T (9e)

csd
Gi (t) ≥ 0; ∀i ∈ G; ∀t ∈ T . (9f)

3. Feasibility conditions:
∑

i∈G

vi (t)Pmax
Gi ≥

∑

i∈D

Pmin
Di (t); ∀t ∈ T . (9g)

4. Lower limits for α:

α ≥ αmin. (9h)

The objective function (9a) includes α, which is a lower bound approximation of the
objective function of the multi-period equilibrium problem, and fixed, start-up and shut-
down costs. The set of constraints (9b) are called the Benders cuts. These cuts provide
information to the master problem to improve the on/off status decisions. Note that Z (�)

SUB
represents the objective function value of the subproblem at iteration �. Constraints (9c)–
(9f) state start-up and shut-down cost constraints of the generating units in each time period.
Constraints (9g) force the master problem to generate solutions that satisfy the minimum
demand requirements. These constraints ensure the feasibility of the subproblem. Finally,
constraint (9h) states a lower bound for α. The solution of this problem defines the on/off
status of each unit of each producer in each time period, vi (t).

3. Solution technique

The proposed solution technique is described in this section.

3.1. Solution algorithm

The multi-period equilibrium problem as stated in the previous section is a large-scale
problem that includes continuous and binary variables and is defined and solved using the
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Benders decomposition method (Benders, 1962; Geoffrion, 1972). The master problem
defines the on/off status for the generating units fixing the corresponding binary variables.
The subproblem is a multi-period equilibrium problem with the binary variables fixed to
given values by the master problem. In turn, the master problem refines the on/off status
for the generating units using the sensitivity of social welfare with respect to the value of
the status variables defined at the master problem in the previous iteration. This iterative
procedure continues until some cost tolerance is reached. The steps of the algorithm are:

Step 1. Once binary variables are fixed to specified feasible values, the resulting continuous
multi-period equilibrium problem, that is, the subproblem, is solved for its continuous
variables. The subproblem is a nonlinear program and is solved using one of the three
procedures indicated in 3.2.

Step 2. Using marginal information obtained in Step 1, the master problem finds improved
values for the binary variables fixed in Step 1.

Step 3. The coordinated iteration of Steps 1 and 2 (Benders decomposition algorithm),
allows attaining an optimum in both continuous and binary variables within the whole
multi-period market horizon.

The master problem and the subproblem are iteratively solved until a convergence toler-
ance ε is met, i.e., until

∣∣∣∣∣Z (ν)
ME −

∑

t∈T

∑

i∈D

NDi∑

k=1

λB
Dik(t)P (ν)

Dik(t) −
∑

t∈T

∑

i∈G

NGi∑

b=1

λB
Gib(t)P (ν)

Gib(t) − α(ν)

∣∣∣∣∣ ≤ ε. (10)

3.2. Solution of the subproblem

The subproblem is a nonlinearly constrained nonlinear problem difficult to solve. The
main difficulty lies in the nonlinearity of the minimum profit conditions. Three alternative
procedures can be used to solve this problem.

(a) To directly solve the subproblem using an appropriate nonlinear solver.
(b) To linearize the nonlinear minimum profit constraints using the Schur’s decomposition

and binary variables as stated in Garcı́a-Bertrand et al. (2005), and to solve the resulting
mixed-integer quadratic problem.

(c) To use the inner algorithm stated below, which is based on a successive over-relaxation.
The description of this method is as follows.

Step 1.1. Without considering the minimum profit conditions, the subproblem is solved. The
solution of this problem is used to compute an initial estimate of the generating power.
That is,

P̂ (1)
Gib(t) = a P̄ (1)

Gib(t); ∀i ∈ Gon; ∀t ∈ T (11)

where P̂ (1)
Gib(t) represents the initial estimate of the generating power of block b of unit i

in hour t ; P̄ (1)
Gib(t) is the optimal generating power value of block b of generating unit i in
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hour t for the subproblem; and a ≥ 1 is a constant. This constant does not change with
each iteration.

Step 1.2. The generating power values appearing in the minimum profit conditions are
fixed to the corresponding estimated values. Therefore, the minimum profit conditions
turn into linear expressions and the subproblem becomes a quadratic program which is
solved. The minimum profit conditions considered in the subproblem have the form,

∑

t∈T

NGi∑

b=1

(
ρn(i)(t) − λC

Gib(t)
)
P̂ (η)

Gib(t) −
∑

t∈T

(
C fx

Giv̄i (t) + csu
Gi(t) + csd

Gi(t)
) ≥ Ki ;

∀i ∈ Gon (12)

where η represents the iteration counter of this inner iterative procedure. Counter η is
initialized to 1 at the start of the algorithm. The optimal generating power values for this
problem are P̄ (η+1)

Gib (t).
Step 1.3. Update the estimate of the generating power through the equation,

P̂ (η+1)
Gib (t) = d P̄ (η+1)

Gib (t) + (1 − d)P̂ (η)
Gib(t); ∀i ∈ Gon; ∀t ∈ T (13)

where the constant d ∈ (0, 1). Note that constant d does not change with each iteration.

If for all i ∈ Gon,
∑

t∈T | P̂ (η+1)
Gib (t)−P̂ (η)

Gib(t)

P̂ (η)
Gib(t)

| ≤ ε, stop, the solution has been found and

corresponds to the solution of Step 1.2; the inner algorithm concludes and the procedure
continues in Step 2 of the outer algorithm. If this is not the case, the iteration counter is
updated, η ← η + 1 and the algorithm continues in Step 1.2.

Note that ε is an appropriate tolerance.
From an experimental point of view, this successive over-relaxation algorithm presents

good convergence behavior. A characterization of its convergence characteristic can be
constructed based on results reported in Golub and Loan (1996), Saad (1996), Conejo et al.
(2002) or Nogales et al. (2003).

3.3. Problem size

The master problem is a mixed-integer linear programming problem whose number of
variables and constraints are indicated in Table 1. Analogously, the subproblem is a nonlinear
programming problem but it is solved through an iterative method, the inner algorithm, that
requires the solution of a quadratic programming problem in each iteration. The number of
variables and constraints of this quadratic programming problem are also shown in Table 1.

In Table 1, NG and ND represent the total number of units and demands in the system,
respectively, NGon represents the number of generating units that impose minimum profit
conditions and remain on-line during at least a period of time along the market horizon,
NG B and NDB represent the total number of blocks offered by all units and demanded by
all demands, respectively, N and NL represent the total number of nodes and lines of the
system, respectively, and NT represents the number of time periods considered.
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Table 1. Size of problems.

Number of Number of Number of
continuous variables binary variables constraints

Master problem 1 + 2NG NT NG NT 4NG NT + NT + ν

Subproblem 4NT (NG B + NDB ) — 4NT (NG B + NDB )
+NT (4NG + ND) +NT (5NG + ND)
+NT (3N + NL ) +NT (3N + NL ) + NGon

3.4. Feasibility

In what follows, we discuss the effect of imposing minimum profit conditions on the
multi-period equilibrium problem. There are two cases that are treated below.

3.4.1. Degenerate case. The multi-period equilibrium problem might be degenerate and
therefore have multiple prices (dual solutions) for any given time period. This case is
illustrated in figure 2(a) for a given time period. Note that there is a range of prices at
which the power supplied is equal to the power demanded. In this situation, minimum

Figure 2. Degenerate and infeasible cases.
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profit-constrained, multi-period equilibrium problem generally results in a feasible problem
whose optimal solution meets minimum profit conditions.

3.4.2. Infeasible case. The multi-period equilibrium problem has a unique solution in
prices, generations, demands and flows. By adding minimum profit constraints to this prob-
lem, we simply create infeasibilities, assuming that the minimum profit condition was not
attained for this unique solution beforehand. However, it should be noted that for practical
applications, these infeasibilities are generally negligible. The reason for that is as follows.
Power supply curves tend to be “hockey-stick” shaped around the market-clearing price in
most practical markets, while demand curves are rather inelastic around the market-clearing
price. The supply curve has a hockey-stick shape because many bids are made at zero price
to ensure acceptance. The demand curve is rather inelastic due to the nature of electricity
consumption. Moreover, the number of steps in the supply curve is usually large. The con-
clusion is that the multi-period equilibrium satisfying minimum profit conditions is often
in the vicinity of these “near-degeneracy” regions, in which there is a unique multi-period
equilibrium albeit with steep supply and demand curves as illustrated in figure 2(b). In this
figure, it can be observed that small increments in power (which create small infeasibilities)
result in significant price differences (which allow minimum profit conditions to be easily
met).

Small infeasibilities cause an optimal objective function value, ZME, to be slightly
different from zero in the subproblem. These small infeasibilities are related to prices be-
cause power balance is enforced at every node and in every time period. The cost incurred
due to price infeasibilities can be allocated pro-rata among market participants (see Garcı́a-
Bertrand et al., 2005).

Considering the discussion above, we define a near-equilibrium as an optimal solution of
a minimum profit-constrained, multi-period equilibrium problem that results in an optimal
objective function value, ZME, slightly different from zero. This implies that one or more
of the complementarity conditions of the equilibrium problem are slightly not satisfied.

Thus, in general, the optimal solution of the multi-period equilibrium problem represents
a near-equilibrium that may include small complementary infeasibilities of negligible prac-
tical significance. An appropriate metric for the importance of such infeasibilities is the
optimal value of the objective function, ZME. The closer to zero this value is, the closer to
solving the minimum profit-constrained, multi-period equilibrium problem.

4. Case study

A case study based on the 24-node IEEE Reliability Test System (RTS) is presented in
this section. The transmission network consists of 24 nodes connected by 38 lines and
transformers. The transmission lines are at two voltages, 138 and 230 kV. There are 32
generating units connected throughout the network, with two nuclear units, six hydraulic
units and the rest thermal units. The maximum power generated by the total of the generating
units is 3405 MW. There is an electricity demand in 17 nodes of the network. Also, we
consider that every generating company only owns one generating unit, and every consumer
has one demand; therefore there are 32 generating companies and 17 consumers. The market
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Table 2. Size of problems of the case study.

Number of Number of Number of
continuous variables binary variables constraints

Master problem 1537 768 3097

Subproblem 21576 — 22376

horizon considered comprises 24 time periods. Topology, line and generating unit data can
be found in Reliability Test System Task Force (1999) (figure 1 and Tables 12 and 9,
respectively, of this reference). The transmission limit of line 14–16 is reduced to 380 MW
in our study (instead of 500 MW) so that congestion occurs. The size and price of each block
of each generating unit and of each demand, and the minimum demand requirement are
provided in Garcı́a-Bertrand et al. (2005) (Tables 1 and 3, respectively, of this reference).
For simplicity, in this case study, price bids and costs do not change throughout the time
periods. A similar consideration applies to consumers. Ramp rates and start-up costs can
be found in Reliability Test System Task Force (1999) (Tables 8 and 10 of this reference,
respectively). Shut-down costs are considered to be zero. Fixed costs are 5.25 $/h for units
with 12 MW of capacity, 5 $/h for 20 MW units, 7.5 $/h for 76 MW units, 8.5 $/h for 100
MW units, 6.25 $/h for 155 MW units, 15 $/h for 197 MW units, 20 $/h for 350 MW units,
and 0 $/h for the rest.

The size of the master problem and the subproblem for this case are illustrated in Table 2.
We obtain the multi-period equilibrium of the 24-node IEEE RTS considering that gen-

erating units 3 and 4 each imposes a minimum profit requirement of $9000 and generating
units 9, 10 and 11 of $200. The rest of the generating units of the system impose a minimum
profit requirement of $0. These values are represented in column 2 of Table 3. This multi-
period equilibrium has been obtained through the solution algorithm explained in Section
3.1. The subproblem has been solved using the successive over-relaxation algorithm stated
in Section 3.2 because it converges faster than the other two algorithms reported in that
subsection.

Table 3 provides results of the multi-period equilibrium problem concerning generating
unit production and profits for the whole time horizon for two cases. In the first case, no
generating unit is allowed to impose minimum profit conditions (MPC), corresponding to
columns 3 and 4 in the table. In the second case, generating units impose the minimum profit
conditions specified above, corresponding to columns 5 and 6 of the table. Note that in the
first case, the profit for unit 4 is lower than $9000, and the profit for unit 10 is lower than
$200. In the second case, we force the condition that if these generating units are running
in any period of time of the market horizon, they must have profits at least equal to the
minimum value they have imposed, that is, $9000 and $200 respectively. Also, note that in
this second case, generating power is redistributed so that the minimum profit requirements
are satisfied. In fact, generating unit 4 increases its production and as a consequence its
profit increases. Generating unit 10 decreases its production but changes the periods of time
when it is producing; that is, this unit now produces power in periods of time with higher
prices.
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Table 3. Results for generating units without and with minimum profit conditions.

Multi-period equilibrium Multi-period equilibrium
without MPC with MPC

Minimum profit Total energy Profit Total energy Profit
Unit requirement (k$/h) (MWh) (k$/h) (MWh) (k$/h)

1, 2 0.00 0.00 0.00 0.00 0.00

3 9.00 1379.64 9.27 1511.14 9.67

4 9.00 1314.80 8.86 1478.80 9.67

5, 6 0.00 0.00 0.00 0.00 0.00

7 0.00 1395.81 8.89 1470.90 9.72

8 0.00 1466.69 9.34 1530.20 9.72

9 0.20 691.10 0.53 0.00 0.00

10 0.20 1111.80 0.17 1040.00 0.98

11 0.20 1094.43 1.13 1271.47 1.86

12, 13 0.00 0.00 0.00 0.00 0.00

14 0.00 1700.29 0.74 1955.29 1.49

15–19 0.00 0.00 0.00 0.00 0.00

20 0.00 3385.76 23.31 3513.17 24.13

21 0.00 3472.54 23.66 3534.00 24.50

22 0.00 9600.00 104.01 9600.00 106.15

23 0.00 9600.00 102.54 9600.00 104.66

24–29 0.00 1200.00 18.73 1200.00 18.99

30 0.00 3565.00 23.62 2883.00 22.59

31 0.00 3565.00 23.62 3541.19 24.58

32 0.00 7699.60 51.09 7880.12 53.20

Table 4 provides results of the multi-period equilibrium when minimum profit conditions
are considered including generating unit profits and revenues, demand costs and minimum
and maximum locational marginal prices for each period of time. These results are dis-
cussed below. Observe that locational marginal prices are different at different nodes due to
congestion during hours 1–24 in line 14–16 (at 380 MW), which split the system into two
areas, one with an excess of inexpensive generation and another one with expensive gener-
ation. There is a low and approximately constant demand during hours 1–6 that causes low
locational marginal prices throughout the system because the on-line generating units are
the more inexpensive. In hours 7, 8 and 9, demand increases sharply forcing more expensive
generating units to start-up, increasing locational marginal prices in the system. In hours
10–21, demand is high and approximately constant, and extra units with high costs start
up to supply the demand. Finally, demand in hours 22–24 decreases sharply, forcing the
more expensive generating units to shut down and/or to decrease the generation, producing
a decrease in the locational marginal prices of the system. Note that unit profits are higher
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Table 4. Multi-period equilibrium with minimum profit conditions.

Unit Unit Demand Minimum Maximum
profit revenue cost LMP LMP

Hour (k$/h) (k$/h) (k$/h) ($/MWh) ($/MWh)

1 8.17 23.87 24.74 10.53 14.20

2 7.61 21.55 22.40 10.15 13.70

3 7.45 20.44 21.17 10.06 13.13

4 7.39 20.03 20.76 10.04 13.09

5 7.39 20.03 20.76 10.04 13.09

6 7.45 20.44 21.17 10.06 13.13

7 22.25 39.31 40.62 16.59 22.28

8 24.94 48.78 49.84 17.97 22.65

9 29.61 53.54 54.64 18.97 23.84

10 31.61 56.04 57.14 19.68 24.67

11 28.70 53.67 54.76 18.82 23.07

12 28.17 52.44 53.50 18.44 22.60

13 28.17 52.44 53.50 18.44 22.60

14 28.17 52.44 53.50 18.44 22.60

15 27.49 51.76 52.71 18.22 22.22

16 28.04 52.31 53.26 18.41 22.45

17 31.81 57.94 58.85 19.78 23.24

18 32.24 58.87 59.77 19.94 23.24

19 32.24 58.87 59.77 19.94 23.24

20 29.28 53.67 54.76 18.82 23.07

21 27.18 51.30 52.34 18.09 22.17

22 23.24 43.87 44.85 16.59 20.92

23 10.98 28.90 29.88 11.66 15.20

24 7.29 21.52 22.25 10.14 13.08

in hours with high demand. The same behavior is observed in unit revenues and demand
costs.

These results have been obtained solving the problem formulated in Section 2 using
the technique described in Section 3 employing commercial solvers GAMS/CPLEX 9.0
(master problem) and GAMS/MINOS 5.51 (subproblems)(see Brooke et al. (1998)). The
solution has been achieved in 18 iterations and approximately 2 hours of CPU time within
a relative tolerance lower than 1%. The computer used is a Linux-based Dell PowerEdge
6600 with 4 processors at 1.60 GHz and 2 GB of RAM memory. Note that the objective
function optimal value, ZME, is equal to zero, and therefore minimum profit conditions have
not generated complementarity infeasibilities.

The convergence behavior of Benders decomposition is illustrated in figure 3. Observe
the appropriate convergence of this decomposition and the smooth increase of the lower
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Figure 3. Evolution of bounds of the Benders decomposition.

bound of the optimal objective function value. Nevertheless, the lower bound progresses
slowly once a reasonably small gap between the bounds is achieved. This is typical behavior
of Benders decomposition for large-scale problems.

Finally, Table 5 provides a comparison between the multi-period equilibrium without
imposing minimum profit conditions for the units and its corresponding sequence of single-
period equilibria (not considering inter-temporal constraints). The on/off status of the gen-
erating units in any single-period equilibrium is decided considering unit status only in
the previous period. Each single-period equilibrium is equivalent to an optimal power flow
(Hobbs, 2001). The very fact that the multi-period equilibrium problem considers on/off
status changes along the time horizon as optimization variables, causes start-up costs to be
lower in the multi-period equilibrium case. It can be observed that social welfare is almost
2% higher in the multi-period equilibrium case than in the case of a sequence of single-
period equilibria, and total energy produced and consumed in the market is lower in the
multi-period case. This fact implies that the multi-period equilibrium problem provides more
efficient results than a succession of single-period equilibria. As compared with the more
realistic multi-period equilibrium, a sequence of single-period equilibria overestimates the
consumer surplus while underestimates the producer surplus. Note that the merchandising
surplus is defined as the total demand costs minus the total production revenues.

Table 6 provides a comparison between the multi-period equilibrium imposing minimum
profit conditions for the units and the multi-period equilibrium without imposing such con-
ditions. We observe that the consideration of minimum profit conditions implies an increase
of producer revenues and, therefore, an increase of the demand costs, whose consequence is
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Table 5. Multi-period equilibrium without MPC versus the corresponding sequence of single-period equilibria.

Multi-period equilibrium Sequence of Difference
without MPC single-period equilibria (%)

Total energy produced (MWh) 58242.44 59177.48 −1.58

Total energy consumed (MWh) 56566.85 57792.85 −2.12

Generating unit revenues (k$) 1003.81 1013.43 −0.95

Demand costs (k$) 1025.51 1033.98 −0.82

Start-up costs (k$) 3.06 11.19 −72.65

Producer surplus (k$) 503.20 473.84 6.20

Consumer surplus (k$) 237.44 253.93 −6.49

Merchandising surplus (k$) 21.70 20.56 5.54

Social welfare (k$) 762.34 748.36 1.87

Table 6. Multi-period equilibrium with MPC versus multi-period equilibrium without MPC.

Multi-period equilibrium Multi-period equilibrium Difference
with MPC without MPC (%)

Total energy produced (MWh) 58009.30 58242.44 −0.40

Total energy consumed (MWh) 56306.04 56566.85 −0.46

Producer revenues (k$) 1014.04 1003.81 1.02

Demand costs (k$) 1036.96 1025.51 1.12

Star-up costs (k$) 2.79 3.06 −8.82

Producer surplus (k$) 516.88 503.20 2.72

Consumer surplus (k$) 220.74 237.44 −7.03

Merchandising surplus (k$) 22.92 21.70 5.62

Social welfare (k$) 760.54 762.34 −0.24

a higher producer surplus and a lower consumer surplus. Social welfare is lower if minimum
profit conditions are considered than if they are not.

5. Conclusions

This paper describes, analyzes and illustrates a multi-period equilibrium in a pool-based
electricity market that may include minimum profit constraints for on-line generating units.
To be able to use optimality conditions, we formulate the multi-period equilibrium problem
using Benders decomposition in such a manner that it can be easily solved.

A procedure to identify multi-period equilibria in an electricity market is of interest for
the market regulator that may use it for market monitoring. It is also of interest for producers
and consumers to analyze their most appropriate strategies.
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A multi-period market equilibrium approach reproduces a real-world functioning of the
market in a better manner than a succession of single period equilibria since coupling
conditions are properly taken into account. Unlike a succession of single-period equilibria,
the multi-period approach allows incorporating minimum profit constraints for on-line
generating units comprising the whole market horizon, which are relevant constraints in
actual markets and represents an important modeling advantage.

Appendix: Notation

We list the main notation used in this paper.

Primal variables

csd
Gi (t) is the shut-down cost of generating unit i in hour t .

csu
Gi (t) is the start-up cost of generating unit i in hour t .

PDik(t) is the power block k that demand i is consuming in hour t .
P̃Dik(t) is the power block k that demand i is consuming in hour t . This variable is equal

to PDik(t) and it is used in the problem of the ISO.
PGib(t) is the power block b that generating unit i is producing in hour t .
P̃Gib(t) is the power block b that generating unit i is producing in hour t . This variable is

equal to PGib(t) and it is used in the problem of the ISO.
vi (t) on/off status of generating unit i in hour t (1 if generating unit i is on in hour t

and 0 otherwise).
δi (t) is the voltage angle of node i in hour t .
ρi (t) is the locational marginal price in node i in hour t .

Dual variables

αi (t) is the dual variable associated with the maximum capacity constraint of generating
unit i in hour t .

βi (t) is the dual variable associated with the minimum power output of generating unit
i in hour t .

γi j (t) is the dual variable associated with the transmission capacity constraint of line i- j
in hour t .

�i (t) is the dual variable associated with the upper bound of the voltage angle of node
i in hour t .

κvi (t) is the dual variable associated with the constraint that fixes the variable vi (t) in
the subproblem.

µGib(t) is the dual variable associated with the equality equation of the power generated
(unit i , block b) in the problem of the ISO and in the corresponding problem of
the producer.
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υDik(t) is the dual variable associated with the equality equation of the power demanded
(demand i , block k) in the problem of the ISO and in the corresponding problem
of the consumer.

σi (t) is the dual variable associated with the minimum demand constraint of demand i
in hour t .

τi (t) is the dual variable associated with the available maximum power output constraint
of unit i in hour t .

φib(t) is the dual variable associated with the maximum capacity limit for the block b of
the generating unit i in hour t .

ϕik(t) is the dual variable associated with the maximum capacity limit for the block k of
the demand i in hour t .

ψi (t) is the dual variable associated with the available minimum power output constraint
of unit i in hour t .

Constants

Bi j is the susceptance of line i- j .
C fx

Gi is the fixed cost coefficient of generating unit i .
C sd

Gi is the shut-down cost coefficient of generating unit i .
C su

Gi is the start-up cost coefficient of generating unit i .
Ki is a positive constant that represents minimum profit for generating unit i .

Pmin
Di (t) is the minimum power supplied to demand i in hour t .

Pmax
Dik (t) is the maximum power block k that demand i is willing to buy at price λB

Dik in
hour t .

Pmax
Gi is the maximum power output of generating unit i .

Pmin
Gi is the minimum power output of generating unit i .

Pmax
Gib (t) is the maximum power block b that generating unit i is willing to sell at price λB

Gib
in hour t .

P̂ (η)
Gib(t) is the estimate of the generating power in block b of unit i in hour t at iteration η.

P̄ (η)
Gib(t) is the optimal value of the generating power in block b of unit i in hour t at iteration

η.
Pmax

i j is the transmission capacity limit of line i- j .
Rdn

i is the ramp-down limit for generating unit i .
Rsd

i is the shut-down ramp limit for generating unit i .
Rsu

i is the start-up ramp limit for generating unit i .
Rup

i is the ramp-up limit for generating unit i .
ZME is the summation of all the inequality constraints of the subproblem multiplied by

their respective dual variables.
λB

Dik(t) is the price offered by demand i to buy power block k in hour t .
λU

Dik(t) is the utility ($/MWh) associated to power block k of demand i in hour t .
λB

Gib(t) is the price offered by generating unit i to sell power block b in hour t .
λC

Gib(t) is the production cost of power block b of generating unit i in hour t .
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Sets

D is the set of indices of demands.
Dq is the set of indices of demands owned by consumer q.
G is the set of indices of generating units.

Gon is the set of indices of generating units that impose minimum profit requirements.
G f is the set of indices of generating units owned by producer f .

N is the set of nodes.
T is the set of time periods considered.


i is the set of nodes adjacent to node i .

Numbers

NDi is the number of blocks demanded by demand i .
NGi is the number of blocks offered by generating unit i .
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