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Abstract Network operators are merging their services, such as fixed or
wireless telephony, internet or television, into single offers, called bundles.
It is essential to understand consumers’ preferences to define the most prof-
itable bundles, with their associated prices, especially in the fierce competitive
current market. We start by defining a random linear utility model and then,
analyze the competition between an integrated operator and new entrants
proposing substitutable services. Each operator ignores the consumers’ reser-
vation prices for his offers and has to deal with uncertainties about the
marketing strategies of competitors, due to potential different size and cost
structure. A two-level game is introduced and solved by backward induction.
In the second level, the operators determine their optimal offer prices for
each possible combination of marketing strategies while the consumers select
their most profitable purchasing processes; the natural framework is that of
Bayesian game theory. Finally at the top level, knowing the outcome of the
other level, the operators identify which marketing strategy to use between
market share expansion, segment targeting or multi-level price discrimination,
to maximize their expected utilities conditionally to their private informations.
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1 Introduction

Mobile and fixed telephony markets are becoming saturated in Western
Europe. In the meantime, high speed internet, including or not television,
has become more and more popular. Competition forces telecommunication
operators to merge these different services into single offers, called bundles. As
an illustration, triple play offers, combining telephony, television over internet
and high speed internet access have flooded the market, but the interest of
other combinations of services has to be studied, from a marketing point
of view, as well as their associated price. Practically, it raises the problem
of the service convergence. Indeed, the operators have to be present on every
service market (i.e., fixed, mobile, internet), or it requires alliances to lease
the service from competitors. Furthermore, the goals of the operators might
be quite different, depending on their sizes and cost structures. For example,
small operators might prefer to target specific market segments or expand their
market shares as fast as possible, while big companies who already have wide
market shares, would prefer to price discriminate between the segments.

Modeling users’ preferences, to accurately understand their behaviours, is
the focus of the first part of our article, in order to launch properly chosen
offers on the market, in terms of content and price, to maximize the operator’s
revenue. Our choice, based on what was done by Chung and Rao [7], but with a
specific application to telecommunication in mind, and with some refinements,
is to use random utility functions, with parameters that have to be estimated.
The goal is not only to determine optimal prices, but also to select the choice
set of offers yielding the highest revenue. A key variable is the reservation
price, which represents the price at which a user is indifferent between buying
the considered offer or choosing any other alternative in the choice set. We
consider a linear model based on attributes, i.e., select important characteristics
for preferences. A random variable is added to the model to represent the
error choices of the customers, this variable being drawn according to a
discrete choice model. In order to find the coefficients (weights) of the different
parameters in the linear model, we make use of a panel of customers, and,
for a fixed number of segments, ask them to give ratings (or grades) for the
presence of various attributes (such as trust in the Operator brand / loyalty,
Quality of Service, etc.) in each single offer. From these ratings, a linear
utility function is deduced, its coefficients being estimated. An algorithm based
on Bayesian networks and Monte Carlo simulation is used to determine the
parameters of the utility. The idea is to allow data augmentation to get a better
approximation of the coefficients. The framework of Bayesian networks is
a typically relevant tool, making use of a priori densities, which influence is
negligible on the values the algorithm converges to, and helps in getting more
accurate coefficient estimations. Market segmentation is also performed, by
looking for the number of segments maximizing the log marginal likelihood of
the parameters.

However, the price optimization analysis is performed partially neglect-
ing the competition between operators; this competition might have drastic
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consequences on providers’ revenues if not taken into account. This remark
is valid for most previous works on preferences modeling (cf. Aydin and Ryan
[3], Berry and Pakes [4], Khouja and Robbins [13], Tallury and Van Ryzin [20])
which did not incorporate competition, but also for the bundling literature (cf.
Chung and Rao [7], Kephart et al. [12], Jeididi et al. [11]).

Our goal and contribution is therefore to add another level of game
representing the competition between providers. Indeed, while an operator
in a situation of monopole can choose the whole set of offers in order to
optimize his revenue, this is not the case in a competitive framework, where
competitors’ offers are not (directly at least) controlled, but have an impact on
the market share one can get. As a consequence, we introduce a model with
two rival operators playing a horizontal game with no possible cooperation.
Besides, one of the operators is integrated, i.e., he is already present on every
market (fixed, mobile, internet) and has a big cost structure, while the other is
a new entrant proposing substitutable services.1 Specifically, we suppose that
we have estimated the reservation price and attribute parameter densities on
every market segment, for every offer. Besides, the number of segments is
fixed to the optimal one determined as maximizing the log marginal likelihood.
Each operator wants to optimally price his offers and to choose the marketing
strategy maximizing his revenue. He considers three possible marketing strate-
gies: (i) targeting a specific market segment (like virtual network operators
which do not have their own infrastructure), (ii) expanding their market shares
(like rather small operators), (iii) developing a multi-level pricing strategy, i.e.,
applying price discrimination among market segments (like big companies, cf.
[7]). Using our random linear utility model for users, operators do not know
the true reservation prices of the consumers but only the densities, nor the
marketing strategy of competitors. How to use at best the uncertainties and
the conflicting interests of the various actors, operators and customers, to help
the operator to find the most profitable prices? Our contribution here is to
study this kind of game in the case of two operators with a preference model
derived from Chung and Rao [7]. The modeling framework used is that of
a two-level game between the operators and customers. In the second level,
for each possible combination of marketing strategies, we define a Bayesian
game between the operators and the customers to determine the optimal offer
prices (or randomized pricing strategies). However, it seems difficult to obtain
analytically the randomized pricing strategies characterizing the equilibrium of
the game, and simulation can therefore be used to get an approximation. This
kind of procedure has already been applied in the literature, by few papers in
other contexts. Holenstein [10], for instance, uses simulation to approach the
equilibrium in an auction game, where the players’ types and the action spaces
of players are continuous. Similarly, Cai and Wurman [5] use Monte Carlo

1It means that the operators commercialize offers having the same technical properties; for
example, Operator 1 might sell a bundle of wired-phone / internet while the other would propose
a simple offer based on wired-phone. Both offers are in competition.
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methods to approach Bayesian equilibria in sequential auction games. In our
case, we play a game based on the computation of the best-response strategy
profiles. The approach is myopic since it does not consider future consequences
of the action choices, but the algorithm is checked to converge to a Bayesian
equilibrium. Besides we impose some conditions in the algorithm convergence
proof, to get the unicity of the Bayesian equilibrium. Then, at the top level, the
operators identify the most profitable marketing strategy to use, i.e., the one
maximizing their revenues. However, the integrated operator being the leader,
acts first, then the new entrant selects her own strategy. It is as if a time-shift
were introduced between both operators’ marketing strategy selection.

The remainder of this paper is organized as follows. In Section 2, we
review the basic notions on the random linear utility model which is an
extension of [7] to the telecommunication industry. We introduce competition
and uncertainty on the operator’s profits via a two-level game in Section 3.
For each combination of marketing strategies, a Bayesian game is defined
in Section 4. The utilities of the different actors and the horizontal game
are first settled. Then, we introduce the optimization problem to solve to
get the optimal randomized pricing strategies. Since the equilibria cannot be
computed analytically, we resort to use simulation and check the algorithm
convergence in Subsection 4.4. Then, the first level of game is introduced
in Section 5. Numerical illustrations are also provided and the algorithm
complexity is discussed. Finally, we conclude and give some directions for
future research in Section 6.

In all the article, Operator 1 will be designed as a male player, while
Operator 2 will be female.2

1.1 Notations

Next we review the specific notation of this paper.

K set of operator’s available families services (ex:
available services about tv, Internet, or
wireless or wired telephony)

b a bundle
b(k) the kth component of the bundle, belonging to

service family k
B operator’s choice set containing the offers to

commercialize
NP panel of tested customers
NP cardinality of the panel set NP

Zi Random variable giving the segment customer
i belongs to

a an attribute

2This is a classical assumption in Game theory.
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A1 class of type 1 attributes, fully comparable for
the available services

A2 class of type 2 attributes, partially comparable
for the available services

A3 class of type 3 attributes, non comparable for
the available services

A total set of attributes
wi(k) nonnegative coefficient characterizing the

importance of service k for customer i
Xi (a, b(k)) ∈ {0, 1, 2, ..., 10} rating of customer i for the importance of

attribute a in bundle b
Si(a, b) weighted sum, in terms of the wi(k), of

attribute a in bundle b for customer i
Di(a, b) weighted dispersion of the ratings of services in

bundle b on attribute a
F set of market segments
F Maximum number of segments
Uib |Zi= f customer i’s utility for the bundle b , provided i

belongs to market segment f
BV(ib |Zi = f ) customer i’s valuation for the bundle b ,

provided i belongs to market segment f ,
excluding price

βa( f, i) utility parameter representing the importance
of attribute a for customer i on market
segment f

γa( f, i) utility parameter measuring the substitutability
(< 0)/complementarity (≥ 0) of attribute a, for
the client i in f

αP( f, i) utility parameter of price sensitivity for client i
on market segment f

ψ( f, i) probability that customer i belongs to market
segment f

�i vector of unknown coefficients for customer i
ρi1 ∈ [0; 1] degree of independence in unobserved utility

among the alternatives in the choice set for
customer i

ρi0 client i’s probability to not buy anything
P̄(b) mean market price for the bundle b
Tk, f estimated density of the trust in Operator k

brand on segment f
R(i, b) reservation price of the customer i ∈ N for the

bundle b
N consumer set on the market
N cardinality of the consumer set
�(E) set of all the probability distributions on the

generic set E
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|E | cardinality of the generic space E
Bopi

set of offers commercialized by Operator
i = 1, 2

Ti consumer i’s type space
ti consumer i’s type
Di consumer i’s action space
Pop(b) Operator’s retail price for the offer b
C cheating probability set
di consumer i’s action
T−i set of all the possible combinations of types for

the consumers other than i
ui(d, t) consumer i’s utility, the global action c and

type t being chosen
σi(di|ti) probability that consumer i chooses the action

di provided his type is ti
Ui(σ |ti) player i’s conditional expected utility under

pricing strategy σ

Top operator’s type space
cop(b) Operator’s offer b cost
P discrete price set
uop(d, t), operator’s utility, the global action c and type t

being chosen
n1 upper bound of the low interest / income

category
n2 upper bound of the middle interest / income

category
n3 upper bound of the high interest / income

category
F̄b , f complementary cumulative distribution of

segment f consumer maximum admissible
price for offer b

sopk
Operator k’s marketing strategy

2 Consumer preference modeling

This section summarizes the consumers’ preference modeling, based on [7],
which is used in the game between operators. Some additional details about
this section are also provided in [14].

A choice set contains the set of offers of various sizes that an operator com-
mercializes on the market. It will be denoted B. A bundle b is a combination
of elementary offers b(k), for a number of communication supports k in K.
If as elementary offer in b belongs to the k-th family, we use the convention:
b(k) = 0 and the consumers will not have to evaluate the attributes on the k-th
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component of the bundle b . For example, a bundle b can be made of an offer
in terms of mobile communication, another one in terms of internet access,
another one for tv and another one for wired-telephony. Any offer considering
one, two or three of these technologies is also possible. Hence, the operator’s
choice set could be made of simple offers sold independently and bundles.

Customers are separated into market segments to better understand their
behaviour. Let F be the segment set and F the maximum number of segments.
Customer i’s segment is unknown from the operators, we therefore define a
random variable Zi representing the segment customer i belongs to.

The random utility model represents user i’s preferences at price P(b), given
that it belongs to segment f , as

Uib |Zi= f (P(b)) = Vib |Zi= f (P(b)) + ε(i, b), ∀i ∈ NP, ∀b ∈ B, ∀ f ∈ F, (1)

where vector ε(i) = (ε(i, 1) ε(i, 2) ... ε(i, |B|)) contains all the error coefficients
for the client i, taking into account the uncertainty associated with customers’
valuations.

On the other hand, Vib |Zi= f is the deterministic part and is also decomposed
(linearly) into

Vib |Zi= f (P(b)) = BV(ib |Zi = f ) + αP( f, i)P(b)

to separate between the valuation due to the price P(b), with αP( f, i) ≤ 0 co-
efficient expressing the customer i sensitivity towards price, and the valuation
BV(ib |Zi = f ) due to the bundle itself, excluding price.

Note that customer i’s utility for the bundle b takes the form

Vib =
F∑

f=1

ψ( f, i) Vib |Zi= f , (2)

where ψ( f, i), i ∈ NP, f ∈ F , is the unknown probability that customer i
belongs to the market segment f .

The valuation BV(ib |Zi = f ) is itself supposed to be linear in terms of
attributes. An attribute is an entity that defines customers’ valuations prop-
erties and distinguishes between the offers. For example, classical attributes
in telecommunication are the Quality of Service (QoS), the consumer trust in
the operator brand / loyalty, etc. Attributes are in three different categories,
depending on whether it can be compared on the service families: the class
A1 contains fully comparable attributes, which appear in every service family;
the class A2 contains partially comparable attributes, appearing in at least two
service families; the class A3 contains non comparable attributes appearing in
only one system family.
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Given these definitions, the valuation is assumed to take the form:

BV(ib |Zi = f ) = α0( f, i) +
∑

a1∈A1

[
βa1( f, i)Si(a1, b) + γa1( f, i)Di(a1, b)

]

+
∑

a2∈A2

[
βa2( f, i)Si(a2, b) + γa2( f, i)Di(a2, b)

]

+
∑

a3∈A3

αa3( f, i)Ci(a3, b). (3)

Utility parameters Si(a, b), Di(a, b), i ∈ NP, b ∈ B, a ∈ A1 ∪ A2 and
Ci(a3, b) are estimated from a panel of customers who have rated the
importance of attributes: each customer i in the panel NP is supposed to
have provided a rating Xi (a, b(k)) ∈ {0, 1, 2, ..., 10} to the presence of the
attribute a in the simple offer b(k). Similarly, each customer i ∈ NP associates
importance weights for every family. These coefficients are nonnegative and
normalized, i.e.: wi(k) ≥ 0, k = 1, 2, ..., |K|, and

∑|K|
k=1 wi(k) = 1, ∀i ∈ NP.

Given these ratings, Si(a, b) measures the ratings of customer i’s relevant
components (i.e., the individual offers b(k)) for offer b on attribute a,

Si(a, b) =
|K|∑

k=1

wi(k) 1(a,b(k)) Xi (a, b(k)) , a ∈ A1 ∪ A2, b ∈ B, (4)

where 1(a,b(k)) = 1 if the attribute a importance can be evaluated in the
component b(k), and 0 otherwise. Another essential characteristic that we use
as parameter is the weighted dispersion Di(a, b) of relevant components for
offer b and the average rating of offer b , on attribute a,

Di(a, b) =
|K|∑

k=1

wi(k) 1(a,b(k))

[
Xi (a, b(k)) − X̄i (a, b)

]
, a ∈ A1 ∪ A2, b ∈ B,

(5)

with X̄i(a, b) =
∑|K|

k=1 1(a,b(k)) Xi(a,b(k))
∑|K|

k=1 1(a,b(k))

the average rating that customer i gives

to the presence of attribute a in every single offer b(k) composing the
bundle b . Our last set of utility parameters, the Ci(a3, b), given by Ci(a3, b) =∑|K|

k=1 wk(i)Xi(a, b(k)), represents customer i’s (weighted) perceived value for
non-comparable attributes.

The coefficients composing vector

�i :=
(
{βa( f, i)}a, f , {γa( f, i)}a, f , {αa( f, i)} f , {α0( f, i)} f , {αP( f, i)} f

)

are defined to balance the relative importance of the above utility parameters
and have to be determined.
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The way to estimate those coefficients is based on the use of the hierarchical
Bayesian framework studied by Poirier [18] for data augmentation and better
approximation, due to the lack of information of the operator about customers.
We assume a priori laws on distributions and look by simulation to which
values the simulation converges. It is known that the result is robust to the
choice of a priori laws. The approach therefore enables to learn iteratively
these preference coefficients. It consists in sampling vector �i given the
segment Zi = f customer i belongs to. Market segmentation is also performed.

Error terms follow distributions so that the the model is the nested logit
model, by using a cumulated distribution function of form

F (ε(i)) = exp (− exp(−ε(i, 0)))

(

exp

(

−
∑

b∈B
exp

(
−ε(i, b)

ρi1

)))ρi1

,

where ρi1 ∈ [0; 1] measures the degree of independence in unobserved
utility among the alternative in the choice set B. Since the cumulated
distribution function associated with the empty set error is F(ε(i, 0)) =
exp(− exp(−ε(i, 0))), the empty set error is drawn according to a Logit density

ε(i, 0) ∼ exp(−ε(i, 0) − exp(−ε(i, 0))).

From these errors, classical discrete choice theory (cf. Train [21]) derives
the expressions of the choice probabilities. The consumer i probability to not
buy anything at all is:

Pi0(ρi0, ρi1) = 1

1 + exp
(
−Vi0

(∑
j∈B exp

(
Vij(P( j))

ρi1

))ρi1
) , (6)

where, by assumption ρi0 := Ui0 is the client i’s utility of not buying anything
and, Vi0 = Ui0 − ε(i, 0) := ρi0 − ε(i, 0). Also, the consumer i probability to buy
a bundle b ∈ B is

Pib (ρi0, ρi1) =
exp

(
Vib (P(b))

ρ(i,1)

) (∑
b ′∈B exp

(
Vib ′ (P(b ′))

ρ(i,1)

))ρi1−1

(∑
b ′∈B exp

(
Vib ′ (P(b ′))

ρi1

))ρi1 + exp (Vi0)
. (7)

The reservation price R(i, b) is the offer b price at which customer i is
indifferent between buying offer b and choosing another alternative in the
choice set. Formally, the reservation price for the offer b can be defined as
follows3

Uib |Zi= f (R(i, b)) = max
{

max
b ′∈B,b ′ 	=b ,b ′ 	=0

Uib ′|Zi= f (P(b ′)); Ui0|i∈ f

}
.

It can be infered using the estimation of utilities described just above.
Finally, using non-parametric statistical approaches, we estimate the attribute

3Including in B the empty set, leading to a null utility.
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of consumer trust in the operator brand / loyalty and the reservation price
distributions, on each market segment and for each offer of the considered
choice set [14].

Numerical illustration We consider two rival operators. Operator 1 (for
instance, Orange) sells simple offers of wired-telephony and internet, and a
bundle of wired-telephony / internet / television. Operator 2 commercializes a
simple offer of mobile, a double-play offer of wired-telephony / internet and
a triple-play offer of mobile / internet / television. The choice set B is now
made of the offers commercialized by both operators. We test our algorithm
on data issued from a survey realized by Orange in 2006. The consumer panel
was made of 1014 families, i.e., 2058 individual consumers. It consists of a
set of questions aiming at understanding individual subjective preferences
and behaviours towards telecommunication, multimedia and leisure activities.
The optimal number of segments is four: segment 1 coincides with trendy
and sociable teenagers, who have high communication needs, very important
leisure and are enthusiastic to discover new technologies; the segment 2 is
made of technological addicts, i.e., young couples using internet in all ways,
who have home centered entertainments (cf. DVDs, MP3, iPod, etc.); on the
segment 3, we meet essentially work/life jugglers. They are mainly middle age,
very busy, high social grade persons, using all means of communications. Their
technological adoption is driven by work; finally, the segment 4 contains the
low-income technological adverse seniors, who use exclusively wired-phone,
and are not interested in technology.

At the top of Fig. 1, we have plotted the distribution of the consumer trust
in Operator 1 brand / loyalty, for segment 1 (left) and 3 (right). We observe
that the teenagers are less confident than the middle-age active couples who
already know this integrated operator. Indeed, teens give priority to the
brand image, churn a lot, feel attracted by new virtual network operators
offering fashionable images and cheap services. At the bottom of Fig. 1, the
complementary cumulative distribution function of the consumer maximum
admissible price on segment 3 and 4 are represented for the wired-telephony
/ internet / TV bundle. We note that the segment 3 seems very interested and
is ready to pay a high price to get such an offer; whereas the segment 4 seems
reluctant to this triple-play offer adoption.

Outputs of Section 2 are used in the description of the Bayesian game which
occurs between the different players. However, the consumers do not know
the selling prices of the offers used in the random utility (cf. Eq. 1), since it is
the aim of the forthcoming sections to determine optimal pricing strategies for
the operators. Consequently, to run the preference algorithm, the consumers
associate with each offer b a mean market price, P̄(b) (this is a classical
assumption in economy [1]). The mean market price of the offer b is the mean
of the prices at which every offer belonging to the same family combination
has been sold in the past. For example, in the telecommunication market,
since 2000, six versions of the triple-play offer made of the combination of a
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Fig. 1 Distributions of consumer trust in Operator 1 brand / loyalty and consumer maximum
admissible price for tel./internet/tv depending on some market segments

wired-phone, internet and tv access offers, have been commercialized. To get
the wired-phone / internet / tv bundle mean price, we compute the mean of the
six prices of the previously commercialized bundles. We can proceed the same
way for every combination of elementary offers. If the offer b is totally new on
the market, P̄(b) is fixed arbitrarily at 0.

In the remainder of the article, we assume that two rival operators have
determined their choice sets. Outputs of Section 2 (listed below) will be used
to define our two-level game settings

• the consumer trust in both operator’s brand / loyalty distribution on each
market segment is known; it is T1, f for Operator 1 on segment f and T2, f

for Operator 2 on segment f . These informations are public and known by
both providers.

• the market segmentation is known, i.e., each operator knows to which
segment consumer i belongs.

• The complementary cumulative distribution functions of the consumers’
maximum admissible prices, on each market segment f and for every offer
b : F̄b , f , are known by both operators.
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3 Pricing under horizontal competition between an integrated operator
and a new entrant

The aim of this section is to present the two-level game occuring between
operators. In order to proceed, we need to model their goals, and we assume
that they have three possible marketing strategies:

(i) either they just target a market segment. This situation is typical of
Mobile Virtual Network Operators (MVNOs) in telecommunications,
which are carriers providing users with mobile services without their
own license for bandwidth, but renting that bandwidth to other pro-
viders [15];

(ii) either they can expand their market shares to become larger operators
and therefore get a higher revenue on a longer term. Market share
expansion strategy is usually used by new market entrants. To fetch
numerous market shares, the operator has first to lower his offer price
to seduce as many consumers as possible;

(iii) or they choose to discriminate prices among segments for increasing
their benefits (typical revenue management situation of large operators).
Such a strategy is profitable only for operators having a sufficiently large
market share.

But those operators have to deal with many uncertainties on the market.
First they do not know the true reservation prices of customers, but only
their distributions. They also ignore the profit (i.e., the difference between the
selling price and the real cost of an offer) of their competitors, as well as their
marketing strategies (highlighted above).

In the remainder of the paper, in order to simplify the analysis, we just
consider two operators in competition, but it can be easily extended to a larger
number and the impact of such an extension on the game solution approaching
algorithm will be studied in Subsection 4.4.

How to model interactions among all those actors? Again, given that we
assume that they all act selfishly, Game theory is the natural framework.
Additionally, due to the uncertainties involved, Bayesian game theory (cf. [17])
becomes more specifically the relevant tool.

Practically, we assume that Operator 1 is an integrated provider, like Orange
for instance. It means that he is already well-known on the wired-phone,
mobile phone and internet markets. Such an operator has already a wide
market share and is powerful due to his high budget; besides consumers trust
gladly in his brand / loyalty. On the contrary, Operator 2 is a new entrant on
the telecommunication market. It is either a new telecommunication operator
who has just bought a new license or a firm already well-known on some other
markets (for instance, a beverage, an airline-ticket seller, or a tv channel)
who wants to improve his brand value by extending his proposed services and
becoming a virtual network operator [15].

Formally, the game between providers is made of two levels. The first
level can be identified with a Stackelberg game on both operators’ marketing
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strategies under uncertainties; Operator 1 being more powerful or having some
sort of advantage, acts first (i.e., he is the leader). In the second level, for
each combination of marketing strategies, we solve a Bayesian game whose
output gives us the equilibria, i.e., the operators’ randomized pricing strategies
and the consumers’ randomized purchasing processes maximizing the players’
expected utilities conditionally to their types.

3.1 Description of the game between an integrated operator and a new
entrant under uncertainties

Operator 1 and Operator 2 have defined Bop1
and Bop2

as their choice sets.
Uncertainties appear in:

• the true consumers’ reservation prices (only the distributions are known)
• both operators’ profits (i.e., the difference between the selling prices and

the real costs of the offers)
• the rival’s marketing strategy

1. Selection of the operators’ marketing strategies conditionally to their true
types (cheating probabilities), Operator 1 chooses his marketing strategy
and then, the new entrant selects hers between segment targeting, market
share expansion and multi-level price discrimination.

2. Determination of the retail prices conditionally to each type the operators
determine simultaneously the randomized pricing strategies maximizing
their expected utilities conditionally to their types (cheating probabilities).
At the same time, depending on their intrinsic preferences, consumers buy
offers or nothing.

In the second level, for each possible combination of marketing strategies,
a Bayesian game between the operators and the consumers is introduced.
Indeed, each operator has incomplete information about his rival’s type (the
ratio between the real costs and the retail prices of the operator’s offers) and
about the consumers’ preferences. The operators want to find the randomized
pricing strategy for their offers, maximizing their utilities. Besides, the opera-
tors’ payoffs depend on consumers’ choices. Indeed, consumers buy the most
valued offer (i.e., the one having the highest reservation price in case they
are high income / interest) or the offer generating the greatest benefit (i.e.,
the greatest difference between the selling price and the reservation price;
in case they are low income / interest). As outputs of the Bayesian games,
we get equilibria, i.e., randomized purchasing process for the consumers and
randomized pricing strategies for both operators; it then enables us to infer the
actors’ expected utilities, conditionally to each type.

In the first level, Operator 1 has still uncertainty about Operator 2’s type
and about the marketing strategy that she will use (and reciprocally). However,
Operator 1 being integrated, is more powerful; it enables him to move first. The
Stackeberg game under uncertainties is then solved by backward induction.
Operator 1 considers what the best response of the follower (Operator 2) is,
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i.e., how she will respond once she has observed the marketing strategy of the
leader. The leader (Operator 1) then picks a marketing strategy that maximizes
his expected utility conditionally to his true type, anticipating the predicted
response of the follower. The follower actually observes this and in equilibrium
picks the expected marketing strategy as a response.

A Bayesian game needs to be solved for each combination of marketing
strategies. In this article, we only deal with a small number of combinations
(exactly, nine); but in general the two-level game may become very tedious
to solve when applied to a large marketing strategy space. Practically, it is
possible to restrict the level 1 exploration to the most realistic marketing
strategy combinations only. For instance, if Operator 1 has already a diversified
large market share, he would not use a segment targeting strategy and would
prefer a price-discrimination strategy; if Operator 2 is an already well-known
beverage manufacturer, airline ticket reseller or powerful tv-channel, who
wants to propose telecommunication services to increase her brand value, she
would rather use a segment targeting strategy; finally if Operator 2 is a new
totally unknown entrant provider with a small budget, she would rather use a
market share expansion approach. Hence, all these economical considerations
enable us to narrow the marketing strategy state space.

In Section 4, we study the Bayesian game (second level) for a fixed combi-
nation of marketing strategies.

4 Second level: description of the Bayesian game

We let N be the set of consumers in the game. Using the inference model of
Section 2, each operator has determined the set of offers that he (she) wants
to commercialize: Bop1

for Operator 1 and Bop2
for Operator 2. We assume

that Operator 1 sells a simple offer of mobile, a double-play offer of wired-
telephony / internet and a triple-play offer of mobile / internet / tv. Operator
2’s choice set is made of: simple offers of wired-telephony, internet, and a
bundle of wired-telephony /internet / tv. The total set of offers proposed on
the market is then denoted as: B = Bop1

∪ Bop2
. The critical point in this model

is that both operators’ services are substitutable. For instance, simple offers
of wired-telephony and internet issued from Operator 1’s choice set might
be cannibalized (cf. [12] who studies cannibalization in a product line) by
Operator 2’s bundle of wired-phone / internet. Identically, Operator 1’s bundle
of mobile / internet / tv might be replaced by Operator 2’s bundle of wired-
phone / internet / tv, provided the consumer agrees to change his wired-phone
against a mobile one. Hence, to survive in such a competitive framework,
is it better for the operators to target a specific market segment, which
would provide a guaranteed revenue, or try to capture as much consumers as
possible?

Each operator ignores the other’s marketing strategy (i.e., market share
expansion, segment targeting or multi-level price discrimination) and some
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private information remains hidden (i.e., both operators’ profit levels and each
consumer’s true reservation price).

To solve our two-level game, we proceed by backward induction. We
therefore start by assuming that the operators’ marketing strategies are fixed.
Then, for each marketing strategy combination, a Bayesian game is defined
and solved. As outputs, we get the operators’ optimal randomized pricing
strategies and the associated expected utilities conditional to their types.

Consumer i’s and Operator’s action sets will be denoted Di and Dop respec-
tively. The global action set containing all the possible action combinations
for each player is D = ×i∈N Di × Dop1

× Dop2
. Consumer i’s type space is Ti,

whereas operator’s one is called Top. The type spaces contain all the actors’
private informations. The global type space, made of all the possible type
combination for each player, is T = ×i∈N Ti × Top1

× Top2
.

Consumer i’s subjective probability about the other players’ types is a
function defined as

pi : Ti → T−i × Top1
× Top2

ti �→ pi
(× j∈N−i t j, top1

, top2
|ti
)

where N−i is the set of all the consumers other than i and T−i is the set of
all the possible combinations of types for the consumers other than consumer
i. Identically, Operator j’s subjective probability about the other players’
types is

pop j
: Top j

→ ×i∈N Ti × Topk

top j
�→ pop j

(×i∈N ti, topk
|top j

)

where j, k ∈ {1; 2} and j 	= k. Finally, ui and uop denote consumer i and
operator’s utility.

4.1 Notion on Bayesian equilibria under fixed marketing strategies

The Bayesian game can be defined as follows, according to the formalism used
by Myerson [17]

�b =
(
N , Op1, Op2; D; T; (pi)i∈N , pop1

, pop2
; (ui)i∈N , uop1

, uop2

)
.

A randomized purchasing and pricing strategy profile for the Bayesian
game �b , is any σ of the form σ = {(σi(di|ti)

)
di∈Di,ti∈Ti

∀i ∈ N ,
(
σop j

(dop j
|

top j
)
)

dop j∈Dop j ,top j∈Top j
∀ j = 1, 2

}
which satisfies the following constraints (cf.

[17]):

• for each consumer i ∈ N , σi(di|ti) ≥ 0 and
∑

di∈Di
σi(di|ti) = 1;

• for each Operator j = 1, 2, σop j

(
dop j

|top j

) ≥ 0 and
∑

dop j∈Dop j
σop j

(
dop j

|
top j

) = 1.

In such a strategy profile, σi(di|ti) (resp. σop j
(dop j

|top j
)) represents the condi-

tional probability that consumer i (resp. Operator j) would choose the action
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di (resp. dop j
), provided his type is ti (resp. top j

). In the strategy profile σ , the
randomized pricing strategy associated with the type top j

of Operator j is:

σop j

(
.|top j

) =
(
σop j

(
dop j

|top j

))

dop j∈Dop j

and consumer i’s randomized purchasing strategy associated with the type ti is:

σi (.|ti) = (σi(di|ti))di∈Di
.

We introduce �(Di) (resp. �(Dop)) as the sets of all the probability distrib-
utions on consumer i (resp. Operator)’s action space Di (resp. Dop).

A Bayesian equilibrium of the game �b , is any combination of randomized
purchasing and pricing strategies such that, for any consumer i and Operator j,
and for any type ti ∈ Ti, top j

∈ Top j
(cf. [17]) the conditional expected utilities

Ui(σ |ti) and Uop j
(σ |top j

) are maximized. For consumer i, the optimization
problem takes the form

σi(.|ti)∈arg max
τi∈�(Di)

∑

t−i,top1 ,top2 ∈T−i×Top1 ×Top2

pi
(
t−i, top1

, top2
|ti
)

×
∑

d∈D

⎛

⎝
∏

j∈N−i

σ j
(
d j|t j

)
σop1

(
dop1

|top1

)×σop2

(
dop2

|top2

)
⎞

⎠ τi (di) ui(d, t), i∈N ;

(8)

Once Eq. 8 has been solved, consumer i expected utility becomes

Ui(σ |ti) =
∑

t−i,top1 ,top2 ∈T−i×Top1 ×Top2

pi
(
t−i, top1

, top2
|ti
)

×
∑

d∈D

⎛

⎝
∏

j∈N−i

σ j
(
d j|t j

)
σop1

(
dop1

|top1

)
σop2

(
dop2

|top2

)
⎞

⎠ σi(di|ti)ui(d, t).

Each Operator j needs to solve the optimization problem

σop j

(
.|top j

) ∈ arg max
τop j∈�

(
Dop j

)
∑

t1,t2,...,tN ,topk ∈T1×T2×...×TN×Topk

pop j

(
t1, t2, ..., tN, topk

|top j

)

×
∑

d∈D

(
∏

i∈N
σi
(
di|ti

)× σopk

(
dopk

|topk

)
)

τop j

(
dop j

)
uop j

(d, t); (9)
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where j, k ∈ {1; 2}, j 	= k. Once Eq. 9 has been solved, Operator j expected
utility can be infered as follows

Uop j

(
σ |top j

) =
∑

t1,t2,...,tN ,topk ∈T1×T2×...×Topk

pop j

(
t1, t2, ..., tN, topk

|top j

)

×
∑

d∈D

⎛

⎝
∏

j∈N
σ j
(
d j|t j

)
σopk

(
dopk

|topk

)
⎞

⎠ σop j

(
dop j

|top j

)
uop j

(d, t).

4.2 Definition of the consumers’ game setting

We define the consumers’ type spaces, action sets, utilities and subjective
beliefs to introduce our Bayesian game.

4.2.1 Consumers’ type space

Consumer i’s subjective valuation of the offer b is contained in his reservation
price R(i, b). However, the operators ignore individual consumer reservation
prices. Using the survey results obtained for a representative panel of con-
sumers (cf. Section 2), the operators can infer the reservation price distribution
for each offer b of the global choice set, and on each market segment.

The associated complementary cumulative distribution function for offer b
on segment f indicates the probability that consumers are ready to pay P(b)

as maximal price to buy the offer; this measure will be denoted: F̄b , f (P(b)) (cf.
Fig. 1 for an illustration).

To simplify the analysis, we define for each offer b and on each market
segment f , three categories containing maximum admissible prices for the
offer b (cf. Fig. 2). It means that if the offer b retail price is above consumer
i’s maximum admissible price, he will not buy it.

• The first class (L1 = [0; n1[) is defined for admissible prices between 0
and n1 (the maximum admissible price being n1 for this class); it is called

Fig. 2 Consumer’s type for
the offer b when he belongs
to segment f
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the low income / interest category, since consumers whose reservation
price belongs to it are not ready to pay very much to buy the offer
b , either because they are not interested in it, or because they lack
money.

• The second class (L2 = [n1; n2[) contains admissible prices between n1 and
n2 (the maximum admissible price being n2 for this class); it is called the
middle income / interest category.

• The third class (L3 = [n2; n3]) bounds are n2 and n3 (n3 being the maximum
admissible price for this class can be chosen arbitrarily large); it is the high
income / interest category, since the consumers whose reservation price
belongs to the interval [n2; n3] valuate the offer b very much or are not
money-sparing.

The parameters n1, n2, n3 ∈ R+ are exogeneous to the game. If we consider
a consumer i who belongs to segment f , then the complementary cumulative
distribution function associated to this consumer’s maximum admissible price
for the offer b , is depicted in Fig. 2. The three income / interest classes have
been defined exogeneously.

Actually, the consumer i type space Ti, coincides with these three classes,
i.e., Ti = {ti = (ti(1), ti(2), ..., ti(|B|))|ti(b) ∈ {L1;L2;L3}

}
. It means that for

each offer in the global choice set B, consumer i’s private information is his
income / interest category. We note that a low income consumer might be
very interested in an offer and hence, belongs to the category 3; while a high
income consumer might be very reluctant to some technologies and belongs to
category 1 for some services.

4.2.2 Consumers’ action set

Each customer is characterized by the segment he belongs to, f ∈ F . He can
choose between all the offers in B, and the possibility of not buying anything.
Customer i’s action space is therefore defined as

Di =
{

di =
(

di(1), di(2), ..., di(|B|)
)t ∈ {0; 1}|B|

}
,

where the |B|-dimensional vector di has b -th coordinate di(b) = 1 if customer i
buys offer b , and zero otherwise. Besides, xt is the transpose algebraic operator
of vector x ∈ R

n, n ≥ 0.

4.2.3 Consumers’ utilities

We let Pop1
(b 1) and Pop2

(b 2) be Operator 1’s and Operator 2’s retail prices
for offers belonging to their choice sets: b 1 ∈ Bop1

and b 2 ∈ Bop2
. The utility of
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customer i, ui, depends on consumer i’s and operators’ choices, as well as on
the consumer i’s type (i.e., his income / interest class).

ui(d, t) =
{ ∑

b∈Bop1

αti(b)(max ti(b) − Pop1
(b))di(b)1Pop1 (b)∈ti(b)

+
∑

b∈Bop2

αti(b)(max ti(b) − Pop2
(b))di(b)1Pop2 (b)∈ti(b)

}

+
{ ∑

b∈Bop1

(
1 − αti(b)

)
max ti(b)di(b)1Pop1 (b)∈ti(b)

+
∑

b∈Bop2

(
1 − αti(b)

)
max ti(b)di(b)1Pop2 (b)∈ti(b)

}
(10)

The parameter αti(b) ∈ [0; 1] expresses consumer i’s price sensitivity depend-
ing on his income / interest class for the offer b . For instance, on the class L1
(low income / interest), αL1 will be near one; whereas for L3 (high income /
interest), αL3 will be near zero. Consumer i will not buy the offer b if his
maximum admissible price is below the offer b selling price (Pop(b)). Besides,
he can either buy the offer that he values the most (the one associated with
the highest reservation price, i.e., part 2 in the consumer’s utility described in
Eq. 10), or choose to buy the one guaranteeing him the greatest benefit (part
1 in Eq. 10). If consumer i buys the offer generating the greatest benefit, we
speak about cannibalization. Indeed, in such a case, the idea of earning a great
benefit seems quite appealing to consumer i and makes him change his initial
need to a rather similar, but cheaper one. For example, if the triple-play offer
made of mobile / internet / tv proposed by Operator 2 is cheaper than Operator
1’s simple offers of wired-phone and internet, even though the consumer does
not need to buy a tv access, he will be tempted to buy it since the bundle is far
cheaper than the simple offers.

4.2.4 Consumers’ subjective beliefs

In the case of two competitive operators, as introduced in Section 2, two
attributes of class A1, i.e., fully comparable: the attribute of trust in Operator
1’s brand / loyalty, and the attribute of trust in Operator 2’s brand / loyalty.
These attributes measure the consumer confidence in each operator brand /
loyalty, on each market segment. They contain the consumers’ beliefs about
whether the operator’s cheating probability is high (low confidence), or low
(high confidence). As described in Section 2, these attribute values have been
estimated for all consumers. On every segment f , the distribution of the
consumer trust in Operator 1 brand / loyalty is T1, f and for the Operator 2,
we have: T2, f .

Consumer i’s type realization is independent of the others’ and con-
sumer i has no prior information about the other consumers’ and operators’
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types; hence pi(t1, t2, ..., ti−1, ti+1, ..., tN, top1
, top2

|ti) =∏N
j=1, j	=i pi(t j|ti) pi(top1

|ti)
pi(top2

|ti) =∏N
j=1, j	=i pi(t j) pi(top1

) pi(top2
), where pi(t j) = 1

3|B| and pi(top j
) =

T j, f (top j )∑
s∈C T j, f (s)

, where C is the operators’ type space.

4.3 Definition of the operators’ game setting

We define the operators’ type spaces, action sets, utilities and subjective beliefs
to introduce our Bayesian game.

4.3.1 Operators’ type spaces

The operator’s type space coincides with the cheating probability set. It is the
closed interval [0; 1] uniformly discretized4 according to the stepsize 1

10 ; it will

be denoted by C =
{

0; 1
10 ; 2

10 ; 3
10 ; ...; 1

}
. The operator’s cheating probability

is private, i.e., known only by the operator. Each operator’s real cost for
every offer is a fraction of the offer selling price. Formally for any offer b
belonging to the operator’s choice set, we have the relation: (1 − top)Pop(b) =
cop(b) ⇔ 1 − top = cop(b)

Pop(b)
, where top(b) ∈ C is the operator’s type or cheating

probability. The cheating probability means that the operator can cheat on his
(her) quality, i.e., the offer retail price is not necessarily linked to the operator’s
investment in the offer quality. For instance, an operator using his (her) brand
reputation might try to sell a low quality offer at a high price, pretending
that it is an excellent quality product. In fact, the idea of introducing cheating
probabilities comes from Akerlof’s paper [1] where sellers commercialize good
used cars and defective used cars (lemons). The buyer of a car does not know
beforehand whether it is a good car or a lemon. In our article, the offer’s true
costs can be compared with the used car’s quality. Besides, cost can be seen
as a measure of quality since it represents the operator’s investment level in
technologies and QoS improvement. As in [1] and [9], the operators have
some incentives to cheat about their real costs, i.e., the offer prices do not
reveal their true manufacturing costs. Hence, our model deals with information
asymmetry, since the operators know more about the offer’s true costs than the
buyers and, the operators ignore each other’s cheating probabilities. As in [1],
incentives exist for the seller to pass off a low quality offer to an expensive
one sold as being of high quality. However, the introduction of brands might
play the role of guarantees for the buyer. Since each buyer associates a level
of trust with a brand name / loyalty. Indeed, a high cheating probability is not
always profitable for the operator: if the operator chooses to invest few funds
in the production of his offer and sells it at a high price, then the consumers
will be disappointed and by word of mouth effect, no one will trust anymore in
the operator’s brand name / loyalty. Consequently, the consumers’ reservation

4The discretization step can be fixed arbitrarily. Here, to fix the ideas, we choose 1
10 .
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prices will decrease and the operator will be forced to lower his prices. Then, a
compromise has to be found between brand reputation / loyalty preservation
and the cheating probability. Due to these guarantees, our market model can
be considered as an extension of the well-known lemon market.

The profit of the operator (Pop(b) − (1 − top)Pop(b)) is then the difference
between the selling price of the offer and this price coefficiented by his (her)
type. This latter term represents the hidden offer cost.

The operator’s types are independent since they have no prior information
about the cost structure of their rival. However, the operators use the publicly
known results of the survey (cf. Section 2) to infer some information about the
other players’ hidden information.

4.3.2 Operators’ action sets

The actions of operators are represented by the prices at which they sell their
offers. But those prices often do not reveal their real costs, which could include
equipment maintenance, advertising / content investment [15], interconnexion
contracts, etc. Each operator chooses a price for each of his (her) offers in a
finite discrete set: P ⊆ R+ . If the operator selects market share expansion as
his (her) marketing strategy, he (she) sells his (her) offers at the same price
on each market segment; however, if he (she) prefers a marketing strategy
based on multi-level price discrimination or segment targeting, the operator
should envisage to sell the same offer at different prices on each market
segment. For instance, the operator can propose some rebates on an offer to
students (segment 1), or to those who do not have a computer at home and are
unfamiliar with internet use (segment 4).

If the operator chooses the same price for each market segment, he gets an
action space of the form

Dop :=
{

dop = (Pop(1), Pop(2), ..., Pop(|Bop|)
)t | Pop(b) ∈ P, ∀b ∈ Bop

}
,

where the |Bop|-dimensional vector dop has b -th coordinate dop(b) = Pop(b) ∈
P, which contains the offer b selling price.

Another possibility for the operator is to discriminate between the customer
segments and price the offers differently on every market segment, in which
case we get

Dop =

⎧
⎪⎨

⎪⎩
dop =

⎛

⎜
⎝

Pop(1; 1) Pop(1; 2) . . . Pop(1; F)
...

...
...

...

Pop(|Bop|; 1) Pop(|Bop|; 2) . . . Pop(|Bop|; F)

⎞

⎟
⎠

where Pop(b ; f ) ∈ P, ∀b ∈ Bop, ∀ f ∈ F

⎫
⎪⎬

⎪⎭
,

dop(b , f ) = Pop(b ; f ) is the offer b selling price on the market segment f .
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4.3.3 Operators’ utilities

Three marketing strategies are available for the operators: (i) market share
expansion, (ii) segment targeting, (iii) multi-level price discrimination. Hence,
his (her) utility can take different forms.

• If he (she) selects a market share expansion strategy, his (her) utility is the
sum of the realized profits provided the consumers have bought his (her)
offers

uop(d, t) =
∑

b∈Bop

(
Pop(b) − cop(b)

)
(

N∑

i=1

di(b)1Pop(b)∈ti(b)

)

(11)

where 1Pop(b)∈ti(b) = 1 if the offer b price Pop(b) belongs to the consumer i
admissible price interval ti(b); it is zero otherwise.

• If he (she) prefers a strategy based on market segment targeting, the
operator should valuate each segment potential interest for his (her) offers
and determine the retail prices which would provide the greatest profit on
the most profitable segment

uop(d, t) = max
f∈F

∑

b∈Bop

(
Pop(b ; f ) − cop(b ; f )

)( N∑

i=1

di(b)1i∈ f∩Pop(b ; f )∈ti(b)

)

(12)

where 1i∈ f∩Pop(b ; f )∈ti(b) = 1 if consumer i belongs to the targeted interval
f and the offer b price (Pop(b ; f )) belongs to the consumer i admissible
price interval (ti(b)); it vanishes otherwise.

• Finally, if the operator uses multi-level price discrimination, he (she) has
to optimize the offer retail prices on each market segment

uop(d, t) =
∑

f∈F

∑

b∈Bop

(
Pop(b ; f ) − cop(b ; f )

)
(

N∑

i=1

di(b)1Pop(b ; f )∈ti(b)

)

.

(13)

We recall that (1 − top)Pop(b ; f ) = cop(b ; f ), ∀b ∈ Bop, ∀ f ∈ F and
top ∈ C.

4.3.4 Operators’ subjective beliefs

Operator j’s subjective belief about the other actors’ types can be defined as
pop j

(t1, t2, ..., tN, topk
|top j

) =∏N
i=1 pop j

(ti|top j
) pop j

(topk
|top j

) since conditionally
to his (her) type top j

, the other operator’s cheating probability and the con-
sumers’ types are independent from each other.
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We start by defining Operator j’s subjective belief about his (her) rival
(Operator k). The Operator j has no prior information about his (her) rival’s
type; hence, he (she) uses the consumers’ advices about his (her) rival’s loyalty,
i.e., the estimated densities characterizing the consumers’ levels of trust in
his (her) rival brand / loyalty on every market segment. Then, Operator j’s
subjective belief about Operator k’s type (cheating probability) is:

pop j
(topk

|top j
) = pop j

(topk
) since his (her) subjective belief about the other’s

type is independent of his (her) own type

=
∑

f∈F

Tk, f (topk
)

∑
s∈C Tk, f (s)

.

Second, we define Operator j’s subjective belief about consumer i’s
type (i.e., interval of maximum admissible prices): pop j

(ti|top j
) = pop j

(ti) =∏
b∈Bop j

pop j
(ti(b)) since Operator j’s subjective belief about consumer i’s type

is independent of his (her) own type and consumer i’s type associated to each
offer b of the global choice set are independent from each other. Information
about the consumers are stored in huge data-bases and the consumer segmen-
tation has been realized off-line, i.e., each operator knows to which segment
consumer i belongs. Then, for each offer b of Operator j’s choice set, the
operator’s subjective belief is defined as:

pop j
(ti(b)) =

⎧
⎪⎨

⎪⎩

1 − F̄b , fi(n1) − F̄b , fi(0) if ti(b) = L1

1 − F̄b , fi(n2) − F̄b , fi(n1) if ti(b) = L2

1 − F̄b , fi(n3) − F̄b , fi(n2) if ti(b) = L3

provided consumer i belongs to the market segment fi ∈ F .

4.4 Approximation of Bayesian equilibria using simulation

In our model, the utility functions are quite complex, and differ for the various
players. Besides, the action and type spaces are quite large.5 Hence, it is
difficult to compute analytically Bayesian equilibria. Tools are available to
help solving finite extensive or normal form games [10]. However they are
not designed to handle the general or more complex cases. An alternative
to provide some solutions might be to introduce simulation in the game
to approximate the equilibrium. Indeed, [10], Holenstein uses simulation to
approximate the equilibria in an auction game, where the players’ types and
the action spaces of both players are continuous. Cai and Wurman [5] employ
Monte Carlo methods in sequential auctions to sample the type space of the
other agents and then solve numerically the resulting complete information
game. Since in our model, the equilibria cannot be computed analytically,

5The global type space has a cardinal of 3N|B| |C|2; the global action set in the worst case, i.e., if
both operators price discriminate between the segments, is of size: 2N|B| |P|F|Bop1 | |P|F|Bop2 |.
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we play a dynamic game between the different actors. Each player responds
to the others’ actions, using a best response strategy. The idea is to sample
the player’s type space and then, the other players’ strategy profiles being
fixed, to determine the randomized strategy which maximizes the player’s
expected utility. Since the player’s randomized action space is quite large,
we use Monte-Carlo simulation to maximize his (her) expected utility. The
algorithm is described in detail in Section 4.4.1. Our aim is to approach a
Bayesian equilibrium. This approach is myopic since it does not consider future
consequences of the players’ actions, and uses Monte-Carlo methods, which
enables us to introduce an underlying Markov chain. Finally, the introduction
of a Markov chain enables us to develop convergence proofs in Section 4.4.2.

4.4.1 Description of the Best Response algorithm

We take the point of view of Operator 1, since he is the leader and tries to
forecast the two-level game outputs to determine his expected revenue and
the best marketing strategy for him. To approximate the Bayesian equilibria,
we use his private information and subjective beliefs about the others’ types.
The algorithm that we introduce, has already been used by Holenstein [10] and
Robert [19], and is made of two parts (Algorithm 1 and Algorithm 2). Algo-
rithm 1 samples the players’ type spaces. For each player, a type is drawn while
the strategies of the others are fixed. The player’s type being simulated and the
others’ strategies remaining fixed, it calls Algorithm 2 to determine the player’s
best response, i.e., the randomized pricing strategy or purchasing process,
maximizing his (her) expected utility. Algorithm 1 is iterated until it reaches
a convergence criterion. A temperature parameter is introduced and set to a
predefined value: Temp(0) < +∞. It is updated at each iteration of Algorithm
1 according to a decreasing function, e.g., Temp(t + 1) = exp (−Temp(t)). It is
used in Algorithm 2 to define the Acceptance-Rejection (AR) rule and hence,
avoids getting stuck in local extrema defining the player’s best response to the
others [19, 22]. This rule is issued from the well-known simulated annealing
method [8].

• If player i is consumer i;
the AR rule means that if σ ∗

i (.|ti) improves player i’s utility, i.e., U∗
i (σ ∗|ti) ≥

U∗
i (σ (k)|ti) then the Algorithm accepts σ ∗

i (.|ti) with probability 1, otherwise

it is accepted with probability min
{

1; exp
{
−
[

(U
i (σ (k)|ti)−U

i (σ |ti))
Temp(t)

]}}
. At

time instant t in Algorithm 1, consumer i’s best response obtained as output
of Algorithm 2 is updated to σ

(t)
i (.|ti) = σ

(Itermax)

i (.|ti).
• If player i is Operator i;

the AR rule means that if σ ∗
opi

(.|topi
) improves player i’s utility, i.e.,

U∗
opi

(σ ∗|topi
) ≥ U∗

opi
(σ (k)|topi

) then the Algorithm accepts σ ∗
opi

(.|topi
)

with probability 1, otherwise it is accepted with probability

min
{

1; exp
{
−
[

(U
opi

(σ (k)|topi )−U
opi

(σ |topi ))

Temp(t)

]}}
. At time instant t in Algorithm
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1, Operator i’s best response obtained as output of Algorithm 2 is updated
to σ

(t)
opi

(.|topi
) = σ

(Itermax)
opi

(.|topi
).

Algorithm 1 Bayesian equilibrium approximation
Set time t = 0, and intialize the temperature: Temp(0) = 1.
The players’ strategies are initialized according to a uniform distribution on the action
spaces:
σ

(0)
i (di|ti) = 1

|Di| , ∀i ∈ N and σ
(0)
opi

(dopi
|topi

) = 1
|Dopi | , ∀i = 1, 2.

While the norm of the players’ conditional strategies changes by more than a fixed
constant ε,
for each player i (either consumer or operator),

• if player i is a customer belonging to segment fi, sample his type according to

the multinomial density ti(b) ∼ M
(

1; (1 − F̄b , fi (n1) − F̄b , fi (0)), (1 −
F̄b , fi (n2) − F̄b , fi (n1)), (1 − F̄b , fi (n3) − F̄b , fi (n2))

)
; it means that the

probability that i belongs to the category 1 for offer b is
1 − F̄b , fi (n1) − F̄b , fi (0), to the category 2, it is 1 − F̄b , fi (n2) − F̄b , fi (n1) and
to the category 3: 1 − F̄b , fi (n3) − F̄b , fi (n2).

• If player i is Operator i, then his type is sampled according to the multinomial

density M
(

1;∑ f∈F
Ti, f (0)∑
s∈C Ti, f (s)

, ...,
∑

f∈F
Ti, f (1)∑
s∈C Ti, f (s)

)
; it means that the

probability for Operator i’s cheating probability to be s̃ ∈ C is
∑

f∈F
Ti, f (s̃)∑

s∈C Ti, f (s)
.

• Then, determine the best response given the other players’ strategies (via
Algorithm 2).

• Update player i’s strategy profile.

End
t = t + 1, update the temperature which decreases according to a pre-defined law,
giving: Temp(t + 1).

End

Algorithm 1 stops when the norm6 of the players’ conditional strategies does
not change by more than a fixed constant, i.e.:

‖σ (t+1)

i (.|ti) − σ
(t)
i (.|ti)‖ ≤ ε, ∀ti ∈ Ti, ∀i ∈ N , ε

≥ 0 if player i coincides with consumer i

‖σ (t+1)
opi

(.|topi
) − σ (t)

opi
(.|topi

)‖ ≤ ε, ∀topi
∈ Topi

, i = 1, 2, ε

≥ 0 if player i is Operator i

where σ
(t)
i (.|ti) ∈ �(Di) and σ

(t)
opi

(.|topi
) ∈ �(Dop) are the randomized purchas-

ing strategy and the randomized pricing strategy vectors of consumer i and
Operator i, conditionally on his type ti (resp. topi

).

6We use the L2-norm defined as ‖x‖ =∑n
i=1 |xi|2 but other vectorial norms might be used.



196 H. Le Cadre et al.

Fig. 3 Convergence of the
Bayesian equilibrium
approximation algorithm
(Algorithm 1) and Operator
1’s expected utility as a
function of the sample size in
Algorithm 2
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Algorithm 2 is run for a maximum number of steps called Itermax. It is
defined a priori but we check in Fig. 3 that a higher size for the maximum
number of samples drawn in Algorithm 2, increases Algorithm 1 convergence
to the equilibrium strategies.

4.4.2 Proof of Algorithm 1 convergence

In this proof, we assume that player i denotes indifferently consumer i or
Operator i. At time step t in Algorithm 1, the output of Algorithm 2 is kept
in memory: σ

(t)
i (.|ti) := σ

(Itermax)

i (.|ti).
Player i’s state space is made of all the probability distributions on the

action space Di (Dop for the operator): �(Di) (resp. �(Dop)). To prove the
Algorithm 1 convergence, we have to assume that player i’s state space is finite:
Si ⊆ �(Di) and |Si| < +∞ (resp. Sop ⊆ �(Dop) and |Sopi

| < +∞).
In Algorithm 2 to compute the player’s best response, the instrumental

density q, is a multidimensional normal density which has been discretized
on player i’s state space Si or Sop if player i is an operator, and centered in
the last accepted randomized-strategy profile for the considered player. q is
used in Algorithm 2 to generate a new conditional randomized strategy for
player i, and its parameters are updated at each iteration step of Algorithm 2.
Consequently, in Algorithm 2, for each player i, conditionally to his type, the
others’ strategies being fixed, the process is a Markov chain.

Theorem 1 We suppose that Itermax is chosen sufficiently large to guarantee that
Algorithm 2 solutions coincide with the players’ best responses. Assuming the
finite dimensionality of the strategy spaces Si and Sopi

, and the irreducibility of
the conditional chains for each player, the algorithm converges to a Bayesian
equilibrium.
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Algorithm 2 Determination of the best response

Initialize player i’s randomized strategy profile: σ
(0)
i (.|ti) (or σ

(0)
opi

(.|topi
)), while the

N + 1 other players’ strategies remain unchanged. If t ≥ 2 in Algorithm 1 then player
i’s randomized strategy is fixed to the optimal strategy obtained in the last step of Al-
gorithm 1: σ (0)

i (.|ti) := σ
(t−1)
i (.|ti) if player i coincides with consumer i and σ

(0)
opi

(.|topi
) :=

σ
(t−1)
opi

(.|topi
) if player i is Operator i. Compute the associated expected utility

• if the player is consumer i

U (0)
i (σ (0)|ti) =

∑

(
t−i,top1 ,top2

)
∈T−i×Top1 ×Top2

pi
(
t−i, top1 , top2 |ti

)∑

d∈D

{∏

j∈N−i

σ
(t)
j

(
d j|t j

)

×σ
(t)
op1

(
dop1 |top1

)
σ

(t)
op2

(
dop2 |top2

)}
σ

(0)
i (di|ti) ui(d, t),

where, ti is player i’s type, drawn according to the initial marginal distribution,
in Algorithm 1.

• if the player is Operator i

U (0)
opi

(
σ (0)|topi

) =
∑

t∈T1×...×TN ,topk ∈Topk

popi

(
t1, ..., tN, topk

|topi

)

×
∑

d∈D

{
∏

j∈N
σ

(t)
j

(
d j|t j

)
σ

(t)
opk

(
dopk

|topk

)
}

σ
(0)
opi

(
dopi

|topi

)
uopi

(d, t)

where Operator i’s type topi
has been generated in Algorithm 1.

For k from 0 to Itermax,
sample z ∼ U[0;1] ,

and sample σ
i (.|ti) ∼ q

(
σ

i (.|ti) | σ
(k)
i (.|ti)

)
if player i coincides with consumer i and

σ
opi

(.|topi
) ∼ q

(
σ

opi
(.|topi

) | σ
(k)
opi

(.|topi
)
)

if player is Operator i.

At each step, compute the expected utility: U
i (σ |ti) (or U

opi
(σ ∗|topi

)) taking into
account the other players’ strategies which have been updated at the t-th iteration in
Algorithm 1. The AR rule is:

• if player i coincides with consumer i

If z < min
{

1; exp
{
−
[(

U
i

(
σ (k)|ti

)
−U

i (σ |ti)
)

Temp(t)

]}}
,

then:
σ

(k+1)
i (.|ti) = σ

i (.|ti) and U (k+1)
i (.|ti) = U

i (σ |ti).
Otherwise, σ

(k+1)
i (.|ti) = σ

(k)
i (.|ti) and U (k+1)

i (.|ti) = U (k)
i

(
σ (k)|ti

)
.

• if player i is Operator i

If z < min
{

1; exp
(

−
{(U∗

opi

(
σ (k)|topi

)
−U∗

opi

(
σ ∗|topi

))

Temp(t)

]}}
,

then:
σ

(k+1)
opi

(
.|topi

) = σ
opi

(
.|topi

)
and U (k+1)

opi

(
.|topi

) = U
opi

(
σ|topi

)
.

Otherwise, σ
(k+1)
opi

(
.|topi

) = σ
(k)
opi

(
.|topi

)
and U (k+1)

opi

(
.|topi

) = U (k)
opi

(
σ (k)|topi

)
.

• End

End
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Proof of Theorem 1 It can be found in detail in Appendix ��

Numerical illustration We start by defining the model’s exogeneous parame-
ters. We let N = 1000 be the number of consumers, the three category of
interest / income upper bounds are: n1 = 10, n2 = 30, n3 = 100. We choose
αL1 = 0.9, αL2 = 0.5, and αL3 = 0.3. Operator 1 is integrated and already well-
known on the market. He uses multi-level price discrimination as marketing
strategy and his cheating probability is 1

10 . Operator 2 is a small new entrant.
Her marketing approach is based on segment targeting and her cheating
probability is 7

10 .

At the top of Fig. 3, we observe the convergence of both operators’ expected
utilities conditionally to their types, i.e., U∗

op1
(σ | 1

10 ) = 173.5 while U∗
op2

(σ | 7
10 ) =

60. It shows the convergence of the operators’ expected utilities conditional to
their types, in around 300 iterations of Algorithm 1.

At the bottom of Fig. 3, we have represented Operator 1’s expected utility
(his type being fixed to 1

10 ) as a function of the sample size (Itermax) used
in Algorithm 2, with a fixed number of 300 cycles in Algorithm 1. The
convergence rate of Algorithm 1 increases with the number of samples used
in Algorithm 2. With Itermax ≥ 8000, the Bayesian equilibrium is reached for
300 iterations in Algorithm 1. Indeed we have more chances to determine the
optimal randomized pricing strategy if the random walk describes a larger state
space. Besides, the acceptance rate, i.e., the fraction of proposed samples that
is accepted in a window of the last Itermax samples, at a fixed temperature, is of
around 23% for all the players.

To determine the complexity of Algorithm 1, we first note that it contains
N + 2 cycles to cover all the players and for each player, there are Itermax +
1 iterations to run in Algorithm 2. The problem now, is to determine when
Algorithm 1’s stopping criterion on the conditional strategies is reached.

For each player i, in each iteration k of Algorithm 2 and for t large
enough, the probability that the new strategy vector be accepted con-
verges: P[σ ∗

i (.|ti) accepted] → exp
(− 1

Temp(t)

) = exp
(− 1

exp(−Temp(t−1))

)
, since

Ui(σ
(k)(.|ti) − Ui(σ

∗|ti) is bounded and the temperature updating rule is
Temp(t) = exp(−Temp(t − 1)). In each cycle of Algorithm 1, a type ti is drawn
for each player i. If we assume that either the algorithm has stopped, or σ ∗

i (.|ti)
has been rejected; we have the following relation:

∏N+2
i=1 P[|σ Itermax

i (.|ti) −
σ

(t−1)

i (.|ti)| < ε] >
∏N+2

i=1 P[σ ∗
i (.|ti) rejected].

Hence, P[Algo.1 stops] >
(
1 − exp

(− 1
exp(−Temp(t−1))

))N+2
. Practically, if

Temp(t − 1) = log
(− log

(
1 − exp

( log 0.95
N+2

)))
then the probability that Algo-

rithm 1 stops is larger than 0.95. For instance, in our numerical illustration
log
(− log

(
1 − exp

( log 0.95
N+2

))) = 2.3. Consequently, the algorithm complexity is
of the form O(r(N + 2)Itermax) where r is the time needed to decrease the
temperature up to log

(− log
(
1 − exp

( log 0.95
N+2

)))
.

In our numerical illustration, the computational cost, i.e., the average time
needed to reach the equilibria, is around 3 hours.
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5 First level: computation of the providers’ marketing strategies

The second level of the game has been run for each combination of marketing
strategies: sop1

for Operator 1 and sop2
for Operator 2. As outputs, we have ob-

tained the optimal randomized strategies σsop1 ,sop2
and the operators’s expected

utilities conditional to each possible type, i.e. Uop j

(
σsop1 ,sop2

|top j

)
, ∀top j

∈ C, j =
1, 2.

Now, each operator aims at defining his (her) most profitable marketing
strategy between: (i) market share expansion, (ii) segment targeting and (iii)
multi-level price discrimination. Operator 1 is integrated, i.e., he is initially
more powerful than Operator 2 who is a new entrant on the telecommuni-
cation market. The game can then be identified with a Stackelberg one under
uncertainties; Operator 1 starts by fixing his marketing strategy, then Operator
2 arrives on the market and has to determine which marketing strategy to
choose under uncertainty. Operator 1 can be seen as a leader, while Operator
2 is a follower.

Once more, we proceed by backward induction.

• First, Operator 2 should solve the following optimization problem for each
of her type:

max
sop2 ∈{Exp.,Target,Discr.}

∑

top1 ∈C
pop2

(
top1

|top2

)∑

sop1

σop1

(
sop1

|top1

)
Uop2

(
σsop1 ,sop2

|top2

)

(14)

where σop1
(sop1

|top1
) ∈ {0; 1} and

∑
sop1 ∈{Exp.,Target,Discr.} σop1

(sop1
|top1

) = 1,

i.e., each operator has to choose a pure marketing strategy.
As output, Eq. 14 advises Operator 2 about which marketing strategy to
use as a function of her type, i.e., we get

s∗
op2

: C → {
Exp., Target, Discr.

}

top2
�→ s∗

op2

(
top2

)

• Then, we assume that Operator 2’s marketing strategy (s∗
op2

) is fixed.7

Operator 1, as the leader, should solve

max
sop1 ∈{Exp.,Target,Discr.}

Uop1

(
σ

sop1 ,s∗
op2

(
top2

)|top1

)
(15)

7We note that it might be impossible for Operator 1 to infer Operator 2’s cheating probability from
the sole observation of her marketing strategy. For instance, if C = {0.1; 0.5; 0.8} and if Operator

2’s randomized marketing strategy obtained as output of level 1 is the following: σop2 =
⎛

⎝
1 0 1
0 1 0
0 0 0

⎞

⎠

then if Operator 2 chooses the first marketing strategy, Operator 1 cannot infer her hidden

information. However, if σop2 =
⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ then Operator 1 should easily guess Operator 2’s type.
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Table 1 Bayesian game
outputs, top1 = 1

4
Op.1 Op.2

Expansion Target Discriminate

Expansion (80, 180) (50, 70) (600, 200)

Target (5, 180) (580, 570) (350, 380)

Discrimate (8, 400) (10, 300) (10, 390)

The optimal marketing strategy for Operator 1 is denoted: s∗
op1

(top1
, top2

).

Practically, for each couple of cheating probabilities (top1
, top2

), once Oper-
ator 1 has revealed his marketing strategy s∗

op1
(top1

, top2
), Operator 2 should

choose the marketing strategy maximizing her expected utility; she has to con-
sider a system of three equations, one for each available marketing strategy.

1. If Operator 2 selects a market share expansion strategy (sop2
= Exp.),

∑

top1 ∈C
pop2

(
top1

|top2

)
Uop2

(
σs∗

op1
,Exp.|top2

)
(16)

with s∗
op1

= arg maxsop1
Uop1

(σsop1 ,Exp|top1
);

2. If Operator 2 prefers a multi-level price discrimination strategy (sop2
=

Discr.),
∑

top1 ∈C
pop2

(
top1

|top2

)
Uop2

(
σs∗

op1
,Discr.|top2

)
(17)

with s∗
op1

= arg maxsop1
Uop1

(
σsop1 ,Discr|top1

);
3. If Operator 2 uses a segment targeting approach (sop2

= Target),
∑

top1 ∈C
pop2

(
top1

|top2

)
Uop2

(
σs∗

op1
,Target|top2

)
(18)

with s∗
op1

= arg maxsop1
Uop1

(
σsop1 ,Target|top1

);

Numerical illustrations In a first part, we restrain the cheating probability set
to the following one: C = { 1

4 ; 1
2 ; 3

4 ; 1
}
. Since Operator 2 is new on the market;

she is forced to choose 3
4 as cheating probability; it provides her a guarantee

to make profits and to survive against Operator 1. Each operator chooses a
unique strategy between the three available marketing strategies: market share
expansion, segment targeting or multi-level price discrimination.

Table 2 Bayesian game
outputs, top1 = 1

2
Op.1 Op.2

Expansion Target Discriminate

Expansion (80, 190) (50, 5) (600, 70)

Target (5, 80) (580, 10) (350, 90)

Discrimate (8, 3) (10, 200) (10, 60)
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Table 3 Bayesian game
outputs, top1 = 3

4
Op.1 Op.2

Expansion Target Discriminate

Expansion (80, 90) (50, 5) (600, 30)

Target (5, 70) (580, 5) (350, 3)

Discrimate (8, 3) (10, 50) (10, 5)

In Tables 1, 2, 3 and 4 we have computed the operators’ expected utilities,
Operator 2’s type being fixed to 3

4 while Operator 1’s type takes all the
possible values in her type space, C. Each element of the payoff matrix contains
Operator 1’s expected utility and Operator 2’s expected utility conditional to
her true type.

If we look at the Tables 1, 2, 3 and 4 and, by application of the set of Eqs. 16,
17 and 18, we get the following successive expressions.

• If Operator 2 chooses an Expansion strategy, then Eq. 16 becomes

pop2

(
1
4

∣∣
∣
∣
3
4

)
180 + pop2

(
1
2

∣∣
∣
∣
3
4

)
190 + pop2

(
3
4

∣∣
∣
∣
3
4

)
90 + pop2

(
1
∣∣
∣
∣
3
4

)
20;

• if Operator 2 selects a multi-level price discrimination strategy, she gets

pop2

(
1
4

∣
∣
∣∣
3
4

)
200 + pop2

(
1
2

∣
∣
∣∣
3
4

)
70 + pop2

(
3
4

∣
∣
∣∣
3
4

)
30 + pop2

(
1
∣
∣
∣∣
3
4

)
2;

• if segment targeting is selected as marketing strategy for Operator 2, we
have

pop2

(
1
4

∣
∣
∣∣
3
4

)
570 + pop2

(
1
2

∣
∣
∣∣
3
4

)
10 + pop2

(
3
4

∣
∣
∣∣
3
4

)
5 + pop2

(
1
∣
∣
∣∣
1
2

)
20.

Table 4 Bayesian game
outputs, top1 = 1

Op.1 Op.2
Expansion Target Discriminate

Expansion (80, 20) (50, 5) (600, 2)

Target (5, 3) (580, 2) (350, 2)

Discrimate (8, 1) (10, 20) (10, 3)
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Using these set of relations, we infer that the multi-level price discrimination
strategy is always worse than the others for Operator 2. Besides, the target
strategy is prefered to the expansion one if and only if

372x − 162y ≥ 67z + 18

x = pop2

(
1
4

∣
∣∣
∣
3
4

)

y = pop2

(
1
2

∣∣
∣
∣
3
4

)

z = pop2

(
3
4

∣∣
∣
∣
3
4

)

x + y + z ≤ 1

x, y, y ≥ 0

and, in the reverse case, the expansion strategy is better than the target one.
In a second part, we proceed the same way as described in Eqs. 16, 17

and 18. However, Operator 1’s cheating probability spans a large number of
values in the unit interval [0; 1] (idem for Operator 2). We aim at determining
the most profitable marketing strategy to use for Operator 1 in each possible
couple of cheating probabilities (i.e., the one maximizing his expected utility
conditionally to his type).

Practically, the cheating probability usually depends on the operator size /
power in the relation Operator 1-Operator 2: if the cheating probability is
small, the operator has a big structure, i.e., he is powerful; if the cheating
probability is of middle-value, the operator is not too powerful in the relation
Operator 1-Operator 2 (he (she) does not cheat too much because he (she)
already has some money issued from other business areas, for instance tv
access, beverage or airline tickets sellings; but needs to expand his market
share / increase his (her) revenue); finally if the cheating probability is high,
the operator needs to make big profits as soon as possible, i.e., it may be a
small new entrant, or a virtual network operator lacking funds.

Using Fig. 4, we infer that

• when both operators are small or equally powerful, they would rather use
a market share expansion strategy to extend rapidly their market shares
and try to survive on the market;

• when the considered operator is big, he (she) systematically uses a multi-
level price discrimination strategy. Indeed, since the other operator does
not represent a threat, he (she) tries to add value to his (her) brand by
differentiating between the segments;

• when the considered operator is of middle-size while the other is a threat
for him (her), he (she) would rather use a segment targeting strategy. To
survive on the market, the operator wants to differentiate from his (her)
rival by capturing market niches.
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Fig. 4 Most profitable
marketing strategy for
Operator 1 as functions of
both operators’ cheating
probabilities
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6 Conclusions

In this paper, we have presented a way to model customer preferences using
discrete choice theory for telecommunication operators willing to propose
offers and in particular, bundles, on the market. Using information taken from
a panel of customers, we have developed in Section 2 and in [14] an approach
based on data augmentation and Bayesian networks to help an operator to
price optimally his offers, in order to maximize his revenue. But this study
was in the case where no competition was carefully modeled among operators.
For this reason, we have studied in this part the case where operators propose
substitutable offers and compete for customers. Customers participate into
the game by selecting the provider the most relevant to them, using the
previously studied preference model. A two-level game is introduced. Due to
the uncertainties involved, the second level is modeled as a Bayesian game,
and the resulting equilibrium analyzed. The first level of the game enables
the operator to identify the marketing strategy maximizing his (her) expected
revenue under uncertainties about his (her) rivals’ behaviours and private
information.

The paper might be extended by introducing alliances between the oper-
ators, e.g., one of the operators might lack network facilities and become
a virtual operator on the network of his rival. Then, some contracts could
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be introduced between the operators and the utilities modified accordingly.
Another difficulty might be to define a dynamic model dealing with consumer
preference evolution and learning the rival’s private information by observing
his (her) strategy and revenue evolution. To tackle such approaches, stochastic
programming has been employed by Audestadt et al. [2], or Stackelberg game
theory (cf. Leleno and Sherali [16]) with partial feedback (cf. Cesa-Bianchi and
Lugosi [6]).

Acknowledgement The authors thank the reviewers and the Editor for helpful comments.

Appendix

Proof of Theorem 1 The proof is inspired from [22], who proves the conver-
gence of a simulated annealing algorithm for multiobjective optimization prob-
lems. Here, we do not use a classical simulated annealing algorithm and the
incomplete information framework adds some difficulties to the convergence
proof. Player i indifferently refers to consumer i or Operator i.

(1) Definition of Algorithm 2’s underlying Markov chain transition
probabilities.

Let B be the set of Bayesian equilibria associated with our game. We
consider player i. At the temperature Temp(t), we suppose that the type ti ∈ Ti

has been drawn. In Algorithm 2, conditionally to the type ti, we choose an
Acceptance-Rejection (AR) rule similar to simulated annealing algorithms (cf.
[19]):

Ai(s1, s2) := min
{

1; exp
(

−
[

U
i (s1|ti) − U

i (s2|ti)
Temp(t)

])}
, ∀s1, s2 ∈ Si. (19)

Let a+, be the positive part of the real number a:

a+ =
{

a, if a > 0,

0, otherwise.

Using this definition, Eq. 19 can be simplified to give

Ai(s1, s2) := exp

{

−
[

U
i (s1|ti) − U

i (s2|ti)
Temp(t)

]+}

, s1, s2 ∈ Si. (20)

At the iteration k, the probability associated with the simulation of the
probability vector s2, starting at s1, and conditionally to the type ti for player i, is
q(.|s1). It is a normal density centered in s1 with covariance matrix �. Then, the
generating matrix Gi associated with the random walk generating distribution
q, is of form

Gi(s1, s2) = exp
(− 1

2 (s2 − s1)
T�−1(s2 − s1)

)

∑
s∈Si

exp
(− 1

2 (s − s1)T�−1(s − s1)
) . (21)
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Note that Gi(s1, s2) = Gi(s2, s1) , since the strategies are drawn according to
a normal density symetrically distributed around the origin.

Using the acceptance probability defined in Eq. 19 conditionally to the type
ti and the generating matrix definition in Eq. 21, we get the expression of the
transition probability from the state s1 to the state s2, for player i

Pi(s1, s2) =
⎧
⎨

⎩

Gi(s1, s2) Ai(s1, s2) , if s2 	= s1,

1 −
∑

s∈Si−{s1}
Pi(s1, s). (22)

Let Pi(ti), be the matrix containing the transition probabilities issued from
the algorithm, which generates the Markov chain {X(k)

i (ti)}k, for player i,
conditionally to his type ti, at the temperature Temp(t). Then

X(k)

i =
{

X(k)

i (ti) ∈ Si | ti ∈ Ti

}
, i ∈ N ∪ Op1 ∪ Op2

contains the set of Markov chains, generated for each player, conditionally to
every type.

(2) Identification of a stationary distribution for the underlying Markov chain.

Recall that if the distribution π satisfies (cf. [8]),

π(s1) P(s1, s2) = π(s2) P(s2, s1) , ∀s1, s2 ∈ Si, (23)

then it is stationary. Assume that Gi generates an irreducible Markov chain
for each player i conditionally to his type ti. Then, the associated matrix Gi,
will be called irreducible. Since Pi(s1, s1) > 0, the associated Markov chain is
irreducible and aperiodic. Then, there exists a unique stationary distribution.
Hence, if we determine an invariant distribution for the probability transition
matrix, it is the limit distribution towards which the chain converges.

Recall also that Boltzmann’s distribution (cf. [8]) is a probability distribu-
tion on the action strategy space which puts most of the weights on the states
(here, the randomized vectors), maximizing the player’s objective function.
The Boltzmann’s distribution for player i, conditionally to his type ti, is defined
as follows:

βi(s1) =
exp

[
Ui(s1|ti)
Temp(t)

]

∑

s∈Si

exp
[

Ui(s|ti)
Temp(t)

] , ∀s1 ∈ Si. (24)

We have already seen, using weight symmetry that, Gi(s1, s2) = Gi(s2, s1),

∀ti ∈ Ti, ∀i ∈ N ∪ Op1 ∪ Op2. Consequently, to prove that the Boltzmann’s
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distribution is invariant for our transition matrix, i.e., βi(s1) Pi(s1, s2) =
βi(s2) Pi(s2, s1), it is sufficient to show that βi(s1) Ai(s1, s2) = βi(s2) Ai(s2, s1).
We indeed have

βi(s1) Ai(s1, s2) =
exp

[
Ui(s1|ti)
Temp(t)

]

∑

s∈Si

exp
[
− Ui(s|ti)

Temp(t)

] exp
[
−
(

Ui(s1|t1) − Ui(s2|t1)
Temp(t)

)]+
,

=
exp

[
Ui(s2|ti)
Temp(t)

]

∑

s∈Si

exp
[

Ui(s|ti)
Temp(t)

] exp
[

Ui(s1|ti) − Ui(s2|ti)
Temp(t)

]

× exp

[

−
(

Ui(s1|ti) − Ui(s2|ti)
Temp(t)

)+]

.

(25)

But, each real number a ∈ R can be written under the form, a = a+ − a−
with a+, a− ∈ R

+. It gives us a+ = a + a−. But a− = (−a)+. Hence, we infer
that a+ = a + (−a)+.

By application of this identity in the Eq. 25, we get

exp

[

−
(

Ui(s1|ti) − Ui(s2|ti)
Temp(t)

)+]

= exp

[

−
{[

Ui(s1|ti) − Ui(s2|ti)
Temp(t)

]

+
[

Ui(s2|ti) − Ui(s1|ti)
Temp(t)

]+}]

.

Using simplifications, it gives:

βi(s1) Ai(s1, s2) = βi(s2) Ai(s2, s1).

Then, βi is a stationary distribution for the Markov chain associated with
the transition matrix Pi(ti). For every player i, conditionally to each type ti ∈
Ti, since we assume that Gi is irreducible, the Markov chain issued from our
algorithm converges towards the stationary distribution, βi.

(3) Proof that Algorithm 1 converges to a Bayesian equilibrium and that it is
unique under irreducibility of the generating matrix Gi.

Now, we want to check that asymptotically βi is a Bayesian equilibrium, i.e.,
that the algorithm converges.
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Indeed, by definition [22], we say that the algorithm converges with proba-
bility one if and only if:

lim
Temp→+0

P
[{

X(k) ∈ B
}] = 1. (26)

We note BR(t)
i , the set of player i’s best responses, conditionally to his type

ti, at the time instant t, at the temperature Temp(t). This set contains the
probability vectors maximizing player i’s expected utility, conditionally to his
type ti, the strategies of the other players being fixed. We note U

i (ti), player
i’s expected utility conditionally to his type ti, for every element of the best
response space, BR(t)

i . Using these definitions, Boltzmann’s measure at the
time instant t, becomes:

βi(s1) =
exp

[
Ui(s1|ti)
Temp(t)

]

∑
s∈Si

exp
[

Ui(s|ti)
Temp(t)

] , (27)

=
exp

[−U
i (ti)+Ui(s1|ti)
Temp(t)

]

∑
s∈Si

exp
[−U

i (ti)+Ui(s|ti)
Temp(t)

]
(

1s1∈BR(t)
i

+ 1s1∈Si−BR(t)
i

)
, (28)

= 1
∑

s∈Si
exp

[−U
i (ti)+Ui(s|ti)
Temp(t)

] 1s1∈BR(t)
i

+
exp

[−U
i (ti)+Ui(s1|ti)

Temp(t)

]

∑
s∈Si

exp
[−U

i (ti)+Ui(s|ti)
Temp(t)

] 1s1∈Si−BRi . (29)

As the temperature decreases towards 0, the second term vanishes, since
Ui(s1|ti) ≤ U

i (ti). Under this hypothesis, we have:

βi(s1) → 1

|BR(t)
i | 1s1∈BR(t)

i
.

Hence, Algorithm 1 converges.
In the case of a finite dimensional Bayesian game, there always exists a

Bayesian equilibrium (cf. [17]). Provided B ⊆ ×i∈NgSi , for t large enough,
BR(t), the set of the best responses obtained using our algorithm, is either
empty, either identifiable with a Bayesian equilibrium provided it converges
(cf. [10]). Consequently:

lim
Temp(t)→0

P
[
X(k) ∈ B

] ≥ lim
Temp(t)→0

P
[
X(k) ∈ BR(t)] = 1. (30)

Besides, since the Markov chain is supposed irreducible and aperiodic, there
exists a unique stationary distribution, which means that the Bayesian equilib-
rium once reached, is unique. ��
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