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Abstract
Forensic neuropsychological examinations with determination of malingering have tremendous social, legal, and economic 
consequences. Thousands of studies have been published aimed at developing and validating methods to diagnose malinger-
ing in forensic settings, based largely on approximately 50 validity tests, including embedded and stand-alone performance 
validity tests. This is the first part of a two-part review. Part I explores three statistical issues related to the validation of 
validity tests as predictors of malingering, including (a) the need to report a complete set of classification accuracy statistics, 
(b) how to detect and handle collinearity among validity tests, and (c) how to assess the classification accuracy of algorithms 
for aggregating information from multiple validity tests. In the Part II companion paper, three closely related research 
methodological issues will be examined. Statistical issues are explored through conceptual analysis, statistical simulations, 
and through reanalysis of findings from prior validation studies. Findings suggest extant neuropsychological validity tests 
are collinear and contribute redundant information to the prediction of malingering among forensic examinees. Findings 
further suggest that existing diagnostic algorithms may miss diagnostic accuracy targets under most realistic conditions. 
The review makes several recommendations to address these concerns, including (a) reporting of full confusion table statis-
tics with 95% confidence intervals in diagnostic trials, (b) the use of logistic regression, and (c) adoption of the consensus 
model on the “transparent reporting of multivariate prediction models for individual prognosis or diagnosis” (TRIPOD) in 
the malingering literature.
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Introduction

Past decades have seen a steady increase in the schol-
arly interest in malingering, with about 713 related APA 
 Psychinfo® entries during the 1990s, rising to 1625 during 
the 2010s. By 2015, about 25% of publications in neuropsy-
chology journals were devoted to malingering (Martin et al., 
2015). Interest in the forensic determination of malinger-
ing is commensurate with its tremendous social, legal, and 
economic importance. A positive finding of malingering 
in a neuropsychological exam may, for example, lead to an 
examinee being denied a large financial settlement in a tort 
case or receiving a harsher criminal sentence including the 

death penalty (cf. Myers et al., 2016). Economically, the cost 
of malingering related to disability cases in the US has been 
estimated to exceed $20 billion in 2011 alone (Chafetz & 
Underhill, 2013). However, an econometric analysis found 
that the cost of providing disability payments to claimants 
who are malingering was only slightly greater than the sav-
ings from mistakenly rejecting claimants who are not malin-
gering (Benitez-Silva et al., 2004, p. 25).

When identifying the presence of malingering of neuropsy-
chological dysfunction, somatic symptoms, psychiatric pres-
entation, or mixed symptom presentation in examinees under-
going forensic1 neuropsychological evaluations, the most 

 * Christoph Leonhard 
 chleonhard@yahoo.com

1 The Chicago School of Professional Psychology at Xavier 
University of Louisiana, Box 200, 1 Drexel Dr, New Orleans, 
LA 70125, USA

1 The term “forensic” shall refer to any situation where there is 
an actual or potential legal question regarding the veracity of an 
examinee´s presentation such as when making determinations about 
the presence of sexual abuse, eligibility for disability benefits, fitness 
for fulfilling a particular role, such as being a parent or police officer, 
ability to stand trial, presence of neurocognitive and/or psychiatric 
conditions that may affect guilt, innocence, or sentencing of a crim-
inal defendant, tort situations involving questions of the veracity of 

http://crossmark.crossref.org/dialog/?doi=10.1007/s11065-023-09601-7&domain=pdf
http://orcid.org/0000-0003-4622-6171


582 Neuropsychology Review (2023) 33:581–603

1 3

recent neuropsychology assessment guidelines (Sherman  
et al., 2020), while not universally accepted by forensic 
neuropsychologists (Sweet et al., 2021, p. 1071), describe a 
diagnostic algorithm that calls for multidimensional criteria 
to be evaluated in four categories, including (a) the pres-
ence of an external incentive, (b) invalid presentation on an 
examination that is indicative of feigning or exaggeration, (c) 
marked discrepancies between obtained test data or symptom 
reports and other types of evidence, and (d) an inability to 
fully account for behaviors that meet the invalid presentation 
criteria by another developmental, medical, or psychiatric 
condition (Sherman et al., 2020, Box 1). This algorithm is 
an update of those previously published by the same group 
(Slick & Sherman, 2012; Slick et al., 1999). The 1999 ver-
sion of the Slick et al. algorithm has been widely adopted 
(Sherman et al., 2020) and was considered by the American 
Academy of Clinical Neuropsychology (AACN) to be more 
representative of the state of neuropsychological knowledge 
than criteria for the determination of malingering of the 
American Psychiatric Association (2000) under DSM-IV-
TR (Heilbronner et al., 2009, p. 1098).

While originally developed to detect malingering of neu-
rocognitive dysfunction, malingering determination algo-
rithms, and the statistical and research methods involved in 
their validation and use in forensic settings, have since heav-
ily impacted neighboring areas in assessment, such as meth-
ods to ascertain the veracity of reports of child sexual abuse 
(Proeve, 2009), feigning of somatic (Bianchini et al., 2005) 
and psychiatric complaints (Edens et al., 2020; Sherman 
et al., 2020), and diagnosis of factitious disorder (Chafetz 
et al., 2020). However, the scope of both parts of this review 
is expressly limited to the validity of performance validity 
tests (PVTs) to determine malingered neurocognitive dys-
function in forensic neuropsychological exams and eschews 
discussion of the use of validity tests for other purposes, 
such as in the context of clinical neuropsychological exams 
where there are no external incentives on examinees to pre-
sent a certain way.

This two-part review focuses on statistical and methodo-
logical issues in the forensic determination of malingering 
from knowledge of PVT scores. Depending on the type of 
malingering being determined, these could be free standing 
PVTs, such as the Test of Memory Malingering (TOMM; 
Tombaugh, 1996) or embedded PVTs, such as Reliable 
Digit Span (RDS; Greiffenstein et al., 1994). While, con-
ceptually, all validity tests function nearly identically in the 

determination of malingering, this paper focusses primarily 
on PVTs, except when prior research discusses PVTs and 
symptom validity tests without distinguishing among them. 
Well over 50 freestanding and embedded validity tests have 
been developed (see Sweet, 2009, pp. 585–608). Considera-
tion of validity test scores as part of the forensic determina-
tion of malingering appears in criteria B1, B2, and C5 in 
the 1999 and 2012 malingering determination algorithms 
(Slick & Sherman, 2012; Slick et al., 1999), and in criteria 
B1b, B1c, B2b, B3b, B4b, and B4c in the 2020 algorithm 
(Sherman et al., 2020). One survey found that 92% of neu-
ropsychologists report “often” or “always” using validity 
tests (Martin et al., 2015), and another found that 74% of 
neuropsychologists believe they are “often” or “always” able 
to recognize malingering (Aita et al., 2020). Among forensic 
neuropsychologists, 99% consider use of validity tests man-
datory (Martin et al., 2015, p. 748).

In recent years, use of validity tests has expanded beyond 
forensic settings. Professional bodies such as the National 
Academy of Neuropsychology (NAN) and the American 
Academy of Clinical Neuropsychology (AACN) call for 
the use of validity tests in all assessment settings. NAN, 
for example, advises that “adequate assessment of response 
validity is essential in order to maximize confidence both 
in the results of ability measures and in the diagnoses and 
recommendations that are based on the results” (Bush et al., 
2005, p. 425). Similarly, in its Consensus Conference State-
ments, AACN recommends the use of validity measures in 
all evaluations (Heilbronner et al., 2009, p. 1121; Sweet et al., 
2021, p. 1066). Finally, while not specifically recommending 
use of PVTs, the American Medical Association’s (AMA) 
Guides to the Evaluation of Permanent Impairment advise 
examiners to always be aware of the possibility of malin-
gering when evaluating impairments secondary to mental or 
behavioral disorders (Rondinelli et al., 2008, p. 353).

Throughout both parts of the review, the following nam-
ing conventions are used. The presence of malingering is 
denoted M+ , and the absence of malingering is denoted M− . 
A positive finding on a PVT indicative of M+ is denoted 
PVT+ , while a negative finding on a PVT indicative of M− 
is denoted PVT− . Note that in prior writing (e.g., Chafetz, 
2011; Larrabee, 2008) the wording “failure on” or “failing” 
a PVT is sometimes used to denote a positive finding on a 
PVT (PVT

+) . “Passing a PVT” is sometimes used to denote 
a negative finding on a PVT (PVT

−) indicative of credible 
responding (M−) . In keeping with the terminology from the 
medical diagnostics literature that a positive result on a test 
indicates presence of the attribute tested, this paper will use 
the term “positive finding on a PVT” ( PVT+ ) to indicate 
“failing” a PVT. “Negative finding on a PVT” ( PVT− ), will 
indicate “passing” the PVT.

Note that these dichotomizations are almost certainly an 
oversimplification of a range of underlying presentations 

Footnote 1 (continued)
neurocognitive abilities and related conditions. Such actual or poten-
tial legal questions arise most frequently in medicolegal settings, but 
may arise also in clinical contexts (cf. Sherman et  al., 2020, p. 9; 
Sweet et al., 2021, p. 1059).
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among forensic neuropsychological examinees. At one end 
of the continuum, for example, an examinee with a mild 
traumatic brain injury (mTBI) who is a college athlete 
might deny symptoms of neurocognitive dysfunction to 
avoid putting their position on the team in jeopardy. Next 
on the continuum might be a completely honestly respond-
ing examinee. Next, an examinee who is troubled by mild 
neurocognitive symptoms following mTBI but somewhat 
embellishes these symptoms to ensure concerning symptoms 
are not missed. Next on the continuum might be an examinee 
who grossly exaggerates mild neurocognitive symptoms, and 
at the other extreme of the continuum, an examinee with no 
or minimal symptoms who purposefully malingers severe 
dysfunction.

These naming conventions also raise the conceptual ques-
tion of whether a finding of PVT− implies M− , or merely that 
no conclusion can be drawn regarding an examinee’s malin-
gering status (see Chafetz et al., 2020 for related discussion). 
Because computation of classification accuracy statistics 
widely used in the biomedical diagnostics and malinger-
ing literatures, such as sensitivity and specificity, require 
that tests either rule in or rule out conditions, the working 
assumption in this paper is that PVT− implies M− and PVT+ 
implies M+ . Note that this does not imply that a PVT is 
required to rule in malingering with as much specificity as 
it possesses sensitivity to rule it out. Because of the inverse 
relationship between sensitivity and specificity, validity tests 
are designed to favor specificity over sensitivity (see e.g., 
Sweet et al., 2021, p. 1089). Parenthetically noted, only the 
best tests, those that are considered reference standards or 
gold standards, achieve both near perfect (reference stand-
ard) or perfect (gold standard) sensitivity and specificity. 
Note also that a determination of M− does not necessarily 
mean an examinee is responding truthfully, it merely means 
the respondent is not determined to be malingering.

Analytic Strategy for this Review

In Part I, three statistical issues relevant to the prediction 
of malingering based on knowledge of PVTs are explored, 
including (a) the need for full confusion2 table statistics and 
confidence intervals when reporting malingering classifica-
tion accuracy statistics, (b) the quantification of information 
overlap among PVTs in determining malingering status based 
on scores from two or more PVTs, and (c) the expectations 
for classification accuracy of PVT aspects of malingering 

determination algorithms (Larrabee et al., 2007; Sherman 
et al., 2020; Slick & Sherman, 2012; Slick et al., 1999).

While this discussion is mostly theoretical and concep-
tual, specific examples from PVT validation studies are inter-
spersed throughout. These studies were selected in two ways.

1. An exhaustive list of 603 validation studies from the first 20 
or more years of validation literature on the TOMM was exam-
ined (see Part II of this review, Table 1 for complete list). Studies 
on the TOMM were chosen to exemplify statistical and research 
methodological issues in the malingering literature because the 
TOMM is by far the most commonly used PVT at 78% reported 
use among neuropsychologists (Martin et al., 2015, p. 762). The 
TOMM is also recognized as having a “…large and diverse 
research base…” (Martin et al., 2020, p. 88). Additionally, a 
reasonably up-to-date exhaustive list of TOMM validation stud-
ies was available (Martin, et al., 2020). Martin et al. developed 
this list after reducing an initial set of 539 potentially applicable 
TOMM studies following a well-defined and well-documented 
selection process (Martin et al., 2020, pp. 90–94). Studies were 
published between 1997 and mid-2019. No attempt was made 
to identify TOMM studies published after that cutoff to allow 
optimal comparability with the findings of Martin et al. (2020), 
because the intent of this review was to use TOMM studies to 
exemplify statistical and research methodological concepts and 
not to present a meta-analysis on the TOMM. There are also 
two studies among the original list that are not discussed in this 
review, and one study not in the original list that is discussed. 
Instead of Ashendorf et al. (2003), Ashendorf et al. (2004) was 
included because the former study does not present TOMM 
results while the latter does. It was therefore assumed Ashendorf 
et al. (2003) had been mistakenly cited in Martin et al. (2020). 
Another study was excluded because, upon examination, data 
related to TOMM validation referenced in Martin et al. (2020, 
p. 99) could not be found (Greiffenstein et al., 2008).

2. To cross-check exemplification of statistical and meth-
odological issues from TOMM studies, non-systematically 
selected validation studies on other PVTs were also exam-
ined. While the selection of these studies was not methodi-
cal, special care was taken to include studies on the Word 
Memory Test (WMT) and MSVT, because at 59% and 28% 
respectively, neuropsychologists report using these PVTs sec-
ond and third most frequently (Martin et al., 2015, p. 762).

Specific statistical criteria for considering validity test 
scores in the determination of malingering appear in the 
1999 malingering determination algorithm (Slick et al., 1999) 
only for Criterion B1, where forced-choice PVTs are taken 

2 A “confusion table” or “confusion matrix” is a 2 × 2 diagnostic 
classification table (see Figs. 1 and 2). It is a special case of the 2 × 2 
contingency table often used in psychological research to show the 
association of two binary variables.

3 In Martin et al. (2020, pp. 99–100; Table 5), 53 TOMM studies are 
listed with an additional two studies listed on p. 112 for a total of 55 
studies. However, there is inconsistency in how studies from articles 
that report multiple studies are listed in Martin et al. (2020). For con-
sistency, in Parts I and II of the present review, each separate study, 
whether reported in a publication with other studies or by itself, is 
counted separately.
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to be indicative of malingering only if performance is below 
chance at p < 0.05. In a 2012 update (Slick & Sherman, 2012), 
a statistical requirement was added to Criterion B2 (p. 123) 
that when determining malingering from knowledge of one 
or more PVTs, the combined posterior probability that an 
examinee’s performance was significantly below actual abil-
ity level, when considering all PVT scores together, would 
have to be “high ( ≥ 0.95)”. However, this update appears not 
to have been widely adopted. For the 2020 update (Sherman 
et al., 2020), statistical requirements were changed again to 
specify that PVTs considered alone or in combination must 
now have a low false positive rate ( ≤ 10%), which equates to a 
specificity of > .9 . The 2020 criteria no longer include a spe-
cific posterior probability threshold, though the assumption 
appears to be that the required specificity of > .9 will yield a 
posterior probability of no less than 51% (p. 14). Additionally, 
all algorithms (Sherman et al., 2020; Slick & Sherman, 2012; 
Slick et al., 1999) agree in requiring two or more PVTs to have 
indicated PVT+ to meet PVT related malingering criteria. All 
three versions also allow for the exception that PVT related 
malingering criteria can be met if one forced-choice PVT, 
such as the Portland Digit Recognition Test (PDRT; Binder, 
1993; Binder & Willis, 1991), TOMM, MSVT, or WMT (P. 
W. Green et al., 1996; P. W. Green, 2003), is in the signifi-
cantly below-chance range. However, while earlier versions 
of the algorithm (Slick & Sherman, 2012; Slick et al., 1999) 
stipulate a minimum significance level of p ≤ .05 for forced-
choice PVTs, the required significance level has been dropped 
in the most recent version (Sherman et al., 2020), in favor of 
“…empirically derived cutoffs…” (p. 11). In practice, this 
means that scores on forced choice PVTs are now meeting 
PVT criteria for M+ at a much relaxed “significance” level of 
p ≤ .20, one-sided (Binder et al., 2014).

Statistical Issue A: Need for Full Confusion 
Table Statistics and Confidence Intervals

A recent article (Lange & Lippa, 2017) called on neuropsy-
chologists to never interpret sensitivity and specificity “… 
in isolation without consideration of other clinical utility 
measures,” such as positive predictive power.4 However, in 
the malingering literature, the awareness of the need to present 

the full set of confusion table classification accuracy statistics, 
also known as “test operating characteristics,” is sporadic. 
The 2020 malingering determination algorithm (Sherman 
et al., 2020) appears to assume a “… low false positive rate 
(i.e., 0.10)…” (p. 6; equating to a specificity > 0.9) will result 
in a positive predictive power of at least 0.51 (p. 14). The 
algorithm also specifically eschews requiring specific cutoffs 
for classification accuracy statistics other than false positives 
because “… realistically, most clinicians do not have easy 
access to … sophisticated classification accuracy statistics…” 
(pp. 14–15).

However, while sensitivity and specificity are important 
qualities of a diagnostic test and are thus of considerable 
interest to an examiner selecting PVTs to aid in the pre-
diction of malingering status, the posterior probability or 
the positive predictive power is the statistic that informs 
the examiner of the probability that a given examinee has 
been correctly determined to be M+ given a finding of PVT+ 
(Fletcher et al., 2014, pp. 117–118). This is true regardless 
of whether the determination of malingering status is based 
on just one PVT or on a group of PVTs considered together.

To examine this further, consider Figs. 1 and 2, which 
depict hypothetical confusion tables on the prediction of 
malingering status in a group of 100 neuropsychological 
examinees using a PVT or combination of PVTs with a sen-
sitivity of 0.5 and a specificity of 0.9. Figure 1 assumes a 
base rate of malingering of 0.4, which is commonly reported 
in forensic settings (Larrabee, 2003, 2008; Larrabee et al., 
2009; Sherman et al., 2020).5 Figure 2  assumes a base rate 
of malingering of 0.1, the base rate of malingering consid-
ered common in clinical settings (Mittenberg et al., 2002).

Figures 1 and 2 illustrate many important classification 
accuracy statistics that can be calculated in a confusion 
table. Table calculations based on column values are identi-
cal across Figs. 1 and 2, while those calculated based on row 
values differ. Important column-based calculations include 
sensitivity, specificity, the likelihood ratio for positive 
results, the likelihood ratio for negative results, and diag-
nostic odds ratio (OR) (Glas et al., 2003). These calculations 
can be considered attributes of the predictor or predictors, 
in this case, of the PVT or of the PVT-based malingering 
determination algorithm. The most important row value is 
the positive predictive power, also known as posterior prob-
ability. This represents the likelihood that an examinee with 
a finding of PVT+ is actually M+.

4 The terms “positive predictive power” and “posterior probability” 
are sometimes considered conceptually distinct in that positive pre-
dictive power is an operating characteristic of a test in a given setting, 
computed as the ratio of true positive cases over the total number of 
all examinees with a positive diagnostic finding. In comparison, pos-
terior probability is the probability a given examinee with a positive 
test result is actually a true positive case (cf. Fletcher et al., 2014, p. 
118). Despite this conceptual distinction, the computation of both 
classification accuracy statistics is identical. In this article, these 
terms will be used in keeping with their conceptual distinction.

5 Knowledge of the base rate of a condition is required for the calcula-
tion of classification accuracy statistics. Statistical modelling and anal-
yses of hypothetical simulation data in this review will be based on 
commonly accepted estimates of base rates from the malingering liter-
ature. Examination of whether these estimates are tenable considering 
the findings of the present review is beyond the scope of this review.



585Neuropsychology Review (2023) 33:581–603 

1 3

Fig. 1  Hypothetical confusion 
table for predicting malingering 
(M) from knowledge of a single 
performance validity test (PVT) 
or PVT algorithm with sensitiv-
ity = .5, specificity = .9, base 
rate of M +  = .4, and N = 100

M Status

M+ (n=40) M- (n=60)

Status on 

PVT or 

PVT

Algorithm

PVT+

(n=26)

a

true +  (n=20)

b

false + (n=6)

Positive 

predictive power 

(PPP)  

a/(a+b)

20/26 = .77

False discovery

rate

b/(a+b)

rate 6/26 = .23

PVT-

(n=74)

c

false - (n=20)

d

true - (n=54)

False omission 

rate 

c/(c+d)

20/74 = .27

Negative 

predictive power 

(NPP)

d/(c+d)

54/74 = .73

true + rate 

(TPR) 

(sensitivity) 

a/(a+c)

20/40=.5

false + rate 

(FPR)

b/(b+d)

6/60=.1

Likelihood ratio 

for positive 

results (LRP)

TPR/FPR

.5/.1 = 5 

false - rate 

(FNR)

c/(a+c)

20/40=.5

true - rate 

(TNR) 

(specificity) 

d/(b+d)

54/60=.9

Likelihood ratio 

for negative 

results (LRN)

FNR/TNR

.5/.9 = .56

Diagnostic Odds Ratio (DOR)

LRP / LRN

5/.56 = 9

Note. “Confusion Table” = 2 x 2 contingency table to evaluate the accuracy of diagnostic 
classifications; M = Malingering; + = positive for; - = negative for; PVT = Performance Validity 

Test; PPP is also known as posterior probability.

Fig. 2  Hypothetical confusion 
table for predicting malingering 
(M) from knowledge of a single 
performance validity test (PVT) 
or PVT algorithm with sensitiv-
ity = .5, specificity = .9, base 
rate of M +  = .1, and N = 100

M Status

M+ (n=10) M- (n =90)

Status on 

PVT or 

PVT

Algorithm

PVT+

(n=14)

a

true +  (n =5)

b

false + (n =9)

Positive 

predictive power 

(PPP)

a/(a+b)

5/14=.36

False discovery 

rate

b/(a+b)

rate 9/14=.64

PVT-

(n=86)

c

false - (n 5)

d

true - (n=81)

False omission 

rate         

c/(c+d)

5/86=.06

Negative 

predictive power 

(NPP)

d/(c+d)

81/86=.94

true + rate 

(TPR) 

(sensitivity)

a/(a+c)

5/10=.5

false + rate 

(FPR)

b/(b+d)

9/90=.1

likelihood ratio 

for positive 

results (LRP)

TPR/FPR

.5/.1 = 5 

false - rate 

(FNR) 

c/(a+c)

5/10=.5

true - rate 

(TNR) 

(specificity)

d/(b+d)

81/90=.9

likelihood ratio 

for negative 

results (LRN)

FNR/TNR

.5/.9 = .56

Diagnostic Odds Ratio (DOR)

LRP / LRN

5/.56 = 9

Note. “Confusion Table” = 2 x 2 contingency table to evaluate the accuracy of diagnostic 

classifications; M = Malingering; + = positive for; - = negative for; PVT = Performance Validity 

Test; PPP is also known as posterior probability.
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For a forensic neuropsychologist determining the malin-
gering status of a particular examinee, the key statistic is 
arguably the posterior probability, also known as the posi-
tive predictive power, because it estimates the accuracy 
of the malingering determination in a particular examinee 
given a finding of PVT+ (Fletcher et al., 2014, p. 118; Glas 
et al., 2003). It is beyond the scope of this paper to discuss 
whether it is acceptable to require a determination algorithm 
to have a positive predictive power of only 0.51 (cf. Sherman 
et al., 2020, p. 14), or in other words, to knowingly adopt a 
malingering determination algorithm that falsely labels 49% 
of PVT+ examinees as M+ , a finding which may have seri-
ous negative consequences for the examinee. But, as Fig. 2 
shows, if the only classification accuracy requirement is a 
specificity of 0.9, in clinical settings this leads to an expected 
positive predictive power of just 0.36. In other words, in clini-
cal settings, the 2020 algorithm (Sherman et al., 2020) would 
accept a false discovery rate which falsely determines 64% 
of PVT+ examinees to be M+ . Note that, because the 2020 
algorithm (Sherman et al., 2020) does not specify a sensitiv-
ity requirement, the actual positive predictive power could be 
even lower. For example, based on the average sensitivity of 
0.15 from simultaneous consideration of three PVTs reported 
by Chafetz (2011, p. 1247; Table 3), and the specificity of 
0.9 required by the 2020 algorithm, in a clinical setting (base 
rate = 0.1), 86% of PVT+ examinees would be falsely deter-
mined to be M+ (positive predictive power = 0.14), while in 
a forensic setting (base rate = 0.4) a false determination of 
M+ would be expected in 50% of PVT+ examinees (positive 
predictive power = 0.50).

Therefore, algorithms for determining malingering (e.g., 
Larrabee et al., 2007; Sherman et al., 2020; Slick et al., 1999) 
may have unacceptably low positive predictive power when 
positive predictive power requirements are not specified, par-
ticularly in settings with a low base rate. This may occur despite 
the specific recommendation by NAN (Bush et al., 2005, p. 
423) and AACN (Heilbronner et al., 2009, p. 1121; Sweet et al., 
2021, p. 1076) to use PVTs to detect malingering in all settings, 
including clinical settings where the base rate of M+ is low.

Another important statistic calculated from confusion 
tables is the diagnostic OR. It is obtained by dividing the 
likelihood ratio for positive results by likelihood ratio for 
negative results (Glas et al., 2003). A diagnostic determina-
tion algorithm or test with a diagnostic OR of 1 is “unin-
formative” and does not improve prediction over baseline 
estimation. If the diagnostic OR < 1, a positive diagnostic 
determination based on the algorithm or test lowers the odds 
of being positive for the condition compared the baseline 
estimation. A diagnostic OR > 1 means the determination 
algorithm or test is informative and improves prediction over 
the baseline estimation, whereby the odds of being positive 
for the condition increase if there is a positive finding on the 
test or testing algorithm. The diagnostic OR is also valuable 

for comparing two diagnostic determination algorithms 
against each other (Bossuyt et al., 2013, p. 11). Reporting 
the diagnostic OR is preferred over the use of the likeli-
hood ratio for positive results (Glas et al., 2003; cf. Grimes 
& Schulz, 2005), because the likelihood ratio for positive 
results describes only the classification ability of positive 
results, and behaves erratically as specificity approaches 1. 
Because classification algorithms based on continuous data 
can always be made to have a specificity near 1 if cutoffs are 
set so that most cases are classified negative, the likelihood 
ratio for positive results can thus be seemingly impressively 
large even for poor classification algorithms if few cases are 
classified positive. The diagnostic OR, on the other hand, 
describes classification accuracy based on both positive and 
negative results. When there are empty cells in the confusion 
table that would make the diagnostic OR undefined due to 
division by zero, the value 0.5 is added to each cell count to 
estimate the diagnostic OR (Glas et al., 2003).

Classification accuracy statistics, like all statistics, 
are estimates of population parameters calculated from 
sample data. As such, they should be reported with 95% 
confidence intervals. (cf. Fischer et al., 2003; Glas et al., 
2003). Sensitivity, specificity, the likelihood ratio for posi-
tive results, the likelihood ratio for negative results, and 
the positive predictive power are proportions (p), thus their 
95% confidence interval can be calculated with the formula 
p ± 1.96

√

p(1 − p)∕N (Fletcher et al., 2014, p. 117; online 
calculators available, e.g., The Chinese University of Hong 
Kong, n.d.). The 95% confidence interval for the diagnostic 
OR is calculated with a more complex logarithmic formula 
(cf. Lawson, 2004), but can be readily obtained with free 
calculators online (e.g., Sci Stat, n.d.).

Among the more than 100 PVT validation studies exam-
ined for this review, not one study reported confidence inter-
vals for classification accuracy estimates. To compute how 
large these unreported intervals would have been, sample 
calculations were made using hypothetical scenarios with 
the median PVT validation study sample size ( N = 44 ) from 
Martin et al. (2020, Table 5). Assuming the typically reported 
specificity for PVTs of 0.9 (Sherman et al., 2020) for predict-
ing malingering status from knowledge of PVT scores, the 
95% confidence interval for specificity would be .9 ± .09 , 
placing the lower bound below the 0.9 requirement from the 
2020 malingering determination algorithm (Sherman et al., 
2020). Confidence intervals for typically reported sensitivi-
ties are larger. Again assuming the typically reported sensi-
tivity for PVTs of 0.5 (Sherman et al., 2020), the 95% confi-
dence interval for sensitivity at N = 44 would be .5 ± .15 . For 
PVT validation studies with small sample sizes, for example 
those with N = 10 (Rees et al., 1998; Shandera et al., 2010), 
the 95% confidence intervals would be .9 ± .19 for specificity 
and .5 ± .31 for sensitivity, again assuming typically reported 
specificities and sensitivities.
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The importance of reporting 95% confidence intervals 
is also evident when considering the posterior probability, 
or positive predictive power, which is the likelihood that an 
examinee with a finding of PVT+ is indeed malingering. As 
can be seen in Fig. 1, in a forensic setting with a base rate 
of M+ = .4 , the point estimation of posterior probability is 
0.77 given a finding of PVT+ . Figure 2 shows that, in a clini-
cal setting with a base rate of M+ = .1 , the point estimation 
of posterior probability is 0.36 given a finding of PVT+ . 
Figure 3 shows the lower bound of the 95% confidence inter-
val around these posterior probabilities in relation to study 
sample sizes.

As Fig. 3 shows, when the lower bound of 95% confi-
dence intervals are calculated for PVT validation studies 
with small sample sizes, such as those with N = 10 (cf. Rees 
et al., 1998; Shandera et al., 2010), the posterior probabil-
ity in clinical settings drops below zero, which means it is 
possible that examinees who score PVT+ are actually less 
likely to be M+ than those who score PVT− . Also, regard-
less of sample size, the lower bound of the 95% percent 
confidence interval in clinical settings can never reach 0.51 
(cf. Sherman et al., 2020, p. 14), where an examinee who 
scores PVT+ would more likely than not be M+ . Assum-
ing the mean sample size of all TOMM validation studies 
(N = 44; see above for derivation), when using the TOMM 
in forensic settings with the higher assumed base rate of 
M+ = .4 , the lower bound of the 95% confidence interval 
for the posterior probability given a finding of PVT+ is 
about 0.53, assuming the test has a sensitivity of 0.5 and a 
specificity of 0.9. This means that, based on the findings of 

one of these studies with sample size N = 44, it is possible 
with p > 0.05 that such a PVT mistakenly classifies 47% of 
forensic examinees as M+ when they are in fact M−.

Calculation of the variability of classification accu-
racy statistics is also the basis for testing the statistical 
significance of the difference in determinative accuracy 
between different PVTs or between different malingering 
determination algorithms. Methods and formulas for doing 
so are readily available from statistical texts (e.g., Zhou 
et al., 2011, pp. 165–192). Here as well, none of the PVT 
validation studies examined for this article report statisti-
cal significance testing when comparing the determinative 
accuracy of PVT tests or variants of malingering determi-
nation algorithms.

In summary, when evaluating malingering determina-
tion algorithms and when publishing related test validation 
studies, presenting the full set of confusion table statistics 
is recommended. Furthermore, 95% confidence intervals 
should be reported with all classification accuracy estima-
tions, and suspected differences in classification accuracy 
between PVTs or diagnostic determination algorithms 
should be tested for statistical significance. Doing so will 
present a complete picture of the ability of any given algo-
rithm to aid in the determination of malingering, and will 
avoid giving the false impression that the accuracy of a 
malingering determination can be estimated with pin-point 
precision. Importantly, reporting this information will also 
allow practicing neuropsychologists to accurately estimate 
confidence limits of the posterior probability of malingering 
in any given forensic examinee.

Fig. 3  Relationship of study N to 
the lower bound of the 95% con-
fidence interval of the posterior 
probability of malingering ( M+ ) 
based on a single performance 
validity test (PVT) with sensitiv-
ity = .5 and specificity = .9 in 
forensic settings (base rate of 
M+ = .4 ) and in clinical settings 
(base rate of M+ = .1)
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Statistical Issue B: Estimating (Multi)
collinearity Among PVTs in Determining 
Malingering Status Based on Scores 
from Two or More PVTs

To identify malingering, all algorithms require simultane-
ous positive findings from two or more validity tests, except 
if an examinee performs below chance on one forced-choice 
PVT (Larrabee et al., 2007; Sherman et al., 2020; Slick & 
Sherman, 2012; Slick et al., 1999). There has been discus-
sion about the degree to which correlation among PVTs 
inflates the overall rate of false positives in the examina-
tion, limiting the incremental value of findings from addi-
tional PVTs beyond the first (e.g., Berthelson et al., 2013; 
Larrabee, 2014; Larrabee et al., 2019). Concerns about 
increased false-positives in evaluations due to overlapping 
information obtained from multiple PVTs are also reflected 
in the 2020 guidelines (Sherman et al., 2020), in which 
Criterion B1c requires “… taking into account the ratio of 
failed PVT scores to total number of PVTs administered” 
and also calls for “minimizing PVT redundancy” (p. 6). 
This is further quantified in the text that accompanies the 
guidelines, where the lower limit of the acceptable ratio of 
positive PVTs to PVTs administered is two PVTs with a 
positive finding to every seven PVTs administered (p. 14).

This concern about redundancy among PVTs as pre-
dictors of malingering resembles techniques used to iden-
tify multicollinearity and singularity among predictors in 
logistic regression (cf. Midi et al., 2010), linear regression 
(cf. Tabachnick et al., 2019, pp. 76–78), and in Bayesian 
regression (cf. Bayman & Dexter, 2021). Primarily, when 
predictors provide highly overlapping information across all 
these statistical prediction techniques, collinear predictors 
are either combined or eliminated, as neither frequentist nor 
Bayesian prediction can extract additional valuable informa-
tion from redundant predictors.

Prior research on collinearity and the degree of informa-
tion overlap among PVTs has shown mixed findings. High 
Pearson product-moment correlations have been reported 
among certain PVTs, especially if the PVTs are scored from 
the same items. For example, Digit Span scaled score and the 
RDS score have been found to correlate between r = .83 and 
r = .92 (Babikian et al., 2006, p. 152). However, average corre-
lations of r = .70 were found even among seemingly unrelated 
validity tests (Bashem et al., 2014, p. 856), such as between 
TOMM Trial 2 and three other PVTs including Word Choice 
Test (WCT; Pearson, 2009), immediate recall on the Medical 
Symptom Validity Test, (MSVT; Green, 2004), and forced-
choice hits in California Verbal Learning Test II (CVLT-II; 
Delis et al., 2000; Schwartz et al., 2016). In contrast, a recent 
study found that the average bivariate correlations among 
several PVTs was r = .26 (Larrabee et al., 2019), and a meta-
analysis found that the average bivariate correlation among 

a group of approximately 30 PVTs was r = .31 (Berthelson 
et al., 2013). Other authors (e.g., Chafetz, 2011; Larrabee, 
2008; Meyers et al., 2014) have asserted that PVTs, includ-
ing TOMM, MSVT, RDS, and Meyers MMPI-2 Index should 
be considered independent predictors of malingering status, 
which would mean that their true correlation is not signifi-
cantly different from r = 0 (cf. Baak et al., 2020, p. 2; Pepe, 
2004, p. 197; Tabachnick et al., 2019, p. 7).

These contradictory findings are explored in the present 
review in three ways. First, related conceptual statistical 
issues are discussed. Second, a statistical simulation is con-
ducted to see if test operating characteristics of typical PVTs 
allow for statistical independence. Third, data from previ-
ously published PVT validation studies are reanalyzed to 
explore the statistical independence of commonly used PVTs.

Conceptual and Statistical Issues Related 
to Independence of PVTs as Predictors 
of Malingering

When determining the degree of dependence or independence 
of PVTs in predicting malingering status, it is first necessary 
to define the universe of cases ( U ) where this information 
overlap is to be examined. In the malingering literature, the 
question of whether two or more PVTs contribute independent 
information to the prediction of malingering status is often 
examined by calculating Pearson product-moment correla-
tions among pairs of PVTs in only the M+ group, in only the 
M− group, or in the M+ group and the M− group separately. 
For example, Larrabee (2008, p. 648, Table 5) calculated cor-
relations among PVTs separately for the M+ and M− groups 
(the latter was labelled “TBI” in the original work), and 
Chafetz (2011, p. 1246, Table 2) and Jones (2013, p. 1050, 
Table 1) reported PVT associations for the M+ group only. 
Such conditional independence calculations, however, fail 
to provide information about the independence of PVTs as 
predictors of malingering in the relevant U of cases, which 
includes all examinees irrespective of malingering status. To 
estimate this dependence or independence, the entire U of M+ 
and M− cases must be considered simultaneously.

To examine this issue further, consider Table 1, which 
depicts a hypothetical situation with 10 forensic examinees 
with the commonly reported forensic setting base rate for 
M+ of 0.4. (cf. Larrabee, 2003, 2008; Larrabee et al., 2009; 
Sherman et al., 2020). There are also two hypothetical PVTs 
( PVT1 and PVT2) that predict malingering status perfectly if 
a cutoff for M+ of PVT ≥ 10 is used for both PVT1 and PVT2 . 
The calculated Pearson r value for pairs of PVT1 and PVT2 
scores only among M− examinees is r = 0.00.6 For PVT1 and 
PVT2 pairs only among M+ examinees the Pearson r value is 

6 This quantity may also be referred to as the conditional correlation 
of PVT1 and PVT2 conditioned on M−.
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also r = 0.00,7 which seemingly indicates that PVT1 is inde-
pendent of PVT2 as a predictor of M status in a U consist-
ing of both M+ and M− examinees. However, if the entire 
U of examinees is considered together when calculating the 
Pearson r value, the correlation of those same pairs of PVT1 
and PVT2 scores is r = 0.99.8 This finding demonstrates 
that PVT1 and PVT2 are completely collinear and thus fully 
redundant predictors of malingering status in U, which is 
the exact opposite of independent predictors. In other words, 
PVT2 adds no information not already available from PVT1 
when predicting malingering status in U. This finding also 
proves that conditional correlations of PVT1 and PVT2 are not 
informative as to whether PVT1 and PVT2 provide additional 
valuable information in the prediction of malingering status.

While Table 1 depicts a hypothetical situation, it does 
demonstrate that evaluating the conditional independence 
of pairs of PVTs in homogeneous malingering-status groups 
is not a valid method to examine collinearity or information 
overlap among PVTs as predictors of malingering status.

In light of this finding, studies that contributed bivariate 
PVT correlations to the prior meta-analysis on this topic 
were reexamined for malingering status (Berthelson et al., 
2013). As stated by Berthelson et al. (2013, p. 910), all 
selected studies included only M− cases, namely “… par-
ticipants that were not seeking compensation or involved 
in litigation.” All correlations were calculated using data 
from homogeneous groups of non-forensic research volun-
teers. The inclusion of only M− cases puts the credibility of 
the average correlation of r = 0.31 as a valid estimation of 

information overlap, as well as the independence of validity 
tests as predictors of malingering status in a U consisting of 
both M+ and M− cases, into serious question.

Following the publication of the meta-analysis (Berthel-
son et al., 2013), another study has examined information 
overlap among a set of 12 validity tests in a mixed malinger-
ing-status sample (Meyers et al., 2014). The reported finding 
was that these 12 validity tests are independent predictors of 
malingering status. In this study, Pearson product-moment 
correlations among PVTs reportedly “… ranged from -. 041 
… to 0.478…,” and the “average of the correlations” was 
reported as r = 0.123 (p. 228). These correlation coefficients 
are characterized by the authors as “… not found to be statis-
tically significantly different from zero,” despite the reported 
r = 0.478 at the stated sample size of N = 255 being statis-
tically significant at p < 0.00001, and r = 0.123 at N = 255 
being significant at p < 0.05. A subsequent reanalysis of these 
data revised the average Pearson product-moment correlation 
to r = 0.26, with a range of r =  − 0.077 to r = 0.615 (Larrabee 
et al., 2019).

But even if research on PVT information overlap employs 
a mixed malingering status sample, is the Pearson product-
moment correlation coefficient a conceptually appropriate 
statistic to examine degree of independence among PVTs in 
predicting malingering status? This measure of correlation 
is appropriate when there are two continuous variables that 
meet several assumptions. Specifically, each variable has to 
be normally distributed, the relationship among variables has 
to be linear, and residual values from predicting one vari-
able from knowledge of the other variable have to be equally 
distributed across the measurement range (Baak et al., 2020, 
p. 3; Tabachnick et al., 2019, pp. 67–76). However, PVTs 
invariably violate these assumptions. The normality assump-
tion is violated because PVTs are typically severely skewed 
due to a ceiling effect, whereby participants who fall on the 
PVT− side of the range often have near identical scores at 
one extreme of the scale. A typical example comes from 
one TOMM validation study, which found about 89% of 
M− examinees obtained the maximum score of 50 on Trial 
2 (Erdodi & Rai, 2017). Statistical evidence for skewness 
among PVTs in mixed malingering status samples has also 
been found, with one study reporting an average absolute 
skewness of 1.00 among 16 PVTs (Larrabee et al., 2019).9 

Table 1  List of 10 hypothetical forensic examinees with known 
malingering status predicted from two validity measures

M malingering, PVT performance validity test, PVT1 first perfor-
mance validity test, PVT2 second performance validity test, M− nega-
tive for M, M+ positive for M

Examinee no M status PVT1 score PVT2 score

1 M− 1 0
2 M− 1 1
3 M− 1 0
4 M− 0 0
5 M− 0 0
6 M− 0 1
7 M+ 11 10
8 M+ 11 11
9 M+ 10 10
10 M+ 10 11

7 This quantity may also be referred to as the conditional correlation 
of PVT1 and PVT2 , conditioned on M+.
8 This quantity may also be referred to as the unconditional correla-
tion of PVT1 and PVT2 , that is, the correlation is not conditioned on 
malingering status.

9 In the original work (Larrabee et  al., 2019, Table  4, page 1362) 
average absolute skew among 11 validity tests is reported as − .942. 
This value is arithmetically impossible because the average of abso-
lute values cannot be a negative quantity. Also, while said Table  4 
reports skew for 16 validity tests, said average skew computation is 
based on a subset of only 11 validity tests with no rationale given for 
exclusion of the other 5 validity tests. Therefore, in the present analy-
sis, the average skew from all 16 validity tests was recalculated based 
on all 16 skew values as reported in the original work. This is the 
value given in the text above (average absolute skew = 1.00).
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Given the sample size of N = 255 in this study, the critical 
value for skewness that corresponds to z = 1.96 is an absolute 
skewness of > 0.294 at α < 0.05 (see Tabachnick et al., 2019, 
p. 69 for computational method). Using this critical value, 15 
of the 16 PVTs examined in the study exhibited significant 
skewness (Larrabee et al., 2019). For example, skewness for 
the Immediate Recognition trial in Word Memory Test was 
z = 6.27, and was z = 4.98 for Meyer’s Index. With skewness 
of this magnitude, assumptions of linearity in the relationship 
among validity tests and of equal distribution of residuals 
are also untenable. This means that even if the association 
between pairs of PVTs is examined in a mixed-malingering 
status sample, the Pearson product-moment correlation coef-
ficient would not be an appropriate measure of correlation.

A further conceptual consideration is that validity tests 
are always treated as binomial predictors in the prediction of 
malingering status, with outcomes dichotomized using a cut-
off score. Therefore, the ability of validity tests to contribute 
independent information to the prediction of malingering 
status should be examined after dichotomization using sta-
tistics appropriate for binominal data.

The χ2 statistic is the most widely accepted inferential test 
of independence between two categorical variables (cf. Baak 
et al., 2020, p. 4) and is particularly appropriate for examin-
ing the independence of diagnostic tests (Collins & Huynh, 
2014, p. 10). A significant χ2 value provides evidence to 
reject the null hypothesis that two nominal or two binominal 
dichotomous variables are independent.

If the null hypothesis in a χ2 test is rejected and sig-
nificant information overlap among the variables is found, 
it is desirable to quantify the degree of association between 
the variables. Unlike the Pearson product-moment corre-
lation, which quantifies the degree of association among 
two continuous variables, there is no single gold-standard 
coefficient for the degree of association among two binomi-
nal variables. The two most popular statistics available for 
this purpose are the Pearson tetrachoric correlation (rtet) 
and the phi-coefficient (cf. Ekström, 2011). Note that the 
phi-coefficient is a special case of Pearson product-moment 
correlation when r is computed for two binominal variables 
(Tabachnick et al., 2019, p. 776). Both the phi-coefficient 
and rtet value range from – 1 to + 1, with a value of 0 indicat-
ing statistical independence and − 1 or + 1 indicating perfect 
negative or positive correlation.

However, the phi-coefficient has three distinct disadvan-
tages when quantifying the association between two PVTs. 
First, it only ranges from − 1 to + 1 when cases are equally 
distributed among the categories. In other words, the possible 
maximum and minimum values for the phi-coefficient depend 
on the marginal probabilities of the 2 × 2 cross-classification  
table for the two PVTs. Theoretically, the maximum possible 
value in the range may be restricted to as low as 0.25 when 
there are many true positives, as would be expected when 

two PVTs both indicate malingering (cf. Ekström, 2011, p. 
9). Second, unlike the product-moment correlation coeffi-
cient, the value of phi is not linearly related to degree of 
association when cells are not equally populated (Davenport 
& El-Sanhurry, 1991). Finally, because of the two previous 
problems, interpreting the meaning of a phi-coefficient may 
be nonintuitive for neuropsychological examiners with exten-
sive background interpreting the Pearson product moment-
correlation coefficient.

In contrast, rtet is the measure of binominal association 
that behaves analogously to the Pearson product-moment 
correlation (cf. Baak et al., 2020; Kaltenhauser & Lee, 
1976). Therefore, rtet is the best statistic to quantify degree 
of association if a significant χ2 is found between two PVTs. 
rtet is a good estimator of correlation even when the underly-
ing variables are skewed, especially as sample sizes become 
larger (cf. Kaltenhauser & Lee, 1976, p. 310). An additional 
advantage is that rtet can be readily estimated from the OR 
(Becker & Clogg, 1988; Bonett, 2007; Digby, 1983) which, 
in turn, can be calculated not only from hypothetical simu-
lation data (see the next section), but also from the data 
reported in prior validation studies, such as those reanalyzed 
below (see Table 2). Because marginal ns are typically une-
ven in malingering studies, and hence in many simulation 
data matrices that model PVTs, the variant of the rtet for-
mula from Digby (1983) was used in this paper (see Table 2) 
because it gives a better estimate of rtet than Pearson’s origi-
nal formula when marginal ns are unequal (Bonett, 2007).

Statistical Simulation of Mathematically Possible 
Statistical Independence Among PVTs

To date, there do not appear to be studies where the inde-
pendence of validity tests has been evaluated in the manner 
proposed above. Therefore, use of these statistics was first 
explored in a statistical simulation using a hypothetical data 
set simulating 100 hypothetical forensic examinees with a 
base rate of malingering of 0.4. The simulation also includes 
two PVTs. Each predicts malingering status with sensitivity 
of 0.5 and specificity of 0.9. These PVT operating character-
istics are commonly observed for widely used PVTs in the 
prediction of malingering (cf. Sherman et al., 2020, p. 14). 
These parameters yield 60 hypothetical examinees who are 
M− and 40 who are M+ . Among the 60 M− examinees, each 
PVT gives six false positive and 54 true negative indica-
tions. Among the 40 M+ examinees, each PVT gives 20 true 
positive and 20 false negative indications. To compute the 
degree of independence between these PVTs as predictors of 
malingering, the question arises as to how many indications 
are concordant between PVT1 and PVT2 and how many are 
discordant. At the upper extreme, all 100 pairs of indica-
tions could be concordant between PVT1 and PVT2 . At the 
lower extreme, as few as 48 pairs of indications could be 



591Neuropsychology Review (2023) 33:581–603 

1 3

Ta
bl

e 
2 

 E
va

lu
at

io
n 

of
 in

fo
rm

at
io

n 
ov

er
la

p 
fro

m
 T

es
t o

f M
em

or
y 

M
al

in
ge

rin
g 

(T
O

M
M

) a
nd

 W
or

d 
M

em
or

y 
Te

st 
(W

M
T)

 st
ud

ie
s r

ep
or

tin
g 

as
so

ci
at

io
n 

be
tw

ee
n 

tw
o 

PV
Ts

 in
 a

 m
ix

ed
 m

al
in

ge
rin

g 
st

at
us

 sa
m

pl
e

PV
T 1

n(
PV

T 1
 −

 /
PV

T 2
 +

)
n(

PV
T 1

 +
 /

PV
T 2

-)
n(

PV
T 1

 −
 /

PV
T 2

 +
)

n(
PV

T 1
 −

 /
PV

T 2
-)

χ2a
N

B
as

e 
ra

te
 o

f 
 PV

T 2
 +

 
Se

ns
iti

vi
ty

 
of

  P
V

T 1
 in

 
de

te
ct

in
g 

 PV
T 2

Sp
ec

ifi
ci

ty
 

of
  P

V
T 1

 in
 

de
te

ct
in

g 
 PV

T 2

O
R

r te
t (

D
ig

by
, 

19
83

)

A
lg

eb
ra

ic
 

re
la

tio
ns

hi
ps

/
fo

rm
ul

a

a
b

c
d

Pr
ea

ch
er

 
(2

00
1)

a +
 b 

+
 c 

+
 d

(a
 +

 c)
/

(a
 +

 b 
+

 c 
+

 d)
a/

(a
 +

 c)
d/

(b
 +

 d)
(a

/b
)/(

c/
d)

(
3
√

O
R
−

1
)

/(
3
√

O
R
+

1
)

TO
M

M
 st

ud
-

ie
s

A
rm

ist
ea

d-
Je

hl
e 

an
d 

G
er

va
is

 
(2

01
1)

, 
W

M
T 

da
ta

W
M

T
24

2
90

22
9

41
.7

9*
**

34
5

.3
3

.2
1

.9
9

30
.5

3
.8

6

A
rm

ist
ea

d-
Je

hl
e 

an
d 

G
er

va
is

 
(2

01
1)

, N
V-

M
SV

T 
da

ta

N
V-

M
SV

T
24

6
50

26
5

63
.1

0*
**

34
5

.2
1

.3
2

.9
8

21
.2

0
.8

2

A
rm

ist
ea

d-
Je

hl
e 

an
d 

G
er

va
is

 
(2

01
1)

, 
M

SV
T 

da
ta

M
SV

T
24

3
45

27
3

82
.2

8*
**

34
5

.2
0

.3
5

.9
9

48
.5

3
.9

0

G
re

en
 (2

01
1)

N
V-

M
SV

T
15

1
25

20
3

68
.8

4*
**

24
4

.1
6

.3
8

1.
00

12
1.

80
.9

5
D

av
is

 e
t a

l. 
(2

01
2)

M
SV

T
19

3
12

60
33

.9
5*

**
92

.3
4

.6
1

.9
5

31
.6

7
.8

6

Er
do

di
 a

nd
 

R
ai

 (2
01

7)
, 

TB
I W

M
T 

da
ta

W
M

T
15

0
22

46
20

.1
1*

**
84

.4
5

.4
1

1.
00

64
.0

7b
.9

2

Er
do

di
 a

nd
 

R
ai

 (2
01

7)
, 

TB
I N

V-
M

SV
T 

da
ta

N
V-

M
SV

T
10

0
8

66
36

.4
9*

**
84

.2
1

.5
6

1.
00

16
4.

29
b

.9
6



592 Neuropsychology Review (2023) 33:581–603

1 3

Ta
bl

e 
2 

 (c
on

tin
ue

d) PV
T 1

n(
PV

T 1
 −

 /
PV

T 2
 +

)
n(

PV
T 1

 +
 /

PV
T 2

-)
n(

PV
T 1

 −
 /

PV
T 2

 +
)

n(
PV

T 1
 −

 /
PV

T 2
-)

χ2a
N

B
as

e 
ra

te
 o

f 
 PV

T 2
 +

 
Se

ns
iti

vi
ty

 
of

  P
V

T 1
 in

 
de

te
ct

in
g 

 PV
T 2

Sp
ec

ifi
ci

ty
 

of
  P

V
T 1

 in
 

de
te

ct
in

g 
 PV

T 2

O
R

r te
t (

D
ig

by
, 

19
83

)

A
lg

eb
ra

ic
 

re
la

tio
ns

hi
ps

/
fo

rm
ul

a

a
b

c
d

Pr
ea

ch
er

 
(2

00
1)

a +
 b 

+
 c 

+
 d

(a
 +

 c)
/

(a
 +

 b 
+

 c 
+

 d)
a/

(a
 +

 c)
d/

(b
 +

 d)
(a

/b
)/(

c/
d)

(
3
√

O
R
−

1
)

/(
3
√

O
R
+

1
)

Er
do

di
 a

nd
 

R
ai

 (2
01

7)
, 

TB
I E

I-
5 

da
ta

EI
-5

10
0

20
54

17
.3

8*
**

84
.3

6
.3

3
1.

00
55

.8
3b

.9
1

Er
do

di
 a

nd
 

R
ai

 (2
01

7)
, 

ps
yc

hi
at

ric
 

W
M

T 
da

ta

W
M

T
6

0
12

50
14

.3
7*

**
68

.2
7

.3
3

1.
00

52
.5

2b
.9

0

Er
do

di
 a

nd
 

R
ai

 (2
01

7)
, 

ps
yc

hi
at

ric
 

N
V-

M
SV

T 
da

ta

N
V-

M
SV

T
4

2
9

53
6.

55
*

68
.1

9
.3

1
.9

6
11

.7
8

.7
3

Er
do

di
 a

nd
 

R
ai

 (2
01

7)
, 

ps
yc

hi
at

ric
 

EI
-5

 d
at

a

EI
-5

4
2

9
53

6.
55

*
68

.1
9

.3
1

.9
6

11
.7

8
.7

3

G
re

iff
en

ste
in

 
et

 al
. (

20
08

), 
as

ym
m

et
ric

al
 

TO
M

M
  

sc
or

in
g 

da
ta

W
M

T
10

1
3

12
9

24
0

12
3.

00
**

*
47

3
.4

9
.4

4
.9

9
62

.6
4

.9
1

O
ud

m
an

 
et

 a
l. 

(2
02

0)
, 

VA
T-

E 
D

R

VA
T-

E 
D

R
2

0
0

18
10

.4
3*

*
20

.1
0

1.
00

1.
00

18
5b

.9
6

O
ud

m
an

 e
t a

l. 
(2

02
0)

, 
VA

T-
E 

C
I

VA
T-

E 
C

I
2

0
0

18
10

.4
3*

*
20

.1
0

1.
00

1.
00

18
5b

.9
6



593Neuropsychology Review (2023) 33:581–603 

1 3

N
or

m
al

 fo
nt

: q
ua

nt
ity

 a
s r

ep
or

te
d 

in
 p

ub
lic

at
io

n;
 b

ol
d 

fo
nt

: q
ua

nt
ity

 c
al

cu
la

te
d 

ba
se

d 
on

 a
lg

eb
ra

ic
 re

la
tio

ns
hi

ps
 o

r s
ta

tis
tic

al
 fo

rm
ul

a
TO

M
M

 T
es

t o
f 

M
em

or
y 

M
al

in
ge

rin
g 

(w
he

re
 s

tu
di

es
 r

ep
or

te
d 

cl
as

si
fic

at
io

n 
st

at
ist

ic
s 

at
 v

ar
io

us
 c

ut
off

s 
fo

r 
th

e 
TO

M
M

 d
at

a 
fo

r 
th

e 
M

+
/M

−
 c

ut
off

 n
ea

re
st 

<
 45

 w
as

 u
se

d)
, W

M
T 

W
or

d 
M

em
-

or
y 

Te
st,

 (N
V-

)M
SV

T 
(N

on
-V

er
ba

l) 
M

ed
ic

al
 S

ym
pt

om
 V

al
id

ity
 T

es
t, 

EI
-5

 E
rd

od
i-5

 In
de

x,
 V

AT
-E

 D
R/

C
I V

is
ua

l A
ss

oc
ia

tio
n 

Te
st-

Ex
te

nd
ed

 D
el

ay
ed

 R
ec

og
ni

tio
n/

C
on

si
ste

nc
y 

In
de

x,
 F

C
  F

or
ce

d 
C

ho
ic

e,
 D

L 
 D

ic
ho

tic
 L

ist
en

in
g,

 S
R 

 S
en

te
nc

e 
Re

pe
tit

io
n,

 J
L 

 Ju
dg

m
en

t o
f L

in
e 

O
rie

nt
at

io
n,

 T
T 

 T
ok

en
 T

es
t, 

AV
 R

ey
 A

ud
ito

ry
 V

er
ba

l L
ea

rn
in

g 
Te

st 
– 

Re
co

gn
iti

on
, F

TD
  F

in
ge

r T
ap

pi
ng

 D
om

in
an

t 
H

an
d,

 M
EP

  M
em

or
y 

Er
ro

r 
Pa

tte
rn

, R
D

S R
el

ia
bl

e 
D

ig
it 

Sp
an

, W
M

TM
N

B 
 W

or
d 

M
em

or
y 

Te
st 

– 
M

ey
er

s 
N

eu
ro

lo
gi

ca
l B

at
te

ry
, M

I 
M

ey
er

s 
In

de
x 

fro
m

 M
M

PI
-2

 o
r 

M
M

PI
-2

-R
F,

 P
VT

 p
er

fo
r-

m
an

ce
 v

al
id

ity
 te

st,
 r t

et
 te

tra
ch

or
ic

 c
or

re
la

tio
n,

 a
cr

os
s a

ll 
23

 d
at

as
et

s:
 w

ei
gh

te
d 

by
 N

s, 
av

er
ag

e 
r te

t  .
92

*p
 <

 .0
5;

 *
*p

 <
 .0

1;
 *

**
p <

 .0
01

a  Y
at

es
 c

or
re

ct
ed

b  Q
ua

nt
iti

es
 a

, b
, c

, a
nd

 d
 in

cr
ea

se
d 

by
 .5

 fo
r c

om
pu

ta
tio

n 
of

 O
R

 (c
f. 

G
la

s e
t a

l.,
 2

00
3)

c  La
rr

ab
ee

 e
t a

l. 
(2

01
9)

 p
re

se
nt

 a
 re

an
al

ys
is

 o
f d

at
a 

fro
m

 M
ey

er
s e

t a
l. 

(2
01

4)
 w

hi
ch

 in
cl

ud
es

 th
e 

cl
ai

m
 th

at
 in

 th
e 

or
ig

in
al

 w
or

k,
 se

ns
iti

vi
ty

 w
as

 m
ist

ak
en

 fo
r p

os
iti

ve
 p

re
di

ct
iv

e 
po

w
er

 (P
PP

) a
nd

 
sp

ec
ifi

ci
ty

 fo
r n

eg
at

iv
e 

pr
ed

ic
tiv

e 
po

w
er

 (N
PP

) (
La

rr
ab

ee
 e

t a
l.,

 2
01

9,
 p

p.
 1

36
9,

 fi
rs

t p
ar

ag
ra

ph
). 

B
ec

au
se

 s
en

si
tiv

ity
 a

nd
 P

PP
 a

nd
 s

pe
ci

fic
ity

 a
nd

 N
PP

 a
re

 in
te

rc
ha

ng
ea

bl
e 

in
 th

e 
fo

rm
ul

a 
fo

r t
he

 
O

R
 o

n 
w

hi
ch

 c
om

pu
ta

tio
n 

of
 r t

et
 is

 b
as

ed
 (c

f. 
O

str
ow

sk
i &

 O
str

ow
sk

i, 
20

20
, p

. 2
), 

th
is

 c
la

im
 h

as
 n

o 
be

ar
in

g 
on

 th
e 

co
m

pu
ta

tio
ns

 in
 th

is
 ta

bl
e,

 w
he

th
er

 o
r n

ot
 L

ar
ra

be
e 

et
 a

l. 
(2

01
9)

 a
re

 c
or

re
ct

PV
T 1

n(
PV

T 1
 −

 /
PV

T 2
 +

)
n(

PV
T 1

 +
 /

PV
T 2

-)
n(

PV
T 1

 −
 /

PV
T 2

 +
)

n(
PV

T 1
 −

 /
PV

T 2
-)

χ2a
N

B
as

e 
ra

te
 o

f 
 PV

T 2
 +

 
Se

ns
iti

vi
ty

 
of

  P
V

T 1
 in

 
de

te
ct

in
g 

 PV
T 2

Sp
ec

ifi
ci

ty
 

of
  P

V
T 1

 in
 

de
te

ct
in

g 
 PV

T 2

O
R

r te
t (

D
ig

by
, 

19
83

)

A
lg

eb
ra

ic
 

re
la

tio
ns

hi
ps

/
fo

rm
ul

a

a
b

c
d

Pr
ea

ch
er

 
(2

00
1)

a +
 b 

+
 c 

+
 d

(a
 +

 c)
/

(a
 +

 b 
+

 c 
+

 d)
a/

(a
 +

 c)
d/

(b
 +

 d)
(a

/b
)/(

c/
d)

(
3
√

O
R
−

1
)

/(
3
√

O
R
+

1
)

W
M

T 
stu

dy
M

ey
er

s e
t a

l. 
(2

01
4)

c
FC

71
1

27
15

6
15

0.
04

**
*

25
5

.3
8

.7
2

.9
9

41
0.

22
.9

8

D
L

65
5

33
15

2
11

7.
64

**
*

.6
6

.9
7

59
.8

8
.9

1
SR

62
1

36
15

6
12

3.
88

**
*

.6
3

.9
9

26
8.

67
.9

7
JL

63
1

35
15

6
12

6.
66

**
*

.6
4

.9
9

28
0.

80
.9

7
TT

61
1

37
15

6
12

1.
12

**
*

.6
2

.9
9

25
7.

19
.9

7
AV

61
4

37
15

3
11

0.
10

**
*

.6
2

.9
7

63
.0

6
.9

1
FT

D
72

6
26

15
1

13
4.

59
**

*
.7

3
.9

6
69

.6
9

.9
2

M
EP

66
1

32
15

6
13

5.
19

**
*

.6
7

.9
9

32
1.

75
.9

7
R

D
S

65
8

33
14

9
10

7.
74

**
*

.6
6

.9
5

36
.6

9
.8

7
W

M
TM

N
B

80
6

18
15

1
15

9.
98

**
*

.8
2

.9
6

11
1.

85
.9

4
M

I
98

58
0

99
98

.3
8*

**
1.

00
.6

3
33

5.
07

b
.9

7

Ta
bl

e 
2 

 (c
on

tin
ue

d)



594 Neuropsychology Review (2023) 33:581–603

1 3

concordant. This would be the case if both PVTs were per-
fectly discordant on M+ indications and all six false positive 
indications among M− examinees were simultaneously also 
discordant, which would limit concordances to only the 48 
remaining concordant true negative PVT− indications among 

the remaining M− cases. In between these upper and lower 
extremes are 25 possible intermediate concordance scenarios 
with 98, 96, 94, …., 54, 52, and 50 concordant M+ indica-
tions for a total of 27 possible concordance scenarios for 
pairs of PVTs with the typical operating characteristics. For 
visualization, Fig. 4 depicts an intermediate scenario with 
74 concordant indications with proportionately equally con-
cordant indications for M+ and M−.

Simulation data were created for all 27 concordance sce-
narios and degree of statistical independence between PVT1 
and PVT2 was evaluated using χ2. A one-tailed test of sig-
nificance was chosen such that only concordance scenarios 
with positive correlations among PVT1 and PVT2 could be 
found significant. This choice was made because negative 
PVT correlations would indicate that a finding of PVT+

1
 was 

a significant predictor of a finding of PVT−
2
 . This outcome, 

however, would contradict the requirements of malingering 
determination guidelines that call for a determination of M+ 
to be based on two or more PVTs scoring PVT+ in the same 
direction (cf. Larrabee et al., 2007; Sherman et al., 2020; 
Slick et al., 1999). Results are presented in Fig. 5.

This statistical simulation shows that, under the baseline, 
specificity, and sensitivity conditions typically seen in the 
PVT validation literature, two PVTs may be statistically 
independent if there are between 62 and 72% concordances. 
Therefore, hypothetically, it is statistically possible for two 
PVTs that possess the operating characteristics typical of 
PVTs to be statistically independent when used in a neu-
ropsychological evaluation. However, this is true for only a 
narrow region of concordances. The important question that 
remains is whether data from prior PVT validation studies 
support the premise that actual PVT associations fall into 
that region.

Note. = positive for malingering; = negative for malingering; ( ) = Cases that are ; 

( ) = Cases that are ; + = a single case that is ; o = a single case that is ; = a positive 

indication of malingering on the first validity test; = a positive indication of malingering on the 

second validity test; ( ) = cases that are ; ( ) = cases that are .  Not explicitly 

shown is that all cases not in the circle of ( ) are ( ) and all cases not in the circle of 

( ) are ( ).

Fig. 4  Hypothetical universe of 100 forensic cases that are either 
malingering or not malingering ( M+ ∩M− = ∅ ). Base rate of M+ = .4 . 
Showing prediction of malingering status based on knowledge of two 
performance validity tests ( PVT1 and PVT2 ), each PVT with sensi-
tivity = 0.5 and specificity = 0.9. PVT1 and PVT2 are not independent 
(χ.2 = 8.90, p < 0.01) and are correlated at  rtet = 0.52. The 74 concordant 
indications are proportionately equally concordant for M+ and M− cases  

Fig. 5  χ2 and absolute values of 
tetrachoric correlation (rtet) for 
two hypothetical validity tests 
( PVT1 and PVT2 , each with 
sensitivity of 0.5 and specificity 
of 0.9, in predicting malingering 
status (base rate = 0.4), among 
hypothetical forensic exami-
nees (N = 100) calculated from 
hypothetical simulation data for 
all possible permutations of con-
cordant malingering indications

Note: Region of Independence shows where null hypothesis of independence of and  can 

NOT be rejected (p >.05, one tailed; 62 concordances to 72 concordances). The rtet values for 

concordances ranging from 48 to 60 concordances are negative, those for 62 to 100 concordances are 

positive. 
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Reanalysis of Data from Prior PVT Validation Studies

This question was examined through a reanalysis of data from 
validation studies reporting associations between two validity 
tests in a mixed malingering-status sample. The reanalysis 
focused on associations involving the TOMM and the WMT. 
The TOMM and WMT were chosen because these are the 
two most commonly used PVTs in neuropsychological test-
ing (Martin et al., 2015, p. 762). Independence of, and corre-
lations between TOMM-based malingering classification and 
malingering classification based on four other validity tests 
were reanalyzed using data from all TOMM validation stud-
ies reported in a recent systematic review and meta-analysis 
(Martin et al., 2020). In these studies, the TOMM was used 
in a mixed malingering status-sample together with at least 
one other validity test and a 2 × 2 cross classification table of 
the TOMM and the second validity test was either provided, 
or enough other information was reported to allow algebraic 
imputation of such a table. Studies were selected by Martin 
et al. (2020) following a well-defined and well-documented 
selection process (pp. 90–94) and exhaustively cover the 
period from 1997, the year the TOMM was first published, 
to approximately mid-2019. No attempt was made to search 
for additional TOMM studies published after that cutoff date.

Additionally, to cross-check the reanalysis of TOMM data, 
data from one malingering classification study using the 
WMT with a mixed malingering-status sample was similarly 
reanalyzed (Meyers et al., 2014; Table 3). This was the same 
WMT study that provided data for the reanalysis reported by 
Larrabee et al. (2019). Results are reported in Table 2.

Examination of the 25 paired associations among these 18 
validity tests (see Table 2) shows that all the PVTs provide 
highly overlapping information. All χ2 statistics were signifi-
cant, showing a lack of independence between PVTs, and the 
average bivariate tetrachoric correlation, weighted by study 
sample size, was rtet = 0.92, which is dramatically higher than 
the correlations reported in prior work (Berthelson et al., 2013). 
All bivariate correlations were well above the cutoff of 0.7 for 
including two variables as predictors of the same outcome, and 
most correlations were well above the cutoff of 0.9, where vari-
ables are considered fully collinear and thus redundant predic-
tors (cf. Tabachnick et al., 2019, p. 77). The degree of associa-
tion between PVTs is in the order of the short-term test-test 
reliability of well validated cognitive tests, such as the Wechsler 
Adult Intelligence Scale (cf. Schuerger & Witt, 1989). While 
these studies report correlations between pairs, the present cor-
relational reanalysis also implies that all 18 validity tests are 
redundant. This is because, by virtue of the transitive property 
of the law of equality, when redundancy is shown among a 
group of tests, hypothetically, between  PVT1 and  PVT2 and 
 PVT2 and  PVT3, then  PVT1 and  PVT3 must also be redundant. 
The correlations found in the present reanalysis of the data from 
Meyers et al. (2014) differ from those found in the reanalysis by 

Larrabee et al. (2019) because in the present analysis, independ-
ence and correlation were examined subsequent to dichotomi-
zation, while Larrabee et al. (2019) calculated the correlations 
using the raw scores. Furthermore, in the present analysis, the 
Pearson tetrachoric coefficient of correlation (rtet) is used, while 
Larrabee et al. used the Pearson product-moment correlation 
coefficient, despite the assumptions of the test being violated 
due to skewness (see discussion above).

What might explain collinearity of this magnitude? Legal 
and ethical test security requirements preclude a detailed 
presentation of this argument. Suffice to say that many 
PVTs, such as the TOMM, RDS, MSVT, PDRT, WMT, or 
Rey 15-Item Test (FIT; Millis & Kler, 1995; Rey, 1964), are 
close variants of a prototypical test theme where, upon hav-
ing been serially presented with simple stimuli, examinees 
are challenged with recognition trials, free recall trials, or 
both. These tests vary only slightly in the type of simple 
stimulus used, such as words, letters, numbers, drawings, 
symbols, or a mixture of these. Other PVTs, such as the 
Finger Tapping Dominant Hand Test (Meyers & Volbrecht, 
2003), involve motoric responses and may be redundant with 
memory tests due to common factors such as attention or 
illness perception (cf. Henry et al., 2018).

In sum, commonly administered PVTs likely provide 
information that is substantially redundant toward determin-
ing malingering status, and are thus collinear. Researchers 
and forensic examiners using more than one PVT in the 
determination of malingering status would do well to accu-
rately estimate the independence of PVTs before predicting 
malingering status based on more than one PVT. To avoid 
including collinear PVTs, information overlap among PVTs 
should be calculated using methods appropriate for estimat-
ing independence and correlation between categorical vari-
ables subsequent to the dichotomization of PVT outcomes 
and including participants of all malingering-status clas-
sifications. PVTs found to correlate at rtet > 0.7 should be 
combined, and if PVTs correlate at rtet > 0.9, redundant PVTs 
should be eliminated. Estimates of PVT correlations obtained 
from homogeneous malingering groups where all participants 
were either exclusively M+ or exclusively M− should not be 
considered when estimating collinearity and information 
overlap among PVTs as predictors of malingering status.

Evaluation of Classification Accuracy of PVT 
Aspects of the Malingering Determination 
Algorithms Compared to Alternatives

Malingering determination algorithms are thus limited by 
the minimal additional information contributed to the deter-
mination of malingering status from PVTs beyond the first. 
Regardless, all determination algorithms (Larrabee et al., 
2007; Sherman et al., 2020; Slick & Sherman, 2012; Slick 
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et al., 1999), as well as Consensus Conference Statements 
from the American Academy of Clinical Neuropsychol-
ogy (Heilbronner et al., 2009, p. 12; Sweet et al., 2021, 
p. 1067), call for the simultaneous consideration of mul-
tiple PVTs in the determination of malingering status. All 
algorithms agree a logical “and” (probabilistically multipli-
cative) combination of PVTs is needed when scores from 
multiple PVTs are considered. Any PVT− results are to be 
disregarded, with only PVT+ results being considered, as 
long as the ratio of PVT+ to PVT− findings is at least 2 to 5 
(Chafetz, 2020; Sherman et al., 2020; Sweet et al., 2021).

Various rationales are offered for this method of com-
bining information from multiple PVTs, including “Posi-
tive Likelihood Chaining,” a pseudo-Bayesian method 
which superficially appears similar to the simple Bayes 
method, also known as “Naïve Bayes,” “Independence 
Bayes,” or “Idiot’s Bayes,” which is itself recognized 
both as mathematically incorrect and unrelated to Bayes 
theorem unless predictors are conditionally independent 
(Hand & Yu, 2001, p. 386; Steyerberg, 2009, p. 63; also 
see detailed discussion of use and misuse of Bayes' Theo-
rem in the determination of malingering in Supplemen-
tal Appendix A). Briefly, an actual simple Bayes method 
would work as follows. After ascertaining that all included 
PVTs are independent conditional on malingering status, 
using all PVT scores, depending on whether a PVT was 
PVT+ or PVT− , each corresponding coefficient of the 
likelihood ratio for positive results or likelihood ratio for 
negative results (the likelihood ratio for positive results if 
the PVT is PVT+ , the likelihood ratio for negative results 
if it is PVT− ) would be multiplied with the odds of the 
base rate of malingering to compute the posterior odds 
of malingering. This method is mathematically incorrect 
unless predictors are conditionally independent and is tan-
tamount to creating a logistic regression equation with 
multiple predictors where all beta weights are obtained 
from single variable prediction (Steyerberg, 2009, p. 64; 
Zadora et al., 2014, p.92). With predictors that lack condi-
tional independence, this simple Bayes method repeatedly 
counts any overlapping variance among predictors as many 
times as there are predictors in the equation. The simple 
Bayes method has therefore been shown to overestimate 
predictability (Hand & Yu, 2001, p. 388; Zadora et al., 
2014, p. 209). As shown in Supplemental Appendix A, 
PVTs with the typical operating characteristics (sensitiv-
ity = 0.5 and specificity = 0.9) cannot be independent con-
ditioned on malingering status. The simple Bayes method 
is therefore not tenable to combine findings from multiple 
PVTs in the determination of malingering status, but there 
does not appear to be a prior published attempt to do so.

However, positive likelihood chaining has been proposed 
as a suitable method to combine findings from multiple 
PVTs in the determination of malingering (cf. Chafetz, 

2011, 2020; Larrabee, 2008; Lippa, 2018; Meyers et al., 
2014). This method goes one step beyond simple Bayes 
and disregards any PVT− findings from the simple Bayes 
equation, with the posterior odds calculated as the product 
of the pretest odds of malingering and the likelihood ratios 
for positive results from all PVTs with a finding of PVT+ 
(cf. Chafetz, 2011, 2020; Larrabee, 2008; Lippa, 2018; 
Meyers et al., 2014). While the pseudo-Bayesian ration-
ale that seemingly justifies positive likelihood chaining is 
not universally accepted in the malingering literature (see 
Larrabee et al., 2019 for a discussion), it does provide a 
pseudo-mathematical rationale for disregarding PVT− 
outcomes when evaluating malingering criteria related to 
PVTs, as long as the ratio of PVT+ to PVT− findings is at 
least two to seven as stipulated in the malingering deter-
mination algorithm (cf. Sherman et al., 2020). Please see 
Supplemental Appendix A for a detailed analysis of the 
mathematical untenability of positive likelihood chaining 
as a method to combine findings from multiple PVTs in the 
determination of malingering status.

How, then, does classification accuracy of the PVT com-
ponents of the malingering determination algorithm (two 
or more of seven PVTs must be PVT+ to determine M+ ) 
compare to that of other possible prediction algorithms, 
such as a base rate (constant only) model, prediction from 
one PVT, or prediction based on logistic regression? This 
question will be addressed through an experimental evalu-
ation of these classification algorithms, quantifying their 
ability to correctly classify malingering status (cf. Webb, 
2017). Experimental evaluation of diagnostic algorithms is 
often performed with actual data sets where both the diag-
nostic indicators and the condition of interest are known 
(e.g., Macek-Jilkova et al., 2021; Silva & Bernardino, 2022). 
However, when an actual data set is not available, as is the 
case here, researchers in neuropsychology use hypothetical 
data sets to evaluate the performance of classification algo-
rithms (e.g., Gates et al., 2016; Underwood et al., 2018), 
which is the approach taken here.

To quantify the classification accuracy of malingering 
determination algorithms, five hypothetical data sets were 
thus created, each with 100 forensic examinees with a base 
rate of M+ of 0.4. These data sets also included seven hypo-
thetical PVTs ( PVT1 through PVT7 ), each with a sensitivity 
of 0.5 and a specificity of 0.9 for determining malinger-
ing status. Performance of predictive algorithms cannot be 
compared for sets of seven PVTs with these sensitivities and 
specificities that are also simultaneously unconditionally or 
conditionally independent predictors of malingering status, 
because it is not mathematically possible for a set of more 
than two PVTs to exhibit all three attributes simultaneously 
(a sensitivity of 0.5, specificity of 0.9, and that are statisti-
cally unconditionally independent of each other), and no 
two PVTs can be conditionally independent conditioned 
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on M status (see Supplemental Appendix A for detailed 
explanation). Note also that the PVT algorithm yields unac-
ceptably low operating characteristics when malingering 
status is determined from two statistically unconditionally 
independent PVTs (combined sensitivity = 0.08, specific-
ity = 0.93, diagnostic OR = 1.15, and posterior probability 
or positive predictive power in a forensic setting = 0.43; see 
Supplemental Appendix A for detailed calculations). For 
these reasons, a comparison of predictive algorithms will 
be modelled for five hypothetical simulation data sets that 
reflect relationships among seven PVTs that are mathemati-
cally possible:

1. In the first three hypothetical simulation data sets, the 
mean Pearson r value for the 36 paired correlations among 
the seven PVTs is r ≈ 0.31 (cf. Berthelson et al., 2013). 
This is the average correlation among PVTs reported in 
the malingering literature, albeit possibly erroneously (see 
above). Further, modelled on the TOMM, each hypotheti-
cal PVT has scores ranging from 39 to 50 with the cutoff 
for M+ at PVT < 45 (range 39–44), with higher scores 
indicating M− and ranging from 49 to 50. Additionally, 
the question arises as to how to handle concordant M+ 
indications that are key to the malingering algorithm, 
or specifically, how PVT+ concordances should be dis-
tributed among M+ and M− cases. A correlation of r ≈ 
0.31 allows for approximately 40 to 46 concordant PVT+ 
indications among the 100 simulation cases. The present 
simulation will model three possible concordance sce-
narios, including (a) a best-case scenario, with 40 PVT+ 
indications based on two or more concordant PVTs only 
among M+ cases, yielding 40 true positive and zero false 
positive cases, (b) a “middle-of-the-road” scenario, with 
37 PVT+ concordances among M+ cases and six PVT+ 
concordances among M− cases, yielding 37 true positive 
cases and six false positive cases, and (c) a worst-case 
scenario, with 34 PVT+ concordances among M+ cases 
and 12 PVT+ concordances among M− cases, yielding 34 
true positive cases and 12 false positive cases.

2. In the fourth and fifth hypothetical simulation data sets, 
the average correlation among all PVT pairs is rtet ≈ 
0.92 after dichotomization, which is the average cor-
relation among the 18 validity tests from the reanalysis 
in Table 2. Here as well, considered individually, all 
seven PVTs are predictors of malingering, each with 
sensitivity of 0.5 and specificity of 0.9. An average 
correlation of rtet ≈ 0.92 among the PVT pairs allows 
for approximately 30 to 32 concordant M+ indications 
among the 100 simulation cases. Here, two concord-
ance scenarios are modelled, including (a) a best-case 
scenario, with 26 PVT+ indications based on two or 
more concordant PVTs among M+ cases and six PVT+ 
indications among M− cases, yielding 26 true positive 

and six false positive cases, and (b) a worst-case sce-
nario with 20 PVT+ indications based on two or more 
concordant PVTs among M+ cases, and 12 PVT+ indi-
cations among M− cases, yielding 20 true positive and 
12 false positive cases.

The classification accuracy of the PVT aspect of malin-
gering determinations algorithms (Larrabee et al., 2007; 
Sherman et al., 2020; Slick & Sherman, 2012; Slick et al., 
1999) will be compared under both correlation conditions 
with alternative classification algorithms, including (a) a 
constant only model, (b) prediction based on a single PVT 
only, and (c) prediction based on direct logistic regression 
using all seven PVTs as predictors of malingering status. 
Results of the simulation are presented in Table 3. Note that 
95% confidence intervals were not computed as this was 
only a simulation using hypothetical data to compare algo-
rithm performance, not an estimation of population param-
eters from sample data.

When PVTs are correlated at r ≈ 0.31, the simulation 
shows that the classification accuracy of PVT aspects of the 
malingering determination algorithm (Larrabee et al., 2007; 
Sherman et al., 2020; Slick et al., 1999; Slick & Sherman, 
2012), and of logistic regression, depends on how the con-
cordances fall. In the best-case scenario, with concordant 
PVT+ scores exclusively among M+ cases, both algorithms 
perform best, although the malingering algorithm outper-
forms logistic regression for both sensitivity and specific-
ity. When concordant PVT+ scores also occur for some M− 
cases, specificities of both algorithms remain ≥ 0.9, but the 
malingering algorithm has better sensitivity. However, in 
the worst-case scenario where PVT+ concordances occur 
more frequently among M− cases, while the malingering 
algorithm still has better sensitivity, specificity drops to 0.8, 
which is below the minimum of 0.9 required in the malin-
gering determination algorithm, even before considering 
95% confidence intervals.

When two PVTs are correlated at rtet ≈ 0.92, due to PVT 
redundancy, logistic regression reverts to single variable 
prediction because redundant PVT predictors are unable to 
improve prediction over what is possible based on knowledge 
from a single PVT. In the best-case concordance scenario, 
PVT-specific rules from the malingering determination 
algorithm (Larrabee et al., 2007; Sherman et al., 2020; Slick 
et al., 1999; Slick & Sherman, 2012) maintain specificity at 
0.9, but improve sensitivity to 0.6 over the single PVT sensi-
tivity of 0.5. However, in the worst-case scenario, specificity 
for the malingering algorithm again drops below the required 
minimum of 0.9 to 0.8, while sensitivity is unimproved over 
single PVT prediction at 0.5.

In sum, in both correlation scenarios, the malinger-
ing determination algorithm for combining findings from 
multiple PVTs (two of seven PVTs need to be PVT+ to 
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determine M+ ) consistently favors sensitivity over specific-
ity compared to decisions about malingering status based 
on logistic regression. While logistic regression consistently 
maintains specificity at or near the target level of 0.9, the 
malingering algorithm yields specificities well below 0.9 
under less-than-ideal concordance scenarios. Because it is 
unclear which concordance scenarios occur when testing 
actual forensic examinees, classification based on logistic 
regression would therefore appear to be more conservative. 
Had 95% confidence intervals been calculated, the lower 
bounds of all classification accuracy estimates would have 
been even lower (see discussion above).

When aggregating findings from multiple PVTs in the 
determination of malingering status, it is therefore vital that 
collinearity (or multicollinearity) and information overlap 
among PVTs be evaluated first, and that redundant PVTs 
be eliminated. Then, either a single PVT model, or if mul-
tiple non-redundant PVTs are available, a model based on 
logistic regression promises the best compromise between 
maintaining specificity at or near 0.9 while optimizing clas-
sification accuracy10 (cf. Bossuyt et al., 2013; Victor et al., 
2009; Wolfe et al., 2010).

Logistic regression also has the advantage of providing 
excellent diagnostics for the detection of collinearity (or 
multicollinearity) among predictor PVTs, in case the initial 
PVT selection inadvertently included PVTs with significant 
information overlap (cf. Midi et al., 2010). An additional 
advantage of logistic regression is that it can address over-
fitting concerns through the use of bootstrapping methods 
(see Steyerberg et al., 2001) to examine whether findings 
from PVT validation studies can be cross-validated (cf. de 
Rooij & Weeda, 2020).

Based on the above calculations, it may be that the oper-
ating characteristics of resulting prediction models will be 
insufficient to identify malingering with sufficient precision. 
Because the posterior probability or the posterior odds adds 
vital information for a forensic neuropsychologist evaluating 
the likelihood of malingering in a single examinee with a posi-
tive determination of malingering, a single likelihood ratio for 
positive results obtained from the confusion table resulting 
from the entire regression equation would help to quantify the 
likelihood of a correct determination (cf. Fischer et al., 2003, p. 
1047; Glas et al., 2003, p. 1134; Moons et al., 2012, p. 1411).

Widespread adoption of a logistic regression-based algo-
rithm would require standardizing the administration of PVTs 

during forensic neuropsychology evaluations. Standardiza-
tion, however, may not present an insurmountable obstacle, 
as use of such standardized batteries has already been reported 
by many forensic clinician-researchers (e.g., Chafetz, 2008, 
p.532; D. Green et al., 2012, p. 185; Greve et al., 2006a, p. 
443; Greve et al., 2006b, p. 1180), with others reporting stand-
ardized administration of PVTs as part of a flexible battery 
approach (e.g., Armistead-Jehle & Gervais, 2011, p. 285; 
Buddin et al., 2014, p. 529; Rees et al., 1998, p. 16). On the 
other hand, there has been general resistance to the adoption 
of standardized batteries in neuropsychology, and their use 
may facilitate undesirable coaching to “beat” PVTs.

Researchers could also look to biomedical diagnostics 
where tremendous work has been completed on statistical 
and methodological issues in the development and valida-
tion of multivariable prediction models (e.g., Collins et al., 
2015; Moons et al., 2012). This includes, for example, a 
consensus model on the “transparent reporting of multivari-
ate prediction models for individual prognosis or diagnosis” 
(TRIPOD; Collins et al., 2015), which includes a check-
list of methodological and statistical considerations when 
developing and evaluating multivariable prediction models, 
and a review of statistical methods to quantify changes in 
determinative accuracy when adding putatively predictive 
tests beyond the first one (Moons et al., 2012). This work is 
directly applicable to the problem of predicting malinger-
ing from knowledge of multiple predictors, including PVTs.

Summary and Brief Discussion of Statistical 
Issues

In summary, a review of statistical aspects of the literature 
purporting to validate PVT as predictors of malingering has 
identified several important issues.

• Studies validating PVTs as predictors of malingering 
status should always report full confusion table statistics 
including diagnostic OR and 95% confidence intervals 
for all statistics.

• When evaluating collinearity among putative predictors 
of malingering status, such evaluations need to include 
participants of heterogeneous malingering status. There 
must be participants that are classified as malingerers, as 
well as participants that are not classified as malinger-
ers. Studies that evaluate the independence of predic-
tors of malingering only among homogeneous groups of 
either all malingerers or all non-malingerers should not 
be considered when evaluating the degree to which pairs 
of validity scores are collinear.

• It is theoretically possible for two validity tests to be 
unconditionally independent predictors of malingering 
status when each PVT has sensitivity of 0.5 and specific-

10 An additional method for estimating posterior probabilities from 
multiple PVTs may be Markov Chain Monte Carlo algorithms that cor-
rectly implement multivariate Bayesian modelling (cf. Al-Khairullah & 
Al-Baldawi, 2021). When directly compared to frequentist approaches, 
such as logistic regression, such models have been shown to yield diag-
nostic accuracy comparable to logistic regression (e.g., Wang et  al., 
2014; Witteveen et al., 2018).
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ity of 0.9, and the base rate of malingering is 0.4. How-
ever, this is true only for a narrow band of concordance 
scenarios. Once additional PVTs are added beyond the 
first two, not all PVT pairs can be unconditionally inde-
pendent, even theoretically. No two PVTs can be condi-
tionally independent conditioned on malingering status.

• Reanalyses of extant data from the malingering literature 
with χ2 on paired associations of the TOMM and WMT 
with a second validity tests show that, of the 18 validity 
tests examined, none are predictors of malingering status 
that are statistically independent of other validity tests. In 
essence, this means that all 18 validity tests are slightly 
different versions the same test.

• The average rtet of the TOMM and WMT with a second 
validity test is about 0.92, which means all 18 validity 
tests that were examined provide redundant information 
toward the prediction of malingering status, and therefore 
should not be used together when predicting malingering 
status from knowledge of validity tests.

• The simple Bayes method and positive likelihood chain-
ing method are mathematically erroneous to combine 
knowledge from two or more PVTs in the prediction of 
malingering status.

• When testing the PVT aspect of the malingering deter-
mination algorithm (cf. Larrabee, 2008; Larrabee et al., 
2007; Sherman et al., 2020; Slick et al., 1999; Slick & 
Sherman, 2012) (two of seven PVTs have to show PVT+ 
to determine an examinee is malingering) against alterna-
tive approaches such as prediction from base rate only, 
single PVT prediction, and prediction using logistic 
regression, under reasonable association and concord-
ance scenarios, these algorithms, including the “Slick” 
algorithm, perform unexpectedly depending on where the 
concordances fall. These algorithms may not yield the 
goal of maintaining specificity at or above 0.9. Alterna-
tives to the “Slick” algorithm, and related malingering 
determination algorithms that do not have this particular 
problem, are single PVT prediction or prediction based on 
logistic regression. However, these alternative approaches 
may not be practicable either, as will be further discussed 
in the companion method review in Part II.

• Future research on malingering prediction models involv-
ing multiple validity tests should follow the TRIPOD 
consensus model (Collins et al., 2015).

Further implications of these statistical issues, as well as 
implications for forensic practice and future research, are 
comprehensively discussed in the summary, discussion, and 
recommendations section and the end of Part II, the methods 
review, which accompanies this statistics review.
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