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Abstract The network neutrality debate originally stems from the growing traffic
asymmetry between ISPs, questioning the established peering or transit agreements.
That tendency is due to popular content providers connected to the network through
a single ISP whose traffic is not charged by distant ISPs. We propose in this paper
to review the economic transit agreements between ISPs in order to determine their
best strategy. We define a model with two ISPs, each providing direct connectivity
to a fixed proportion of the content and competing in terms of price for end users,
who select their ISP based on the price per unit of available content. We analyze
and compare thanks to game-theoretic tools three different situations: the case of
peering between the ISPs, the case where ISPs do not share their traffic (exclusiv-
ity arrangements), and the case where they fix a transfer price per unit of volume.
Our results suggest that a minimal regulation, consisting in letting ISPs choose tran-
sit prices but imposing peering in case no agreement is reached, leads to satisfying
outcomes in terms of user welfare while still leaving some decision space to ISPs,
hence answering a concern they have regarding regulation in the Internet market.
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1 Introduction

The Internet has moved from an academic network connecting universities to a net-
work used for everyday purposes and open to all. The network is now made of
competitive and profit-seeking content providers (CPs) and Internet access providers
(or Internet Service Providers (ISPs)). One important principle driving the current
network is the universal access principle, meaning that all consumers are entitled to
reach meaningful content, whatever the technical limitations of their service [12, 18,
31]. But because of large and bandwidth-consuming CPs (for example YouTube),
some ISPs have started to wonder why distant CPs should not be charged by them,
with the threat of their traffic not being delivered if they do not accept to pay
[19, 30].

Our goal in this paper is to propose a model that will be solved by game-theoretic
tools to better understand the relations between the three sets of players that are end
users, ISPs and CPs, and to investigate from an economic point of view the relevance
of a threat to not transfer the traffic coming from competitive ISPs (i.e., coming from
CPs not directly connected to the considered ISP). Indeed, such threats have been
used in the past (e.g., during the Cogent/Level 3 dispute in 2005); we show in this
paper that even if that threat is not credible (the disconnection harms both sides), it
strongly affects the result of the negotiations. In this paper, we compare the three
following situations: (i) there is a peering agreement between ISPs who deliver the
traffic coming from the competitive ISP at no cost (ii) there is no agreement and no
traffic transfer from an ISP to another, limiting as a consequence the content offer
(and therefore, potentially end-user demand) at each ISP (iii) there is a per-unit-
of-volume transit price between the ISPs, which can be obtained from a negotiated
agreement between the ISPs–with or without a disconnection threat–or determined
by a regulator wishing to maximize user welfare. This model with the three differ-
ent possibilities allows us to determine the best peering relationships between ISPs
and the relevance of the threat to break the universality principle. Of course, our
results have to be taken with care, since our model is a considerable simplification
of the actual Internet ecosystem, whose increasing complexity since its creation is
illustrated in [30].

There exists a recent flourishing literature dealing with network neutrality model-
ing and analysis, see among others [1, 2, 8, 11, 19–23, 25, 29] and the survey [15]. But
those papers mainly discuss how revenue should be shared among providers (ISPs
and CPs) or how neutrality or non-neutrality affect the providers’ investment incen-
tives, innovation at the content level, network quality, and user prices. The originality
of our work relies on 1) the modeling of peering or transit traffic pricing between the
ISPs, 2) the modeling of the amount of content directly connected to each ISP, and
3) the use of classical discrete choice models to define how users choose their ISP
depending on price, reputation, loyalty, and available content.

With respect to the classification of approaches proposed in [15], our work is clos-
est to [7, 9, 17], that consider several ISPs in competition (instead of a monopolistic
one). However, those papers develop two-sided market models (with users having to
attract users but also CPs), while we consider the CP part as fixed and focus on the
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user side of the market. This enables us to develop a further analysis of the price com-
petition, with a more realistic model than the Hotelling one used in [7, 9] (where, e.g.,
users are forced to select one ISP) or the perfect competition among ISPs assumed
in [17] (leading to ISPs making no revenues).

Note that our paper does not directly address the net neutrality problem by com-
paring a neutral to a non-neutral stance; rather, we intend to understand the (very
closely) related issues of interconnection and peering/transit agreements among ISPs.
The interconnection issues among ISPs competing to attract users are also studied in
[6, 13, 16]. In [13] the decision variable as regards interconnection is the quality of
the link between ISPs; in this paper we assume quality is sufficient, and the discus-
sion is on the transit price to apply. In [6] the authors consider bargaining among ISPs
deciding to interconnect or not: this is also close to our model, but no explicit com-
petition is considered and the bargaining is on the sharing of extra revenue brought
by the interconnection, no unit transit price with underlying price competition among
ISPs is considered. Our work is also close to [16] where transit agreements are stud-
ied, but where the competition is among telephone providers applying usage-based
pricing to users. This paper considers flat-rate pricing, that is the most popu-
lar one for Internet access. However, we obtain some results comparable to [16],
in particular the fact that it can be beneficial for ISPs to set a non-null transit
price.

Finally, it is worth mentioning [14], not because the model is very similar (the
authors consider a two-sided market with competition among ISPs but also among
CPs), but because the issues and some conclusions are comparable. The authors
study the risks of fragmentation of the Internet–where CPs having exclusivity agree-
ments with some ISPs are not reachable for all users–and analyze the impact of net
neutrality regulations (imposing null termination fees); their conclusion is that the
user-welfare optimal case is the no-fragmented one, and that imposing null termina-
tion fees has ambiguous effect on user welfare while preventing exclusivity deals is
an easily applicable rule that improves the outcome. Our conclusions, although in a
slightly different context–interconnection transit prices among ISPs–and with a dif-
ferent model, are in the same vein: we advocate to let ISPs decide the transit price, the
only regulation being to maintain connectivity (the counterpart of the no-exclusivity
rule).

The remainder of this paper is organized as follows. Section 2 presents the basic
assumptions of the model, the players, and the three scenarios we propose to analyze
and compare. The user welfare is also formalized, and general formulas provided.
Section 3 analyzes the game when there is peering between ISPs (i.e., with a null
transit price) and end users have a full access to all CPs. Section 4, on the other hand,
describes the users repartition and pricing game among ISPs when they do not agree
to exchange their traffic. Section 5 presents the analysis when there is a transit pric-
ing agreement, the price being determined from a bargaining phase between ISPs,
or by a regulator wishing to maximize user or social welfare. Section 6 concludes
the paper by discussing the impact of the disconnection threat on the network neu-
trality debate, arguing that a good compromise is a minimal regulation consisting in
enforcing connectivity among ISPs while letting them fix the transit price.
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2 Model

2.1 Model basic components and notations

We consider two ISPs called A and B , in competition for end users. Those users are
represented as a continuum of total mass assumed to be 1 without loss of generality.

We also assume that we have content that users may be interested to reach. We
actually consider the traffic volume for that content, and also assume it of mass 1
without loss of generality. We call yA (respectively, yB) the proportion of downloaded
content volume that is directly connected to the Internet through A (respectively,
B). In other words, content providers also have to be connected to one of the two
access providers A or B (or both), so that yA represents the proportion of downloaded
content attached to A. Note that the proportions yA and yB encompass the popularity
of the contents, which weighs the computation of those proportions: yA (respectively,
yB ) represents the proportion of the total aggregated flow originating from CPs, that
originates from a CP connected to ISP A (respectively, B). (We focus on downlink
traffic only, since uplink traffic to content providers is limited to requests and is
negligible.) Since we assume only two ISPs in this model, we have yA + yB ≥ 1; the
case when yA+yB > 1 corresponds to the situation where some CPs are multihomed,
i.e., are attached to both ISPs. In that case the quantity yA + yB − 1 is the proportion
of downloaded content coming from multihomed CPs. Note that some CPs do not
directly contract with ISPs but rather use Content Delivery Networks (CDNs), that
they operate themselves or that they pay for their service. CDN services consist in
storing the data closer to the user, through cache memory servers located within (or
close to) the ISPs to which users are connected. That case is also covered by our
model: if the CDN has agreements with both ISPs–the most common case–then the
corresponding traffic volume would count as multihomed content (a user wanting
to access such content can get it with any ISP and no data transfer between ISPs is
needed), while if the CDN can only directly connect to ISP A or B then the traffic
volume is counted in yA or yB , respectively. In this paper we assume that yA + yB <

2, i.e., not all content is multihomed.
The quantities yA and yB are assumed fixed in our model, since we focus on the

decisions that ISPs make in terms of traffic exchanges and end-user pricing. So-called
two-sided models [3, 28] would consider yA and yB as the result of ISPs competing
to attract content providers; we leave such approaches for future work, for the sake of
simplicity and because such CP-ISP interactions can be assumed to occur at a larger
time scale than the one studied here.

In terms of pricing, we denote by pA (respectively, pB ) the access price for a user
to provider A (respectively, B). This access price is a flat-rate subscription fee, inde-
pendent of the amount of volume that the user will download. We also assume that
there might be a common price per unit of volume t for the traffic transferred between
the two ISPs, defining an economic relationship between ISPs: if t = 0, this forms
the classical peering agreement with no fee, while t > 0 means a transit pricing (also
called “paid peering” [30]) usually adopted when there is a strong asymmetry. Note
that we could consider a transit price for each traffic direction; we choose symmetric
prices here for simplicity, and because in practice only one ISP pays the other, at the
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agreed unit price [30]. Those two situations–peering and paid transit–will be inves-
tigated in the next sections, with also the situation when the link between ISPs is
broken, so that there is no possibility for users attached to an ISP to reach the content
attached to the other ISP. All those relations are summarized in Fig. 1.

2.2 User preferences

We assume that users select at most one ISP, their choice following a standard discrete
choice model heavily used in travel behavior and econometrics in general [4]. We
more specifically use a logit model that can approximate any random utility model.
In a popular form of the logit model, the valuation (level of satisfaction) of a user q

for an alternative or choice i is random and given by

Vq,i = vi + κq,i,

where vi is the average valuation and κq,i a random variable that represents some
unobserved random noise. The κq,i are assumed to be independent and to have a
Gumbel distribution of mean 0: P[κq,i ≤ z] = exp(− exp(−z − γ )), where γ is
Euler’s constant. In the rest of this paper, since the random variables κq,i (and, as a
result, Vq,i) are identically distributed, we will drop the index q .

The average valuation for an ISP i depends on the price pi , but also on the amount
of content available through that ISP, that we denote by xi . For that latter measure
we use the proportion of content that is likely to interest users, hence we reason on
download traffic volumes: xi is the proportion of download traffic of content reach-
able from ISP i. It is important to remark that the “mass” of available content xA for
a user connected through ISP A can differ from the proportion yA of download traf-
fic from CPs directly connected to ISP A. For instance, if ISPs exchange traffic then
xA = xB = 1 (all the content is reachable from all ISPs); while if there is no transit
between ISPs, xA = yA and xB = yB .

Fig. 1 Representation of relations between users, ISPs and CPs
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Finally, we assume that the average valuation vi depends on the price per unit of
available content, pi/xi , through the standard logarithmic relation

vi
def= α log

(
xi

pi

)
, (1)

where α > 0 is a sensitivity parameter. This type of logarithmic functional has also
recently been justified in telecommunications using the context of the Weber-Fechner
Law, a key principle in psychophysics describing the general relationship between
the magnitude of a physical stimulus and its perceived intensity within the human
sensory system [27]. For our model, the logarithmic function implies that the disutil-
ity perceived by a price raise is a function of the relative price change, rather than the
absolute change. The parameter α then represents how sensitive users are to a given
ratio among prices per unit of content: for instance, when comparing providers A and
B in the case when they exchange traffic, the difference of perception due to price is
α log(pB/pA). This difference will then affect the user choices, modulo the random
part κq,i described above. Large values of α will diminish the impact of that random
part, so that users will mainly focus on prices, while on the other extreme low values
of α mean that prices have no impact on user choices, since those are driven by the
reputation and brand aspects contained in the variables κq,i . Note that a null price
yields an infinite valuation, so that a free option will always be preferred to one with
charge.

We additionally assume that there is an outside option labelled 0, with average
valuation v0, representing the (possibly negative) valuation for not choosing any ISP,
and that will be compared with the valuation for ISPs. In accordance with Eq. 1, we

also define p0
def= exp(−v0/α), representing the cost associated to not benefitting

from any content. In our numerical illustrations, unless specified otherwise, we will
take p0 = 1 (or, equivalently, v0 = 0).

Each user chooses the option yielding the largest valuation. Following classical
discrete choice analysis, a user will choose the option i ∈ {A, B, 0} with probability

σ̃i (vA, vB, v0)
def= exp(vi)

exp(vA) + exp(vB) + exp(v0)
. (2)

Consequently, for a given price profile (pA, pB, p0) and available contents (xA, xB),
that probability is

σi(pA, pB, p0)
def= (xi/pi)

α

(xA/pA)α + (xB/pB)α + 1/pα
0
. (3)

Several remarks can be made here:

– The probability σi(pA, pB, p0) is also the proportion of users that will choose
option i ∈ {A, B, 0} given that users’ choice have been assumed independent
and that the total mass of users is 1.

– The ISPs that set their price to zero will attract all the users. However, their
revenue is null in this case.

– The distribution (σi(pA, pB, p0))i∈{A,B,0} uniformly concentrates on choices
whose price are minimal when α goes to ∞, and is uniform on {A, B, 0} when
it goes to zero.
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– We could assume a different parameter α associated to each option αi for i ∈
{A, B, 0}. As a consequence the choice probability would turn into

σi(pA, pB, p0)
def= (xi/pi)

αi

(xA/pA)αA + (xB/pB)αB + 1/p
α0
0

.

This heterogeneous case will be discussed for some cases when it is analyti-
cally tractable. However, for reasons of clarity, those discussions are given in
appendices, and we focus in the paper on the homogeneous case.

2.3 ISPs’ utilities

ISPs’ utilities are modeled by the revenues they get, that come from the subscription
of end users and the transit fees between ISPs, if any. The subscription revenues are
proportional to the market share σi of each provider i and its price pi . To express
the transit fees, recall that for a customer of ISP A, yA can be interpreted as the
proportion of the download traffic that will go directly through ISP A, while the
remaining proportion 1 − yA will have to be delivered through B and then A (if
possible), following Fig. 1, to reach the user. That fact, then, implies some money
transfer (transit costs) from ISP A to ISP B in case of transit agreements where the
receiver that has asked for the service has to pay for it (the so-called pull model).

The total amount of traffic transferred from B to A is (1 − yA)σA(pA, pB, p0),
paid by A to B , while it is (1 − yB)σB(pA, pB, p0) from A to B , paid by B . Denote
by �A,B the differential amount of traffic that is transferred from ISP A to ISP B , i.e.

�A,B = (1 − yB)σB(pA, pB, p0) − (1 − yA)σA(pA, pB, p0). (4)

Then the respective revenues UA and UB of provider A and B are

UA(pA, pB, p0) = σA(pA, pB, p0)pA + t�A,B (5)

UB(pA, pB, p0) = σB(pA, pB, p0)pB − t�A,B.

2.4 User welfare

The user welfare, or user surplus, is defined as the aggregated net benefit that users
get from the system. We consider here as a reference outcome the one with no service,
for which the (random) user value is V0 = v0 + κ0. From the logit model defined in
the previous subsection, the net surplus of a user is what he or she gains compared to

that outside option, i.e., Z
def= max(0, VA −V0, VB −V0). Because the total user mass

is 1, the user welfare, that we denote by UW, is E[Z]. Now, remark that for z ≥ 0,

P[Z ≤ z] = P[(VA − V0 ≤ z) ∩ (VB − V0 ≤ z)]
= P[(V0 ≥ VA − z) ∩ (V0 ≥ VB − z)]
= exp(v0)

exp(v0) + exp(−z)(exp(vA) + exp(vB))
.
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The last equation is a direct consequence of Eq. 2, subtracting z to the average
valuations of options A and B .

Therefore, we have

UW = E[Z] =
∫ +∞

z=0
P[Z > z] dz

=
∫ +∞

z=0

exp(−z)(exp(vA) + exp(vB))

exp(v0) + exp(−z)(exp(vA) + exp(vB))
dz

= log (1 + exp(vA − v0) + exp(vB − v0)) (6)

= log

(
1 +

(
xA

p0

pA

)α

+
(

xB

p0

pB

)α)
.

As expected, the user welfare is always nonnegative, since users still have the
possibility to select no provider as in the reference situation: they only choose to
subscribe to a provider if it increases their utility.

2.5 Scenarios and game analysis

We recall that in the next sections, we will analyze the pricing game between ISPs
(and the transit pricing agreement) in three different scenarios:

1. In the first one, users can access all the content, independently of the chosen ISP,
because there is a peering agreement between ISPs (t = 0 and xA = xB = 1 in
our model).

2. In the second one, the link between ISPs is broken because they fail to agree on
traffic exchange. Therefore, users can only access the content associated with
the ISP they have chosen.

3. Finally, in the third scenario, the ISPs define a price per unit of volume they
charge each other for the traffic downloaded from the CPs associated to their
competitor and transmitted to their customers.

We can notice a hierarchy in the game analysis: at the highest time scale (only
for the third scenario), the transit price is chosen (by a bargaining phase or by a
regulator). At the intermediate level, ISPs compete on prices to attract customers and
maximize their revenue in a classical non-cooperative game. Finally, at the smallest
time scale, customers choose their ISP based on available content and price. Remark
that those levels are solved by backward induction, anticipating the result at the time
scale below.

3 Scenario 1: Peering between ISPs

In this scenario, ISPs have a peering agreement, and the users can access all the
available content. Consequently xA = xB = 1 and t = 0 in our model. For given
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subscription fees pA and pB at providers A and B , the proportion of users choosing
option i ∈ {A, B, 0} is

σi(pA, pB, p0) = (1/pi)
α

(1/pA)α + (1/pB)α + 1/pα
0
. (7)

The revenue of i ∈ {A, B} can be expressed (with t = 0) as

U
peer
i (pA, pB, p0) = σA(pA, pB, p0)pi

= pi

(1/pi)
α

(1/pA)α + (1/pB)α + 1/pα
0

.

Knowing what will be the user repartition for a price profile (pA, pB) (with
p0 fixed), ISPs try non-cooperatively to maximize their revenue. The equilibrium
notion is that of Nash equilibrium, that would be a price profile from which no
ISP can increase its revenue by unilaterally changing its price [26]. Formally, it is a
price profile (p

peer,NE
A , p

peer,NE
B ) such that ∀pA, pB , U

peer
A (p

peer,NE
A , p

peer,NE
B , p0) ≥

UA(pA, p
peer,NE
B , p0) and U

peer
B (p

peer,NE
A , p

peer,NE
B , p0) ≥ UB(p

peer,NE
A , pB, p0).

From the definition, (0, 0) is a Nash equilibrium because a unilateral increase in
price from an ISP will drive all demand to the other ISP (recall that a free option
is always preferred from our discrete choice model, the associated valuation being
infinite), hence a revenue still at 0. Yet, the choice for an ISP to deliver the service
for free is a strictly dominated strategy unless the other ISP is doing the same (in
which case it is only weakly dominated, since all strategies lead to a null revenue).
Because non-zero price equilibria Pareto-dominate the price profile (0, 0), in the rest
of the paper we assume that ISPs choose strictly positive prices when such a Nash
equilibrium exists.

The following proposition establishes the existence and uniqueness of a Nash
equilibrium in the peering case.

Proposition 1 If 1 < α ≤ 2, there exists a unique Nash equilibrium different from
(therefore not considered) (0, 0), with equilibrium prices

p
peer,NE
A = p

peer,NE
B =

(
2 − α

α − 1

)1/α

p0
def= ppeer,NE.

The ISPs’ revenues are then

U
peer,NE
A = U

peer,NE
B = α−1

α
ppeer,NE

= (2 − α)1/α (α−1)1−1/α

α
p0.

The case when α ≤ 1 results in infinite prices, and α ≥ 2 leads to a price war,
i.e., providers decreasing their prices to 0, so that (0, 0) is the unique equilibrium.
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Proof We consider the derivatives of ISPs’ revenues with respect to their own prices.
For i ∈ {A, B}, we obtain

∂U
peer
i

∂pi

= σi(1 − α(1 − σi)), (8)

with σi given in Eq. 7.
When α ≤ 1, the derivatives are always strictly positive, and prices tend to infinity.
We now consider the case α > 1. Remark that σi is a strictly decreasing function

of pi on R+, going from 1 to 0, when the competitor sets a strictly positive price.
Therefore, from Eq. 8, for each value pj > 0 of its competitor’s price, provider i

has a unique best-reply price, that is strictly positive and such that α(1 − σi) = 1,
i.e. σi = 1 − 1

α
. Therefore, when α > 1 there can be only one Nash equilibrium

(p
peer,NE
A , p

peer,NE
B ) with positive prices, that is such that σA = σB = 1 − 1

α
. We

immediately notice that such an equilibrium can only exist if α ≤ 2, because other-
wise we would have σA + σB > 1. In that case, solving σA = σB = 1 − 1

α
based on

Eq. 7 easily leads to the Nash equilibrium prices provided in the proposition.
To analyze the case when α > 2, we explicitly express the best-reply price

function BRi (pj ) of provider i when its competitor sets a strictly positive price
pj . That price is the value pi such that σi = 1 − 1

α
, i.e., BRi (pj ) = pi =(

(α − 1)(p−α
j + p−α

0 )
)−1/α

. Remark that when α ≥ 2, since p0 > 0 we have

(α − 1)(p−α
j + p−α

0 ) > p−α
j and therefore BRi(pj ) < pj . In other terms, when a

provider sets a strictly positive price pj , the best reply of its competitor is strictly
below that price. That situation leads to a price decrease until providers do not make
any revenue.

Notice that the result for α ≤ 1 corresponds to users with low price sensitivity:
when a provider i increases its price pi , the demand σi decreases slowly, and the
product piσi increases. In economic terms this corresponds to a price elasticity Ei

of demand for provider i (when the other providers keep their price constant) being
small in absolute value, i.e.

Ei
def= pi

σi

∂σi

∂pi

= −α(1 − σi) ∈ (−1, 0).

In our model, such small price elasticities incentivize ISPs to set infinite prices (as
seen previously). Since such an outcome is not realistic, we omit that case and from
now on assume that α > 1. The opposite situation of prices decreasing to 0 when
α ≥ 2, to attract customers of the competitor, is called price war. It comes from a
large price-sensitivity of users.

Let us now analyze the outcome that ISPs can achieve by cooperating, i.e., by
setting prices so as to maximize the sum U

peer
A + U

peer
B of their utilities.

Proposition 2 The sum of ISPs utilities is maximized by setting prices pA and pB to

p
peer
max =

(
2

α − 1

)1/α

p0, (9)
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and is equal to U
peer
max = α−1

α
p

peer
max = 21/α (α−1)1−1/α

α
p0.

Proof First note that if at least one price is zero, then the total revenue of ISPs is
null, hence such a price profile cannot be optimal. Thus, either the optimal price of
a provider is ∞, or it nullifies the derivative. Remark that the derivative of U

peer
A +

U
peer
B with respect to pi with i ∈ {A, B} (and with j �= i) is

∂(U
peer
A + U

peer
B )

∂pi

=
(
p1−α

i + αp1−α
j − (α − 1)pi

(
p−α

j + p−α
0

))

p1+α
i (p−α

i + p−α
j + p−α

0 )2
.

Recall that α > 1, and note that the derivative with respect to pi (i ∈ {A, B}) is
strictly negative if pi is sufficiently large. The optimal pricing is when the two above
derivatives are null, i.e. when

p1−α
A + αp1−α

B − (α − 1)pA

(
p−α

B + p−α
0

) = 0

p1−α
B + αp1−α

A − (α − 1)pB

(
p−α

A + p−α
0

) = 0.

The difference between those equations leads to (pA − pB)(p−α
A + p−α

B + p−α
0 ) = 0

which implies pA = pB . Then their common value p
peer
max is obtained from any of

those equations, yielding the unique solution given in Eq. 9.

We now compute the cost of competition for ISPs, through the ratio of their total
revenues without cooperation (i.e., at the Nash equilibrium) and with collaboration.
That ratio equals

U
peer,NE
A + U

peer,NE
B

U
peer
max

= 2
(

1 − α

2

)1/α

.

Notice that it does not depend on p0. We remark that the larger the user sensitivity to
prices, the more ISPs lose by not cooperating.

For 1 < α < 2, it can be readily checked that a larger sensitivity to price (i.e.,
a larger α) yields a larger user welfare and smaller ISPs revenues, and also that a
price competition among ISPs is better for users, this improvement increasing with α

because the price sensitivity exacerbates competition as highlighted before.

4 Scenario 2: No traffic exchanged between ISPs

Because of the potential traffic asymmetry between ISPs, the peering agreement of
the previous section may not seem satisfactory for one ISP. Two alternatives are con-
sidered in this paper: to break the connection between ISPs so that subscribers of
a provider have access to the content of that provider only, or to set a transit price
such that an ISP has to pay for the content hosted by the competitor and accessed by
its own customers (this last scheme is the topic of the next section). We aim in this
section to study what happens if there is no traffic exchanged between ISPs, and if we
can identify a loser and/or a winner. Breaking the transit possibility is not necessarily
beneficial for a provider since users have access to less content and may then prefer
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not to subscribe to any provider. It is interesting to note that breaking the connec-
tion between ISPs has been implemented in the past; this was for instance the case in
2005 during a dispute between the ISPs Cogent and Level 3, with as a consequence
undelivered emails and unreachable web sites for some customers [10].

In our model, we make the simplifying assumption that the CP-ISP agreements
will remain unchanged, while it is likely that some CPs may want to switch ISPs or
to be multihomed. Such dynamics are not considered here.

From our model, if the communication link between ISPs is cut, then xA = yA

and xB = yB , and from Eq. 3, the ISP revenues are

U cut
A (pA, pB, p0) = pA

(yA/pA)α

(yA/pA)α + (yB/pB)α + 1/pα
0

U cut
B (pA, pB, p0) = pB

(yB/pB)α

(yA/pA)α + (yB/pB)α + 1/pα
0
.

The next proposition characterizes the outcome of the competition between ISPs
in this case. Here too, (pA, pB) = (0, 0) is a Nash equilibrium but the free strategy
is a strictly dominated strategy unless the other ISP is doing the same so that we will
again ignore this strategy when a Nash equilibrium different from (0, 0) exists.

Proposition 3 If 1 < α < 2 and 0 < yi < 1, i = 1, 2, there exists a unique Nash
equilibrium different from (0, 0), with equilibrium prices p

cut,NE
A = yApcut,NE and

p
cut,NE
B = yBpcut,NE, where

pcut,NE = ppeer,NE =
(

2 − α

α − 1

)1/α

p0.

The ISPs’ revenues are then U
cut,NE
A = yAU cut,NE and U

cut,NE
B = yBU cut,NE, where

U cut,NE = α − 1

α
pcut,NE = (2 − α)1/α (α − 1)1−1/α

α
p0.

The case α ≥ 2 leads to a price war with (0, 0) as the unique equilibrium.

Proof The proof mimics the one of Proposition 1, since we again have for each
provider i

∂U cut
i

∂pi

(pA, pB, p0) = σi(1 − α(1 − σi))

with σi = (yi/pi)
α

(yA/pA)α+(yB/pB)α+1/pα
0

.

At a Nash equilibrium, ISPs’ price (resp., revenue) is equal to the price (resp.,
revenue) they set (resp., get) in the peering scenario of Section 3, multiplied by the
proportion of content they control. As an important conclusion, no ISP i has an inter-
est in breaking the connection, whatever the content yi it controls, because its revenue
will be reduced (or the same if yi = 1).

Surprisingly, if one ISP controls the whole set of contents (for example if yA = 1,
i.e., all CPs are attached to ISP A), then it gets exactly the same revenue as in the first
scenario, whatever the content hosted by the competitor.
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In the previous section we have studied the case where ISPs were cooperating (and
peering) in order to maximize the sum of their revenues. Though we have not looked
at how they split the total revenue among themselves. A question we would like to
answer now is: is there a situation such that both ISPs have an interest in cooper-
ating for a given repartition of the total revenue with respect to a price competition
and no traffic exchange? If the answer is positive, what is the interval such that the
bargaining is satisfying?

Let us consider a revenue sharing agreement among ISPs, when cooperating and
peering, such that provider A gets a proportion πA of the total revenue U

peer
max , and

provider B obtains the rest. ISP A would then prefer that agreement over a pure
competitive situation with no traffic exchange, if πAU

peer
max ≥ U

cut,NE
A = yAU cut,NE.

From Propositions 2 and 3, we obtain that this holds if and only if πA ≥ yA(1 −
α/2)1/α. Similarly, such an agreement is acceptable for ISP B if and only if πB =
1 − πA ≥ yB(1 − α/2)1/α, so that the agreement is stable when

yA(1 − α/2)1/α ≤ πA ≤ 1 − yB(1 − α/2)1/α.

In particular, we remark that the width of the stable area increases with α ∈ (1, 2). For
example, when α tends to 2, any revenue sharing of cooperatively obtained revenue is
acceptable by ISPs, because competition with such price-sensitive users would lead
to a price war and null revenues. On the other opposite, when α tends to 1 then the
acceptable sharing set is reduced to πA ∈ [yA/2, 1 − yB/2]. Figure 2 displays that
acceptable region for πA in terms of α ∈ (1, 2), with yA = 0.8 and yB = 0.5.

Finally, Fig. 3 shows the utilities of ISPs and user welfare as a function of the
parameter α. The shape of the curves is the same as in Scenario 1, even if the utilities
of ISPs are about two times smaller.

5 Scenario 3: transit pricing

We now address the case where the traffic transferred from an ISP to the other is
compensated for by some payment. We first determine if a Nash equilibrium exists in
that context when such a transit unit price t > 0 is fixed, and we characterize it. Then,

Fig. 2 In gray, the set of
proportions of U

peer
max that ISP A

can receive so that both ISPs
accept to cooperate with respect
to a broken connection threat.
Here yA = 0.8 and yB = 0.5
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Fig. 3 User welfare (left) and sum of ISP’s utilities (right) at Nash equilibrium, with no exchanged traffic,
with yA = 0.8 and yB = 0.2

we discuss how the transit price can be determined on top of the pricing game for
customers, by a regulator or through a bargaining phase between ISPs. Remark that,
here again, the transit price is chosen first, but by backward induction, anticipating
the equilibrium of the (pricing) game played afterwards.

We begin by studying the game given by the revenue functions (5), with a fixed
transit price t > 0, the case t = 0 corresponding to our Scenario 1. A first difference
with the previous scenarios is that the pricing (0, 0) is no longer a Nash equilibrium.
Indeed, when an ISP sets its price to zero, it gets no revenue from the users, but only
from the transferred traffic charged to the other ISP, while it has to pay for its client
accessing the content attached to the competitor ISP. Then two cases appear:

– If the amount of traffic transferred between each ISP is exactly the same, i.e.,
�A,B = 0 (see Eq. 4), then both ISPs earn zero revenue. But since at least one
ISP has some content associated to it - say, w.l.o.g., ISP A, i.e., yA > 0 -, that
one could get a strictly positive revenue by setting any strictly positive price
pA > 0: the market shares would be θA = 0 and θB = 1, leading to a revenue
UA = tyA > 0.

– If �A,B �= 0, then one ISP (ISP A if �A,B < 0, ISP B otherwise) gets a strictly
negative revenue, whereas it can ensure a nonnegative one by setting a strictly
positive price and having no subscribers, hence only collecting revenue from
transit traffic payments.

In order to determine the Nash equilibrium of the game, we first analyze the best-
response functions of each ISP. The derivative of ISP i’s revenue is (with i, j ∈
{A, B}, j �= i):

∂Ui

∂pi

= K(pj )p
α
i + Li(pj )p

α−1
i + 1

p2α
i

(
p−α

i + p−α
j + p−α

0

)2
, (10)
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where K(z)
def= (1 − α)(z−α + p−α

0 ) and Li(z) =
αt

(
(2 − yA − yB)z−α + (1 − yi)p

−α
0

)
. Notice that Li ≥ 0. Furthermore, K(z) < 0

since α > 1.
We do not reach an analytical expression of the best-response prices of each ISP.

Nevertheless, several useful properties are listed in the next proposition, whose proof
is given in Appendix C. For convenience, we denote by BRt

A(pB) and BRt
B(pA) the

best-response correspondences for, respectively, ISP A and B with transit price t .

Lemma 1 For every yA, yB ∈ [0, 1]2, the best-response price correspondence of
each ISP i to the competitor (ISP j �= i) pricing strategy satisfies the following
properties:

(i) it is single-valued,
(ii) it is continuous,

(iii) it is uniformly bounded with strictly positive bounds. Furthermore, each ISP
can ensure a strictly positive net revenue (that includes user subscriptions and
transit prices).

(iv) it increases with the transit price t , i.e. ∀pj , t, r,

t > r ⇔ BRt
i (pj ) > BRr

i (pj ),

(v) BRt
i (pj ) is strictly increasing (resp., strictly decreasing, constant) in the com-

petitor’s price if (α(2−yA−yB)t/p0)
α

(α−1)α−1

(
1−yj

2−yA−yB

)
is lower than (resp., greater

than, equal to) one.

Those properties can be used to prove the existence of a Nash equilibrium for the
pricing game played among ISPs, in the situation of paid transit.

Proposition 4 Consider the game where the ISPs compete on their prices pA and
pB to maximize their revenue given in Eq. 5. Then there exists a Nash equilib-
rium (p

trans,NE
A , p

trans,NE
B ) with p

trans,NE
A > 0 and p

trans,NE
B > 0, resulting in strictly

positive revenues.

Proof From Lemma 1, the best-response function of each ISP i is continuous, and
bounded by strictly positive values. Let us denote by mi (resp., Mi ) the lower (resp.,
upper) bound of BRt

i . Then consider the application

g : [mA, MA] × [mB, MB ] 
→ [mA, MA] × [mB, MB ]
(pA, pB) → (BRt

A(pB), BRt
B(pA)).

Since g is continuous and [mA, MA] × [mB, MB] is a compact convex subset of R2,
from Brouwer’s fixed point theorem, it has a fixed point that constitutes a Nash equi-
librium with strictly positive prices (p

trans,NE
A , p

trans,NE
B ) ∈ [mA, MA] × [mB, MB ].

The strict positivity of the revenues comes from the fact that, from item (iii) of
Lemma 1, each ISP can always ensure a strictly positive revenue, whatever the other
ISP price.
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Note that, unlike in the previous scenarios, there is no price war when α ≥ 2 as
soon as t > 0, meaning that both providers benefit from the transit pricing because
they then reach a strictly positive revenue. In the following, we show that it is at the
expense of the user welfare.

Figure 4 shows a numerical approximation of best-response functions. Their form
suggests that the Nash equilibrium is unique; however, we did not manage to provide
theoretical evidence of that result, and can only conjecture the Nash equilibrium is
unique.

We know that, for every price transit t , there exists a Nash equilibrium. We are
now interested in the way the transit price is determined anticipating the fact that ISP
will select some Nash equilibrium prices afterwards. The next proposition states that
a regulator seeking to optimize the user welfare should impose a null transit pricing.

Proposition 5 Assume that α > 1. The unit transit price maximizing user welfare is
t = 0, which corresponds to the peering situation between ISPs (Scenario 1).

The proof is given in Appendix D.
A regulator seeking to maximize user welfare will set the transit price to zero.

But if the aim is to maximize the ISPs (sum of) utilities, it is no longer the case, as
illustrated on Fig. 5, where the value of t that maximizes the total ISPs’ utility is
about 0.8. Figure 6 illustrates the evolution of ISPs’ utility at the Nash equilibrium
when the transit price t varies. For small values of t , the utilities of both ISPs increase.
One can notice that the utility of the ISP that owns the least content starts to decrease
first. We also see that the point that maximizes the sum of utilities is very close to
the maximal possible revenue for ISPs if they cooperate, which corresponds to U

peer
max

given in the peering scenario.
We now compare several policies for choosing the transit price.

– A first policy consists in maximizing the user welfare. From the previous
proposition, that amounts to setting t = 0.

Fig. 4 ISP’s best response functions, with yA = 0.8, α = 1.5, t = 1, for yB = 0.2 (no CP multihoming,
left) and yB = 0.5 (30% of multihomed content, right)
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Fig. 5 Utilities of the
stakeholders at Nash equilibrium
prices, as a function of t , with
yA = 0.8, yB = 0.2, α = 1.5

– A second policy consists in maximizing the sum of ISP utilities (for instance it
could be applied by a regulator).

– And finally, we compare those two policies with the one obtained by a
non-cooperative bargaining process between the ISPs. Two possibilities are
considered.

Let us detail the bargaining process. Here we use the bargaining, or negotiation
game proposed in [24]: each ISP independently chooses a set of acceptable transit
prices t (prices that ensure a chosen amount of revenue), and if the intersection of
those sets is non-empty, the transit price is arbitrarily taken in the intersection, other-
wise the threat is executed. This negotiation scheme has several equilibria, but in [24]
the most likely to be played is the one maximizing the product of the utilities minus
the utility at the threat. In other words, that equilibrium transit price maximizes

max(0, U
trans,NE
A (t) − U threat

A ) · max(0, U
trans,NE
B (t) − U threat

B ),

where U threat
i represents the utility that ISP i obtains if the negotiation fails (two

cases will be considered in the following). Remark that this solution is the classical
axiomatic Nash bargaining solution [26].

Our numerical results suggest that the peering threat favors the small ISP
against the big one, when compared to the disconnection threat. More specifically,

Fig. 6 ISP utilities at Nash
equilibrium prices, when the
transit price t varies. The threat
point (i.e., the utilities
corresponding to the Nash
equilibrium when ISPs are
disconnected), the point
optimizing the sum of utilities as
well as the maximal revenue by
cooperating on prices (dashed
line) are drawn. Parameter
values: α = 1.5, yA = 0.8,
yB = 0.2
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Fig. 7 compares the utility of each ISP obtained with the bargaining procedure when
the threat corresponds to the disconnection (i.e., U threat

i = U
cut,NE
i ), to the utility

achieved when the threat (because of the legislation) is that ISPs are forced to main-
tain a connection (i.e., U threat

i = U
peer,NE
i ). We observe that the ISP with the largest

content (the big ISP) monotonically (in terms of proportion of contents) benefits
from the disconnection threat, while the opposite is true for the other ISP (the small
ISP). In the case with enforced peering threat, the small ISP still loses some revenue
when its weight decreases, but the revenue of the big ISP is no longer monotonic. We
observe that the enforced peering threat is a better rule than the disconnection threat
for the small ISP, while it is the opposite for the big ISP. An interpretation comes
from the comparison of both threat situations from the ISPs’ point of view: as seen
in Sections 3 and 4, and also illustrated in Fig. 6, both ISPs have the same revenue in
the peering case, while the big ISP has a larger revenue than the small one in the dis-
connection case. As a result, in the case of a disconnection threat (with respect to the
peering threat) the small ISP has less bargaining power than the big one, since it has
more to lose if no agreement is reached. This gives an advantage to the big ISP in the
negotiation. With the peering threat the effect is the opposite: the small ISP would
get the same revenues as the big one if no agreement is found, while with positive
transit prices it obtains less than the big one as can be seen on Fig. 6.

It also appears that the enforced peering threat (with respect to the disconnection
threat) favors users against ISPs. The intuition behind this observation stems from
our previous reasoning: enforced peering gives more bargaining power to the small
ISP, who will therefore obtain a smaller transit price during the negotiation, hence
leading to a situation closer to the peering scenario (that maximizes user welfare).

Fig. 7 Comparison of each ISP’s utility after bargaining process with disconnection and enforced peering
threats, when yA and α vary, with yB = 1 − yA (no content multihoming)
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In Fig. 8, we show how the utilities of ISPs and of the users are impacted by the
chosen policy, when the user sensitivity α and the proportion yA of download traffic
of content attached to ISP A vary, in the case when no content is multihomed (yB =
1 − yA). We first remark that the bargaining with disconnection threat leads to ISP
revenues and user welfare very similar to the policy maximizing the sum of ISPs’
utilities (the curves of total ISP revenues superimpose). This means that the non-
cooperative (bargaining) choice for t with the disconnection threat leads to a nearly
optimal point (that takes into account the competition between ISP afterwards) for
ISPs. Nevertheless, as one can see, when yA is close to 1 or α close to 2 the user
welfare is not exactly the same in both cases (see Fig. 8a and c), hence this is not
a general property. One can also observe in Fig. 8c and d that the utilities are not
very sensitive to the repartition of content among ISPs (the parameter yA), except for
the bargaining with enforced peering threat. In particular, the solution maximizing
user welfare does not depend on yA, hence utilities are constant in that case. Finally,
the bargaining solution obtained with the enforced peering threat is almost optimal

Fig. 8 ISPs’ utilities and user welfare for different policies for choosing t , when α and yA vary, with
yB = 1 − yA (no content multihoming)
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for users (resp., ISPs) when their sensitivity α is low (resp., high). The difference of
content owned by each ISP also decreases the utility of ISPs in this case, while the
achieved utility is optimal when contents are equally hosted by the ISPs.

Arbitrating between user welfare and ISP revenues is generally done using the
aggregate social welfare, that estimates the overall value of the system. However, our
user welfare represents the aggregate perceived utility of users, that is not expressed
in monetary units because of our choice of a logarithmic perception of prices,
motivated by psychophysics studies and recent experiences in the context of telecom-
munications. On the other hand, the ISP welfare is in monetary units, so summing
them directly would be artificial. One may define a conversion constant and define
social welfare a weighted sum of ISP revenues and user welfare, however choos-
ing non-arbitrarily that constant is beyond the scope of this paper, and since it has a
strong influence on the resulting social welfare we cannot draw conclusions on social
welfare here.

6 Conclusions

The results of our paper suggest that the scenario where no transit is performed by
ISPs should never be chosen, since no stakeholder benefits from it. In accordance
with previous works on interconnection of competing networks, we also observed
that under price competition, paid transit can be preferred to peering by both ISPs.
This especially holds when users are highly sensitive to price: paid transit is then the
only agreement under which ISPs can ensure strictly positive revenues, avoiding a
price war, for any strictly positive value of the transit unit price. Paid transit therefore
appears as the best solution to ensure ISP rentability in a highly competitive context
like the current Internet ecosystem, where customers are very volatile and frequently
switch providers.

Moreover, the transit price can also be used by a regulatory entity to drive the ISP
price to a desirable direction, be it in terms of global ISP revenues (the optimal rev-
enue when ISP collaborate can be approached without collaboration through a proper
choice of the transit price) or of user welfare (that can be favored if a sufficiently low
transit price is imposed).

Finally, if the transit price is fixed among ISPs through a negotiation, our study
suggests that a limited regulation consisting in imposing transit agreements (i.e.,
imposing that transit is performed to ensure a global connectivity, but at a price cho-
sen by the ISPs) benefits to users, who eventually perceive lower prices, and a higher
welfare. Such a regulation indeed reduces the bargaining power of the ISPs control-
ling the most content, and hence favors the emergence and survivability of new ISPs
with less content. Without this regulation, our numerical results suggest that bargain-
ing (with a disconnection threat) leads to an outcome very close to the one where
ISPs cooperate to maximize their total revenue.

Coming back to the Network Neutrality debate, and the request from ISPs to be
rewarded for transit, we find that our results corroborate their claim and concerns,
since null transit prices may lead to ISPs making no revenue despite their infrastruc-
ture investments. The results in this paper therefore support the transit price scenario,
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that is also likely to be chosen by ISPs if the choice is theirs, so that the need for
regulation is not obvious. However, this paper also suggests that a limited regulation
(enforcing global connectivity) does prevent incumbent ISPs from having a domi-
nant position in the bargaining, and favors competition and users. Given the results
presented here, we would advocate that such a minimal regulation be imposed, and
that other choices be left to the stakeholders (here, the ISPs), remaining consistent
with the freedom spirit that prevailed at the beginnings of the Internet. From a prac-
tical point of view, such a policy also has the advantage of being extremely simple
to implement, since connectivity among ISPs is very easy to verify. The regulator
would just need to declare disconnection illegal, and to advertise that rule in order to
affect the negotiations among ISPs.

As a direction for future work, we would like to investigate the case where the
transit ISPs are paid for transferring the external content to their customers (the push
model), instead of being charged, as described in this paper (the pull model). This
would correspond to another interpretation of the service offered by ISP, where ISPs
would sell to content providers the access to their networks, while in this paper they
sell to their users the access to all content. That new interpretation may also raise the
necessity of considering a two-sided market, where ISPs compete to attract end-users
but also to attract content providers.

Also, our current research efforts aim at understanding the influence of other
types of actors in the content distribution chain, namely Content Delivery Networks
(CDNs), on the setting described in this paper. CDNs dramatically affect the vol-
umes of data exchanges and may re-balance the forces; here also, a careful economic
analysis of the strategical behaviors of all actors is necessary.
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Appendix A: The peering scenario with heterogeneous sensitivity parameters

A.1 Equilibrium prices

In the heterogeneous case with different αs, proceeding as in the proof of Proposi-

tion 1 and using the fact that
∂U

peer
i

∂pi
= σi(1 − αi(1 − σi)), it can be shown that, at

equilibrium:

– If there is one i ∈ {A, B} such that αi ≤ 1, then p
peer,NE
i = ∞, because the

utility is increasing, independently of the parameters αj for j �= i. The opponent

j �= i chooses p
peer,NE
j = ∞ for the same reason if αj ≤ 1, and p

peer,NE
j such

that σj = 1 − 1/αj , i.e., p
peer,NE
j = ((αj − 1)p

−α0
0 )(−1/αj ) otherwise.

– If αA, αB > 1,

http://www.irisa.fr/dionysos/pages_perso/tuffin/MENEUR/
http://captures.inria.fr/
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– If (1/αA) + (1/αB) ≥ 1, there is a unique solution to the system of
equations with null derivatives, giving

p
peer,NE
A =

(
αBαA − αB − αA

αB(1 − αA)

)1/αA

p
α0/αA

0

p
peer,NE
B =

(
αAαB − αA − αB

αA(1 − αB)

)1/αB

p
α0/αB

0 .

– If (1/αA) + (1/αB) ≤ 1, then we again have a price war with, at
equilibrium, p

peer,NE
A = p

peer,NE
B = 0.

The equilibrium cases in terms of (α1, α2) are summarized in Fig. 9.

A.2 The cost of competition to ISPs

In the heterogeneous case, the derivatives of the sum of providers utilities U
peer
A +

U
peer
B are

∂(U
peer
A + U

peer
B )

∂pA

= p
1−αA

A + (1 − αA)pA(p
−αB

B + p
−α0
0 ) + αAp

1−αB

B

p
1+αA

A (p
−αA

A + p
−αB

B + p
−α0
0 )2

∂(U
peer
A + U

peer
B )

∂pB

= p
1−αB

B + (1 − αB)pB(p
−αA

A + p
−α0
0 ) + αBp

1−αA

A

p
1+αB

B (p
−αA

A + p
−αB

B + p
−α0
0 )2

.

Here again, if there is a i ∈ {A, B} such that αi ≤ 1, the derivative with respect to pi

is always positive, and setting pi = ∞ is the optimal strategy. Then the total revenue
is infinite whatever the value of pj for j �= i. Now, if αA, αB > 1, the system

p
1−αA

A + αAp
1−αB

B − (αA − 1)pA

(
p

−αB

B + p
−α0
0

)
= 0

p
1−αB

B + αBp
1−αA

A − (αB − 1)pB

(
p

−αA

A + p
−α0
0

)
= 0

Fig. 9 Nash equilibrium in the
peering case, in terms of the
heterogeneous sensitivies
(α1, α2)
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leads to pB = αB(αA−1)
αA(αB−1)

pA. Indeed, αB times the first equation minus αA times the

second one gives (αB(αA − 1)pA − αA(αB − 1)pB) (p
−αA

A + p
−αB

B + p
−α0
0 ) = 0.

However, we did not reach an analytical expression for the optimal value of pA, that
can be computed numerically.

A.3 User Welfare in the heterogeneous case

We also immediately get from Eq. 6

UW(pA, pB, p0) = log

(
1 + p

α0
0

((
xA

pA

)αA

+
(

xB

pB

)αB
))

.

Appendix B: The disconnection scenario with heterogeneous αs

In the heterogeneous case with different αs, the results can again be obtained simi-

larly to the homogeneous case, using that
∂U cut

i

∂pi
= σi(1−αi(1−σi)). It can be shown

that, at equilibrium:

– If there is one i ∈ {A, B} such that αi ≤ 1, then again p
cut,NE
i = ∞. The

opponent j �= i chooses p
cut,NE
j = ∞ for the same reason if αj ≤ 1, and

p
peer,NE
j = yj ((αj − 1)p

−α0
0 )(−1/αj ) otherwise.

– If αA, αB > 1,

– If (1/αA) + (1/αB) ≥ 1, there is a unique solution to the system of
equations with null derivatives, giving

p
cut,NE
A = yA

(
αBαA − αB − αA

αB(1 − αA)

)1/αA

p
α0/αA

0

p
cut,NE
B = yB

(
αAαB − αA − αB

αA(1 − αB)

)1/αB

p
α0/αB

0 .

– If (1/αA) + (1/αB) ≤ 1, then we again have a price war with, at
equilibrium, p

cut,NE
A = p

cut,NE
B = 0.

Appendix C: Proof of Lemma 1

Proof We provide here the proof for ISP A only, as it is symmetric for ISP

B . Recall that, by definition, K(v)
def= (1 − α)(v−α + p−α

0 ), and LA(v)
def=

αt
(
(2 − yA − yB)v−α + (1 − yA)p−α

0

)
, so that K < 0 if α > 1, and LA ≥ 0.

(i) The derivative (10) of the revenue function of ISP A is strictly positive for pA

small enough, and strictly negative for pA large enough. It follows that a best
response must satisfy ∂UA

∂pA
= 0. We did not reach any closed form solution to

this equation, thus we are naturally led to studying the sign of the derivative of
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UA. Notice that the sign and zeros of this derivative are the same as those of the
function

S(u, v)
def= K(v)uα + LA(v)uα−1 + 1, (11)

with u = pA and v = pB . Since α > 1, K(v) < 0. Looking at the derivative ∂S
∂u

shows that S is increasing if u ≤ 1−α
α

LA(v)
K(v)

, and strictly decreasing otherwise. Now,
remark that for every v, S(0, v) > 0 and lim

u→∞ S(u, v) = −∞. Since S is continuous,

it follows that the equation S(·, v) = 0 has a unique solution, so that the best-response
function is single valued. Let us denote by ū(v) the unique solution to S(·, v) = 0,
which is also the best-reponse to pB = v. One can remark that S(u, v) is positive if
and only if u ≤ ū(v). This gives us a criterion to compare a value u with the root
ū(v), that we will frequently use in the rest of the proof.

(ii) The continuity is a consequence of Berge’s maximum theorem [5]. The
hypotheses of the proposition are valid here, so that the best-response
price correspondence is upper hemicontinuous. Since that correspondence is
single-valued, it is a continuous function.

(iii) From the previous analysis, we have for all v

ū(v) >
1 − α

α

LA(v)

K(v)
= t (2 − yA − yB)(v−α + (1 − yA)p−α

0 )

v−α + p−α
0

≥ t (1 − yA),

(12)

hence a uniform lower bound for ū(v) that is strictly positive as soon as yA < 1. In
the case yA = 1, our bound goes to zero when v → ∞. However, we can directly
see from Eq. 11 that we have limv→∞ ū(v) = p0

(α−1)1/α , which is strictly positive. By
the continuity of the best-response, there exists v0 > 0 such that

v ≥ v0 ⇒ ū(v) ≥ p0

2(α − 1)1/α

def= C1.

On the other hand, from Eq. 12 we have

v ≤ v0 ⇒ ū(v) ≥ t

1 + p−α
0 vα

0

def= C2,

and therefore, ū(·) is also uniformly bounded on R
+ by min(C1, C2), that is a strictly

positive constant when x = 1.
For the uniform upper bound, we claim that

ū(v) ≤ u0
def= max

(
1,

(2 − yA − yB)αt

α − 1
,
pα

0 + αt(1 − yA)

α − 1

)
.

To check that, it suffices to show that S(u0, v) < 0 for all v > 0. We first have

u0 ≥ max

(
(2 − yA − yB)αt

α − 1
,
pα

0 + αt(1 − yA)

α − 1

)

≥ 1 + αt((2 − yA − yB)v−α + (1 − yA)p−α
0 )

(α − 1)(v−α + p−α
0 )

= 1 + LA(v)

−K(v)
,
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where the second inequality comes from the fact that we take a weighted sum (with
positive weights) of the two terms above. Since u0 ≥ 1, it follows uα−1

0 (−K(v)u0 −
LA(v)) ≥ 1, and S(u0, v) = K(v)uα

0 + LA(v)uα−1
0 + 1 ≤ 0.

We claim that playing a best-response always yields a strictly positive revenue for
the ISP. Indeed, it can ensure a revenue larger than zero by setting its price to infinity:
that way it gets no customers (hence no subscription revenues), and therefore does
not pay any transit fee. However, that cannot be a best-response, since it should be
bounded. Hence the best-response is strictly better, which results in a strictly positive
revenue.

(iv) Let t and r be two transit prices, with t > r . Assume that the price v of ISP
B is fixed, and let ūr denote the best-response of ISP A to v under transit pricing r .
Then

(1−α)(v−α +p−α
0 )ūα

r +αr((2−yA −yB)v−α + (1−yA)p−α
0 )ūα−1

r +1 = 0. (13)

To show that the best-response under transit pricing t is greater than ūr , it suffices to
establish that

(1−α)(v−α +p−α
0 )ūα

r +αt((2−yA −yB)v−α + (1−yA)p−α
0 )ūα−1

r +1 > 0. (14)

because, from the proof of (i), S(u, v) > 0 only if u < ū(v), and thus S(ūr , v) > 0
means ūr < ūt = ū(v). But (14) comes directly from Eq. 13 and t > r .

(v) Let v > w. We seek to compare ū(v) and ū(w). By def-
inition, we have S(ū(w), w) = 0. Then, S(ū(w), v) = (v−α −
w−α)ū(w)α−1 ((1 − α)ū(w) + αt(2 − yA − yB)). Therefore, ū(v) > ū(w) if and
only if (1 − α)ū(w) + αt(2 − yA − yB) < 0, i.e., ū(w) >

αt(2−yA−yB)
α−1 . The last

inequality is equivalent to S(
αt(2−yA−yB)

α−1 , w) > 0, which is equivalent to

(α(2 − yA − yB)t/p0)
α

(α − 1)α−1

(
1 − 1 − yA

2 − yA − yB

)
> 1.

That last inequality does not depend on w, which implies that ū(v) is monotonic.

Appendix D: Proof of Proposition 5

Proof We prove here that the user welfare (6) at the Nash equilibrium, different from
(0, 0), with t = 0 is greater than the user welfare at every Nash equilibrium with
t > 0. Recall that the user welfare is

UW = log

(
1 +

(
p0

pA

)α

+
(

p0

pB

)α)
.

The result follows from the fact that, for each ISP, the price at the Nash equilibrium
is the lowest when t = 0, which we establish below, without loss of generality, for
ISP A.

Recall that BRt
A(pB) (resp., BRt

B(pA)) is the best-response of ISP A (resp.,

B) with transit price t . We also denote by (p
trans,NE
A (t), p

trans,NE
B (t)) the Nash
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equilibrium with the smallest price for A. Then, for all z < p
trans,NE
A (t) and every

t > 0 we have

z < BRt
A(BRt

B(z)). (15)

Indeed, the best-response being lower bounded by a strictly positive value, (15) is
verified when z → 0. If there exists z < p

trans,NE
A (t) that does not satisfy the

inequality, then by continuity of the best-response functions, there is necessarily
p̂ < p

trans,NE
A (t) for which p̂ = BRt

A(BRt
B(p̂)). But this means that (p̂, BRt

B(p̂)) is a

Nash equilibrium, which contradicts the hypothesis of p
trans,NE
A (t) being the smallest

price of ISP A at an equilibrium.
Now, recall from Lemma 1 that the best-response is a strictly increasing func-

tion of t . Furthermore, while tα
((2−yA−yB)α/p0)

α

(α−1)α−1

(
1−yj

2−yA−yB

)
< 1, the best-response

BRt
i (·) is a strictly increasing function of the other ISP’s price. Let t be small

enough so that BRt
A(pB) is strictly increasing. Let 0 < r < t , and assume that

p
trans,NE
A (t) < p

trans,NE
A (r). Then we have:

p
trans,NE
A (t) < BRr

A(BRr
B(p

trans,NE
A (t)))

< BRr
A(BRt

B(p
trans,NE
A (t)))

< BRt
A(BRt

B(p
trans,NE
A (t))) = p

trans,NE
A (t).

The first inequality comes from Eq. 15 together with the hypothesis p
trans,NE
A (t) <

p
trans,NE
A (r). The second one is due to the fact that BR·

B increases with the transit
price, and that BRr

A increases with the price set by B . The last one is due to the

increase of BR·
A in the transit price, and the last equality stems from p

trans,NE
A (t)

being a Nash equilibrium price for ISP A. Finally, this shows a contradiction. Hence

p
trans,NE
A (t) increases with t as long as tα

((2−yA−yB)α/p0)
α

(α−1)α−1

(
1−yj

2−yA−yB

)
< 1.

It remains to show that p
trans,NE
A (t) is larger than p

trans,NE
A (0) for large values of t .

We have shown that p
trans,NE
A (t) increases with t while the transit price is below t̂ that

satisfies tα
((2−yA−yB)α/p0)

α

(α−1)α−1

(
1−yj

2−yA−yB

)
= 1. For that value of t , BRt̂

A is constant,

and BRt̂
A = p

trans,NE
A (t̂) ≥ p

trans,NE
A (0). For t > t̂ , the best-response function is larger

than BRt̂
A according to item (iv) of Lemma 1, and then larger than p

trans,NE
A (t̂), inde-

pendently of pB . Hence the Nash equilibrium price of ISP A is larger than p
trans,NE
A (t̂)

and, finally, than p
trans,NE
A (0).
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8. Boussion, F., Maillé, P., Tuffin, B. (2012). Net neutrality debate: Impact of competition among ISPs.

In Proceedings of the 4th International Conference on COMmunication Systems and NETworkS
(COMSNETS). Bangalore, India.

9. Choi, J., Jeon, D.S., Kim, B.C. Net neutrality, business models, and internet interconnection. American
Economic Journal: Microeconomics. (Forthcoming).

10. Cowley, S. (2005). ISP spat blacks out net connections. InfoWorld, http://www.infoworld.com/t/
networking/isp-spat-blacks-out-net-connections-492.
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