
Vol:.(1234567890)

Neuropsychology Review (2023) 33:834–855
https://doi.org/10.1007/s11065-022-09564-1

1 3

REVIEW

Treatment Response of Transcranial Magnetic Stimulation 
in Intellectually Capable Youth and Young Adults with Autism 
Spectrum Disorder: A Systematic Review and Meta‑Analysis

Joshua R. Smith1,2,3,4  · Maura DiSalvo5,6 · Allison Green5,6,7 · Tolga Atilla Ceranoglu3,4,5,6  · 
Sheeba Arnold Anteraper8 · Paul Croarkin9  · Gagan Joshi3,4,5,6

Received: 1 November 2021 / Accepted: 31 August 2022 / Published online: 26 September 2022 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
To examine current clinical research on the use of transcranial magnetic stimulation (TMS) in the treatment of pediatric and 
young adult autism spectrum disorder in intellectually capable persons (IC-ASD). We searched peer-reviewed international 
literature to identify clinical trials investigating TMS as a treatment for behavioral and cognitive symptoms of IC-ASD. We 
identified sixteen studies and were able to conduct a meta-analysis on twelve of these studies. Seven were open-label or 
used neurotypical controls for baseline cognitive data, and nine were controlled trials. In the latter, waitlist control groups 
were often used over sham TMS. Only one study conducted a randomized, parallel, double-blind, and sham controlled trial. 
Favorable safety data was reported in low frequency repetitive TMS, high frequency repetitive TMS, and intermittent theta 
burst studies. Compared to TMS research of other neuropsychiatric conditions, significantly lower total TMS pulses were 
delivered in treatment and neuronavigation was not regularly utilized. Quantitatively, our multivariate meta-analysis results 
report improvement in cognitive outcomes (pooled Hedges’ g = 0.735, 95% CI = 0.242, 1.228; p = 0.009) and primarily 
Criterion B symptomology of IC-ASD (pooled Hedges’ g = 0.435, 95% CI = 0.359, 0.511; p < 0.001) with low frequency 
repetitive TMS to the dorsolateral prefrontal cortex. The results of our systematic review and meta-analysis data indicate 
that TMS may offer a promising and safe treatment option for pediatric and young adult patients with IC-ASD. However, 
future work should include use of neuronavigation software, theta burst protocols, targeting of various brain regions, and 
robust study design before clinical recommendations can be made.

Keywords Autism · Transcranial Magnetic Stimulation · Pediatric · Neurodevelopmental · Neuromodulation · Brain 
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Abbreviations
rTMS   Repetitive transcranial magnetic stimulation
MDD   Major depressive disorder
HF-rTMS   High frequency rTMS
LtDLPFC   Left dorsolateral prefrontal cortex
TMS   Transcranial magnetic stimulation
LF-rTMS   Low frequency rTMS
RtDLPFC   Right dorsolateral prefrontal cortex
TBS   Theta burst stimulation
cTBS   Continuous theta burst stimulation
iTBS   Inhibitory theta burst stimulation
dTMS   Deep TMS

OCD   Obsessive compulsive disorder
mPFC   Medial prefrontal cortex
ACC   Anterior cingulate cortex
ASD   Autism spectrum disorder
RRB   Restricted/repetitive behaviors
EF   Executive functioning
IC-ASD   Autism spectrum disorder in intellectually 

capable persons
PRISMA  Preferred Reporting Items for Systematic 

Reviews and Meta-Analyses
SMD   Standardized mean differences
REML   Restricted maximum likelihood
I2

JWR   Jackson-White-Riley  I2 index
NT   Neurotypical
ADI-R   Autism diagnostic interview-revised
ADOS   Autism diagnostic observation schedule
SCL   Skin conductance level
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HRV   Heart rate variability
BiDLPFC   Bilateral DLPFC
M1  Primary motor cortex
SMA   Supplemental motor area
pSTS   Posterior superior temporal sulcus
FDI   First dorsal interossei muscle
SRS-2  Social responsiveness scale
RBS-R   Repetitive behavioral scale-revised
ABC  Aberrant behavioral checklist
ERP   Event related potentials
BRIEF  Behavioral Rating Inventory for Executive 

Function
SR  Self-Report
VABS-II  Vineland Adaptive Behavior Scale–II
MRCP  Movement-related cortical potentials
PV  Parvalbumin
E/I  Excitation-to-inhibition
EEG  Electroencephalogram

Background

Since the first studies of repetitive transcranial magnetic 
stimulation (rTMS) for treatment-resistant major depres-
sive disorder (MDD) in adults offered evidence of thera-
peutic response with excitatory high frequency rTMS (HF-
rTMS) (≥ 10 Hz) of the left dorsolateral prefrontal cortex 
(LtDLPFC), (George, 1995; Milev, 2016; Pascual-Leone, 
1996; Rossi, 2009) interest in the therapeutic opportunity 
of transcranial magnetic stimulation (TMS) has grown as 
have options for TMS modalities. Anti-depressant response 
to of inhibitory low frequency rTMS (LF-rTMS) (≤ 1 Hz) 
of the right dorsolateral prefrontal cortex (RtDLPFC) has 
been demonstrated, (Klein, 1999) though greater evidence 
supports MDD treatment via HF-rTMS of the LtDLPFC. 
(Lefaucheur, 2014) Theta burst stimulation (TBS) is another 
therapeutic TMS treatment with patterned pulses delivered 
in bursts of three at a higher frequency compared to rTMS 
(50 Hz). TBS requires less stimulation time, functions at a 
lower overall intensity compared to rTMS protocols, with 
promising safety profiles in pediatric patients based on a 
recent systematic review. (Elmaghraby et al., 2021) Two pat-
terns of TBS are currently utilized, the inhibitory continuous 
(cTBS) and excitatory intermittent (iTBS). (Chung et al., 
2015) Options for delivering “deep TMS” (dTMS) further 
into cortical tissue have been explored as well. Rather than 
the traditional figure eight coil, dTMS uses the double cone 
coil and the H-coil were developed to allow for greater depth 
of cortical penetration. (Carmi et al., 2018; Tofts & Bran-
ston, 1991) Safe and efficacious use of dTMS has been dem-
onstrated, resulting in FDA approval to treat MDD as well 
as obsessive compulsive disorder (OCD) via stimulation of 
medial prefrontal cortex (mPFC) and the anterior cingulate 

cortex (ACC). (Berlim et al., 2014; Blomstedt et al., 2013; 
Carmi et al., 2018, 2019; Levkovitz et al., 2015) Given these 
robust findings, as well as emerging protocols documenting 
the safety, efficacy, non-invasive nature, and ease of adminis-
tration of TMS as a neuromodulatory treatment in both adult 
and pediatric patients, (Allen et al., 2017; Connolly, 2012; 
Damji et al., 2013; Milev, 2016; Rajapakse & Kirton, 2013; 
Rossi, 2009) there is a growing interest regarding the pos-
sibility of using TMS for other neuropsychiatric conditions 
such as autism spectrum disorder (ASD).

ASD is a neurodevelopmental disorder which presents with 
deficits in social interaction and communication along with 
restricted/repetitive pattern of behaviors and interests (RRBs). 
(American Psychiatric Association, 2013) The condition is 
highly prevalent, affecting 1–2% of the population worldwide. 
(Lazoff et al., 2010) Individuals may present with or without 
intellectual disability, though substantial supports are often 
required in either case. (Howlin et al., 2004; Tillmann et al., 
2019) Despite the burden of disease on individuals and health 
systems, (Becker et al., 2020) issues of diagnosis and treat-
ment persist due to under-recognition, (Joshi et al., 2010) het-
erogeneity in clinical phenotypes, and the variability of symp-
tom manifestation across development. (Jannati et al., 2020) 
Additionally, current pharmacologic interventions in ASD are 
limited to the management of co-occurring psychopathology 
and not for the core features of the disorder. (Hutton, 2008; 
Zhou et al., 2021).

Recent systematic reviews and meta-analytic research 
investigating the use of TMS and other neuromodula-
tory techniques in treatment and diagnosis (Jannati et al., 
2021) of ASD regardless of age or intellectual capacities, 
suggest that TMS could be effective in the diagnosis of 
ASD, treatment of RRBs, and improving executive func-
tioning (EF) deficits. However, heterogeneity in study 
design and possible publication bias are notable limit-
ing factors in making clinical recommendations, points 
further highlighted in recent consensus statements by 
Oberman and Cole. (Barahona-Correa, 2018; Cole et al., 
2019; Khaleghi et al., 2020; Oberman & Enticott, 2015) 
In this study, we aim to further advance current knowl-
edge regarding the use of TMS by conducting a sys-
tematic review and meta-analysis of the literature with 
a focus on TMS as a therapeutic tool for intellectually 
capable individuals with ASD (IC-ASD) with the purpose 
of developing future TMS trials which would advance and 
optimize the therapeutic potential of TMS. We have cho-
sen a younger patient population for this TMS review due 
to the developmental nature of the disorder (), increasing 
prevalence rates of IC-ASD in this patient population, 
(Maenner, 2020), potential for greater effects of TMS 
early in development when the brain is considered to be 
more plastic, (Oberman & Enticott, 2015) and to miti-
gate study design heterogeneity by focusing on a specific 
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population of individuals with ASD. Our study also fur-
ther advances the literature by including studies published 
since the seminal 2018 meta-analysis by Barahona-Correa 
and colleagues. (Barahona-Correa, 2018) To our knowl-
edge, no systematic review or meta-analysis exists which 
specifically investigates TMS as a therapeutic tool in the 
management of pediatric and young adults with IC-ASD.

Methods

We conducted a systematic review of peer-reviewed inter-
national literature utilizing the Preferred Reporting Items 
for Systematic Reviews and Meta-Analyses (PRISMA) 
guidelines. Our review was conducted via PubMed and 
EMBACE published through 03/22/2022 using the fol-
lowing search criteria: [Transcranial Magnetic Stimula-
tion or TMS] AND [Autism Spectrum Disorder or Autism 
or ASD]. The authors screened, reviewed, and assessed 
the reference lists of the retrieved papers to ensure that all 
relevant articles were included in our review. Bibliogra-
phies were also cross referenced to ensure that no articles 
were missed. Our review was not registered. Following 
publication, our meta-analysis data and code will be pub-
licly available on the Open Science Framework.

All articles were screened for predetermined inclusion 
and exclusion criteria by four authors. Authors worked 
collaboratively on each article selected, no automation 
tools were utilized Articles were included if they met the 
following criteria: (1) original research in a peer-reviewed 
journal, (2) the study sample included individuals below 
18 years of age with IC-ASD, (3) investigated TMS as a 
therapeutic modality in the management of IC-ASD via 
open label trials, controlled trials, or cross over studies, 
and (4) devices used in the study were FDA-approved for 
sale in the United States. Articles were excluded if they 
met the following exclusion criteria: (1) ASD sample with 
intellectual disability (IQ < 65), (2) focused on other dis-
orders that were not ASD, (3) studied transcranial direct 
current stimulation or utilized TMS practices other than 
rTMS or TBS, (4) published in a language other than 
English, (5) did not include interpretable data, (6) were 
purely diagnostic in study design or (7) performed a lit-
erature review or meta-analysis. Notably, studies were 
included which investigated individuals above 18 years 
of age if the study population also contained individuals 
below 18 years.

Statistical Methods

We performed two meta-analyses of standardized mean dif-
ferences (SMD) in studies which conducted LF-rTMS to the 

DLPFC: one for behavioral outcomes and one for cognitive 
outcomes. To compute the SMDs, we extracted either the 
mean difference and standard deviation of the difference or 
the baseline and endpoint means and standard deviations, 
t-statistics, and p-values for each outcome. Given the small 
sample sizes of the included studies and the dependent 
nature of our comparison groups (pre-TMS vs. post-TMS), 
the standardized mean difference was calculated as Hedges’ 
g for pre-post scores using the following formula: 
g =

(

1 −
3

4∗df−1

)

×

(

xpost−xpre

sdwithin

)

 ; and the accompanying sam-

ple variance was calculated as var(g) =
(

1 −
3

4∗df−1

)2

×
([

1

N
+

(

xpost−xpre

sdwithin

)2

2∗N

]

× 2 × (1 − r)

)

 (Borenstein, 2009), 

where xpre is the pre-treatment mean score, xpost is the post-
treatment mean score, sdwithin is the within group standard 
deviation, df is the degrees of freedom used to estimate 
sdwithin , and N is the sample size (# of pairs). The correlation 
coefficient, r, for pre-post scores was calculated as 
sd2

pre
+sd2

post
−sd2

diff

2×sdpre×sdpost
 (Barahona-Correa, 2018). For studies where 

insufficient information was available to calculate r, we 
imputed r using the average of all the calculated correla-
tions. Only studies that provided sufficient data to make 
these calculations were included in the meta-analysis. Ten 
studies measuring behavioral outcomes (Casanova et al., 
2012, 2020, 2021; Sokhadze et al., 2012, 2018) and eight 
studies measuring cognitive outcomes (Casanova et al., 
2014, 2020; Sokhadze et al., 2009, 2010, 2016, 2018; Wang 
et al., 2016) possessed data for inclusion. As attempts to 
obtain unpublished data from the authors of the studies with 
insufficient data were unsuccessful, they were excluded from 
the meta-analysis.

Given the dependencies among effect sizes, our analyses 
utilized random-effects multivariate meta-analysis models 
using the restricted maximum likelihood (REML) method 
with unstructured between-study covariance matrices as 
implemented in Stata (meta mvregress) (Statacorp, 2021). 
Due to the small number of effect sizes included in the 
meta-analysis, we applied Jackson-Riley adjustments to 
the standard errors of the regression coefficients, which are 
multivariate generalizations of the Knapp-Hartung adjust-
ment in univariate meta-regression (Jackson & Riley, 2014; 
Statacorp, 2021). Our models utilized within-study standard 
errors and within-study correlations to define the within-
study covariance matrices. Because our outcomes of interest 
were derived from only two rating scales (ABC and RBS-R) 
and one cognitive test (Kaniza Oddball Test), we assumed 
high within-study correlations between our outcomes and 
set the correlations to 0.8. We used the Cochran multivari-
ate Q-test to assess the total heterogeneity across all effect 
sizes. A significant Q-test suggests that the effect sizes ana-
lyzed are not estimating the same population effect size. We 
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quantified the amount of between-study variance using the 
Jackson-White-Riley  I2 index  (I2

JWR) (Jackson et al., 2012).
The value of this multivariate heterogeneity statistic lies 
between 0 and 100 and estimates the percentage of variation 
among effect sizes that can be attributed to heterogeneity. 
Additionally, since the multivariate meta-regression com-
mand (meta mvregress) in Stata provides pooled effect sizes 
for subdomains only and not an overall effect, we utilized the 
robumeta command which estimates an overall effect size by 
implementing meta-regression with robust variance estima-
tion; (Hedges et al., 2010; Statacorp, 2021). When used in 
conjunction, the meta mvregress and robumeta commands 
are complement in terms of what the other is lacking. Thus, 
when reporting results, estimates for each subdomain were 
calculated using the meta mvregress command and overall 
estimates were calculated using the robumeta command.

We used the Egger method and funnel plots to assess for 
small-study effects and publication bias (Egger et al., 1997) 
and used selection models to correct for publication bias based 
on reported p-values (Iyengar & Greenhouse, 1988; Vevea & 
Hedges, 1995). The selection models were implemented using 
JASP (JASP Team, n.d.).While these statistics assessing and 
correcting for small-study effects and publication bias can pro-
vide some insight, they are univariate approaches and do not 
take into account the dependencies of effect sizes. Thus, the 
results should be interpreted with some caution.

Lastly, we estimated multivariate meta-analysis regres-
sion model with the effect sizes as the dependent variables 
and total number of pulses administered (standardized) as 
the independent variable. The variable for total pulses tested 
whether the magnitude of effect significantly differed as total 
pulses increased. All multivariate meta-analyses were two-
tailed and performed at the 0.05 alpha level using Stata: 
Version 17 (Statacorp, 2021).

Results

As outlined in Fig.  1, in our initial search 782 articles 
were screened. 329 articles remained for screening after 
duplicates were removed. Of these, 90 were not specific 
to IC-ASD, 123 investigated interventions other than TBS 
or rTMS, 55 were review or opinion articles, 4 were non-
human, and 1 was not available in English. 56 articles 
were assessed for full text eligibility; 21 focused primarily 
on adults, 11 were purely diagnostic in their focus, and 8 
included individuals with intellectual impairment (IQ < 65). 
Thus, 16 articles were included for final qualitative synthe-
sis. Of those 16 articles, 12 utilized LF-rTMS targeting the 
DLPFC, incorporated waitlist control groups which had no 
statistically significant changes in symptoms over the study 
duration, had extractable base and endpoint data and were 
thus, included in the meta-analysis.

Qualitative Review Summary

Qualitative results of our review are outlined in Tables 1 
and 2. Table 1 includes studies with waitlist control groups 
and sham TMS controls. Table 2 includes studies without a 
control group and those which included baseline neurotypi-
cal (NT) controls. In studies reviewed, sample sizes ranged 
from an n = 13 (Sokhadze et al., 2009) to n = 124. (Sokhadze 
et al., 2018) The maximum age of participants was 23 years 
with the single exception being the study by Ameis and col-
leagues which had a maximum age of 35 years and an aver-
age age of 22.6 years. (Ameis et al., 2020) Biologic sex was 
reported in all studies, with 105 females and 471 males with 
autism included in the research. Regarding assessment of 
intellectual capacities, 1/16 studies did not report quantita-
tive measures of IQ, but identified patients as IC-ASD via 
DSM-IV. (Enticott, 2012) The diagnosis of IC-ASD was 
confirmed by clinical assessment and use of DSM-IV or 
DSM-V criteria based on the year the study was conducted 
in all studies. The autism diagnostic interview-revised (ADI-
R) was incorporated in 14/16 studies (Casanova et al., 2012, 
2014, 2020, 2021; Enticott, 2012; Sokhadze et al., 2009, 
2010, 2012, 2014a, b, 2016, 2017, 2018; Wang et al., 2016) 
and the autism diagnostic observation schedule (ADOS) in 
2/9. (Ameis et al., 2020; Ni et al., 2021) See Tables 1 and 2 
for ascertainment criteria of each study.

Study Design

As seen on Table 1, 9/16 studies incorporated control groups 
for the duration of the study which included waitlist groups in 
6/9 (Casanova et al., 2012; Sokhadze et al., 2009, 2012, 2014a, 
b, 2018) and sham TMS in 3/9. (Ameis et al., 2020; Enticott, 
2012; Ni et al., 2021) Randomization occurred in 7/9 studies; 
(Ameis et al., 2020; Casanova et al., 2012; Enticott, 2012; Ni 
et al., 2021; Sokhadze et al., 2012, 2014a, b, 2018) the two stud-
ies which were not randomized assigned patients to the waitlist 
control based on commitment to the research and feasibility of 
follow up. (Sokhadze et al., 2009, 2014a, b) 7/9 were unblinded 
trials. (Casanova et al., 2012; Enticott, 2012; Sokhadze et al., 
2009, 2012, 2014a, b, 2018) Ni and colleagues conducted a ran-
domized, single blind and sham controlled trial. (Ni et al., 2021) 
Ameis and colleagues conducted the lone randomized, parallel, 
double blind, and sham controlled trial. (Ameis et al., 2020).

As seen on Table 2, 7/16 studies did not use control 
groups for the duration of the study. (Casanova et al., 
2020, 2021; Sokhadze et al., 2010, 2014a, b, 2016, 2017; 
Wang et al., 2016) 3/7 incorporated the use of NT controls. 
(Casanova et al., 2020, 2021; Sokhadze et al., 2016) Nota-
bly, NT controls were not exposed to TMS. Rather, they 
underwent cognitive testing to compare initial results in 
the IC-ASD group to NT controls; only IC-ASD partici-
pants were exposed to TMS. 3/7 studies also investigated 
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autonomic dysregulation in response to LF-rTMS and 
found improvement in autonomic measures such as skin 
conductance level (SCL) and heart rate variability (HRV) 
which was positively correlated with improvements in 
behavioral measures. (Casanova et al., 2014; Sokhadze 
et al., 2017; Wang et al., 2016).

TMS Parameters

15/16 studies used rTMS (Ameis et al., 2020; Casanova et al., 
2012, 2014, 2020, 2021; Enticott, 2012; Sokhadze et al., 2009, 
2010, 2012, 2014a, b, 2016, 2017, 2018; Wang et al., 2016) 
with 14/15 being LF-rTMS (0.5–1 Hz). (Casanova et al., 2012, 
2014, 2020, 2021; Enticott, 2012; Sokhadze et al., 2009, 2010, 
2012, 2014a, b, 2016, 2017, 2018; Wang et al., 2016) Ameis 
and colleagues were the only study to investigate the effects of 

HF-rTMS, utilizing 20 Hz of stimulation. (Ameis et al., 2020) 
The DLPFC was targeted in 14/16 studies: (Ameis et al., 2020; 
Casanova et al., 2012, 2014, 2020, 2021; Sokhadze et al., 2009, 
2010, 2012, 2014a, b, 2016, 2017, 2018; Wang et al., 2016) 
specifically the LtDLPFC in 13/16, RtDLPFC in 11/16, and 
bilateral DLPFC (BiDLPFC) in 9/16. The 2012 study by Enti-
cott and colleagues represents the only study to modulate the 
left primary motor cortex (M1) and the supplemental motor 
area (SMA). The study was cross-over in design with partici-
pants receiving either Left M1, SMA, and sham TMS over 
three weekly sessions. (Enticott, 2012) Ni and colleagues con-
ducted the only TBS study, using the excitatory iTBS protocol 
(Huang et al., 2005) to stimulate the posterior superior tem-
poral sulcus (pSTS) bilaterally. Specific information regarding 
dosing schedules can be found in Tables 1 and 2.

Fig. 1  PRISMA 2020 flow 
diagram for new systematic 
reviews which included searches 
of databases and registers only. 
*Consider, if feasible to do so, 
reporting the number of records 
identified from each database 
or register searched (rather 
than the total number across 
all databases/registers). **If 
automation tools were used, 
indicate how many records were 
excluded by a human and how 
many were excluded by automa-
tion tools

Records identified from:
Databases

PubMed (n = 608)
Embace (n = 174)

Registers (n = 0)
Bibliography review (n=0)

Records removed before 
screening:

Duplicate records removed
(n = 452)
Records marked as ineligible 
by automation tools (n = 0)
Records removed for other 
reasons (n = 0)

Records screened:
(n = 329)

Records excluded:
(n = 273)

Reports sought for retrieval:
(n = 56)

Reports not retrieved:
(n = 0)

Reports assessed for eligibility
(n = 56)

Reports excluded:
Adult Focus (n = 21)
Diagnostic Study (n = 11)
IQ below 65 (n = 8)

Studies included in review
(n = 16)
Reports of included studies
(n = 16)
Studies included in meta-
analysis (n=12)

Identification of studies via databases and registers
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Of studies which targeted the DLPFC, the site of TMS 
modulation was 5 cm anterior, and in the parasagittal plane, 
to site of first dorsal interossei muscle (FDI) maximal stimu-
lation in 13/14 studies. (Casanova et al., 2012, 2014, 2020, 
2021; Enticott, 2012; Sokhadze et al., 2009, 2010, 2012, 
2014a, b, 2016, 2017, 2018; Wang et al., 2016) Studies by 
Ameis and Ni incorporated MRI guided individual neuro-
navigation. (Ameis et al., 2020; Ni et al., 2021; Rusjan et al., 
2010) Additionally, compared to other studies investigated, 
the studies by Ni and Ameis administered significantly more 
total TMS pulses over the study period; delivering 30,000 
rTMS pulses over a 4 week course of treatment (Ameis 
et al., 2020) and 38,400 iTBS pulses over an 8 week period, 
respectively. (Ni et al., 2021) Comparatively, the next high-
est number of pulses recorded were 3,240 occurring over 
an 18-week period. This was done in 6/14 studies target-
ing the DLPFC. (Casanova et al., 2020, 2021; Sokhadze 
et al., 2014a, b, 2016, 2018) While no significant adverse 
effects or seizures were reported over all studies investi-
gated, only the studies by Ni and Ameis reported specific 
adverse effects. Both studies reported mild and transient side 
effects, the most frequent of which was mild headache and 
pain at the TMS application site. (Ameis et al., 2020; Ni 
et al., 2021).

Outcome Measures

9/16 studies measured cognitive and behavioral outcomes 
of TMS intervention; (Casanova et al., 2012, 2020, 2021; 
Sokhadze et al., 2009, 2010, 2014a, b, 2016, 2018) 3/16 
exclusively investigated cognitive measures (Ameis 
et al., 2020; Enticott, 2012; Sokhadze et al., 2012) and 
4/16 exclusively behavioral measures. (Casanova et al., 
2014; Ni et al., 2021; Sokhadze et al., 2017; Wang et al., 
2016) Behaviorally, the social responsiveness scale (SRS-
2) (Constantino & Gruber, 2012) was included in 6/16 
behavioral studies (Casanova et al., 2012; Ni et al., 2021; 
Sokhadze et  al., 2014a, b, 2017) and reported in 4/6, 
(Casanova et al., 2012; Ni et al., 2021; Sokhadze et al., 
2010; G. E. Sokhadze et al., 2017) repetitive behavioral 
scale-revised (RBS-R) (Lam & Aman, 2007) was used in 
all thirteen studies, and the aberrant behavioral checklist 
(ABC) (Aman et al., 1985) was used in 12/13. (Casanova 
et al., 2012, 2014, 2020, 2021; Sokhadze et al., 2014a, b, 
2017; Wang et al., 2016) Of those which reported SRS-2 
results, Sokhadze 2010 and Casanova et al., 2012 found no 
significant changes in SRS-2 measures in response to LF-
rTMS of the LtDLPFC or of the LtDLPFC and RtDLPFC, 
respectively. (Casanova et al., 2012; Sokhadze et al., 2010) 
Sokhadze 2017 reported statistically significant reductions 
in the SRS-2 domains of social awareness and social cog-
nition at the end of the 18-week trial. (Sokhadze et al., 
2017) Ni and colleagues, observed statistically significant N
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improvement in the total SRS-2 score at 8 weeks follow-
ing iTBS treatments to the bilateral STS following the 
open-label phase of the study in the active-active group 
(8 weeks of active treatment), but not in sham-active group 
(4 weeks of active treatment). Baseline SRS-2 score in the 
active-active group 107.3 (24.0) at week 1 to 98.5 (28.7) 
at week 8. Notably, when divided into subdomains, sta-
tistically significant improvement in the SRS-2 scale was 
observed only in the domains of autistic mannerisms and 
social communication in the active-active group. (Ni et al., 
2021) Post-TMS results from the RBS-R were reported 
in all thirteen studies with only one study not reporting a 
reduction in total score. (Casanova et al., 2021) Regarding 
subscales, reductions in stereotypic, ritualistic, and com-
pulsive subscales were reported in 8/13, 6/13, and 4/13 
studies, respectively. (Casanova et al., 2012, 2014, 2020, 
2021; Sokhadze et al., 2014a, b, 2016, 2017; Wang et al., 
2016) Notably, similar to their SRS-2 findings, Ni and 
colleagues reported reductions in total RBS-R score by 
week 8 in the active-active group of their study; improve-
ments were not observed in the sham-active group. (Ni 
et al., 2021) Results from the ABC were reported in 11/13 
studies; statistically significant reductions in hyperactivity, 
irritability, social withdrawal / lethargy, stereotypic behav-
ior, and inappropriate speech were reported in 10/13, 7/13, 
5/13, 1/13, and 1/13 studies, respectively. (Casanova et al., 
2012, 2014, 2020, 2021; Sokhadze et al., 2009, 2014a, b, 
2016, 2017, 2018; Wang et al., 2016).

12/16 studies investigated cognitive outcomes (Ameis 
et al., 2020; Casanova et al., 2012, 2020, 2021; Enticott, 2012; 
Sokhadze et al., 2009, 2010, 2012, 2014a, b, 2016, 2018) with 
10/12 incorporating use of event related potentials (ERP) via 
the Kanizsa oddball task. (Casanova et al., 2012, 2020, 2021; 
Sokhadze et al., 2009, 2010, 2012, 2014a, b, 2016, 2018) The 
task involves the presentation of targets, non-targets, and dis-
tracters for the participant to identify. Behavioral response 
changes which occur during the task are then measured. They 
include the following: ERP, reaction time, error rates, and 
accuracy. (Kanizsa, 1976) In these studies, the rate of com-
mission, omission, and total errors was measured pre- and 
post-TMS after subjects were exposed to the Kanizsa odd-
ball task. Improvements in the rate of omission, commission, 
and total errors were reported in 3/10, 5/10, and 8/10 studies, 
respectively. (Casanova et al., 2012, 2020, 2021; Sokhadze 
et al., 2009, 2010, 2012, 2014a, b, 2016, 2018) In their assess-
ment of cognitive outcomes, Ameis and colleagues were the 
lone study (Ameis et al., 2020) to use the Behavioral Rat-
ing Inventory for Executive Function (BRIEF)-Self Report 
(SR) Version or BRIEF-Adult, (Rosenthal et al., 2013) the 
CANTAB spatial working memory task, (CANTAB Cogni-
tive Research Software, n.d.) and Vineland Adaptive Behavior 
Scale–II (VABS-II), a standardized measure of daily func-
tioning. (Sparrow & Cicchetti, 1985) Overall, they found no 

significant difference between active and sham rTMS on EF, 
defined as the higher order cognitive functions necessary for 
flexibly shifting focus, regulating and controlling behavior, 
and working memory. (Pellicano, 2012). However, individu-
als with lower baseline adaptive functioning per the VABS-II 
experienced significant improvement in the active vs sham 
rTMS group. (Ameis et al., 2020) Lastly, the 2013 study by 
Enticott and colleagues which investigated the use of LF-
rTMS to the left primary motor cortex and SMA sought to 
improve movement-related cortical potentials (MRCP) often 
impaired in IC-ASD. (Enticott, 2012; Rinehart et al., 2006) 
rTMS to the SMA and left primary motor strip was found to 
be associated with a gradient increase to the early component 
and late component of MRCPs respectively. Overall, they 
noted that this improvement in movement related electrophysi-
ological activity may be due to LF-rTMS influence on cortical 
inhibitory processes. (Enticott, 2012).

Meta‑analysis Results

Of the 16 articles identified, twelve had extractable data 
for meta-analysis of behavioral or cognitive outcomes in 
patients administered TMS treatment. (Casanova et  al., 
2012, 2014, 2020, 2021; Sokhadze et  al., 2009, 2010, 
2012, 2016, 2018; Wang et al., 2016).

Behavioral Outcomes

Fifty-two behavioral measures from ten studies were 
included in the meta-analysis of behavioral outcomes and 
the results are reported in Tables 1, 2, 3 and Fig. 2A, B. 
The multivariate meta-analysis with robust variance estima-
tion showed an overall significant improvement in behav-
ioral outcomes after treatment with TMS (pooled Hedges’ 
g = 0.435, 95% CI = 0.359, 0.511; p < 0.001). The Q-test was 
significant (p < 0.001) and the joint  I2

JWR was 98.92%, indi-
cating high heterogeneity and suggesting the outcomes were 
not estimating a common Hedges’ g. There was significant 
evidence of small-study effects as determined by Egger’s 
test (p < 0.001) in Stata and publication bias as determined 
by selection modeling in JASP (p < 0.001). Selection mod-
eling indicated that the pooled effect size after adjust-
ing for publication bias was 0.443 (95% CI: 0.385, 0.500; 
p < 0.001). However, this result should be interpreted with 
caution because there was no way to account for dependen-
cies among effect sizes.

Stratified multivariate analyses by behavioral scale 
showed similar patterns (Tables 1, 2, 3 and Fig. 2A, B). For 
all seven scales (ABC Hyperactivity, Irritability, and Leth-
argy/Social Withdrawal; RBS-R Compulsive Behavior, Ritu-
alistic/Sameness Behavior, Stereotypic Behavior, and Total), 
the pooled Hedges’ g effect sizes, while small to moder-
ate in size, indicated significant improvement with TMS 
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treatment (all p < 0.001) and ranged from 0.297 for ABC 
Hyperactivity to 0.638 for RBS-R Total. Heterogeneity was 
low for the all three ABC scales and the RBS-R Compulsive 
Behavior and Ritualistic/Sameness Behavior with  I2

JWR sta-
tistics ranging from 0.00% to 5.42% (Table 3). Heterogene-
ity for the remaining two RBS-R scales was considerably 
higher with  I2

JWR = 37.14% for Stereotypic Behavior and 
 I2

JWR = 69.89% for Total. Furthermore, when we included 
total pulses in the model there was a significant association 
between total pulses and the effect of TMS when looking at 
the ABC Hyperactivity scale (p = 0.02). The effect of TMS 
on ABC Hyperactivity significantly increased as total pulses 
increased. There was no association between total pulses and 
the effect of TMS for any of the other scales.

Cognitive Outcomes

Eleven cognitive measures from eight studies were 
included in the meta-analysis of cognitive outcomes and 
the results are reported in Tables 1, 2, 3 and Fig. 2C. The 
multivariate meta-analysis with robust variance estima-
tion showed an overall significant improvement in cogni-
tive outcomes after treatment with TMS (pooled Hedges’ 
g = 0.735, 95% CI = 0.242, 1.228; p = 0.009). The Q-test 
was significant (p < 0.001) and the joint  I2

JWR was 97.39%, 
indicating high heterogeneity and suggesting the outcomes 
were not estimating a common Hedges’ g. There was sig-
nificant evidence of small-study effects as determined by 
Egger’s test in Stata (p < 0.001) and publication bias as 
determined by selection modeling in JASP (p < 0.001). 
Selection modeling indicated that the pooled effect size 

after adjusting for publication bias was 1.671 (95% CI: 
1.334, 2.009; p < 0.001). However, this result should be 
interpreted with caution because there was no way to 
account for dependencies among effect sizes.

Stratified multivariate analyses by cognitive task showed 
similar patterns (Tables 1, 2, 3 and Fig. 2C). The pooled 
Hedges’ g effect sizes for Commission Error Rate (0.759; 
p = 0.007) and Total Error Rate (0.777; p = 0.008) indicated 
significant improvement with TMS treatment. Heterogeneity 
was high for both scales with  I2

JWR = 78.37% for Commis-
sion Error Rate and  I2

JWR = 80.16% for Total Error Rate. 
When we included total pulses in the model there was no 
significant association between total pulses and the effect of 
TMS for either of the tasks (both p > 0.05).

Discussion

Our review and meta-analysis found some consistencies 
within current TMS research for the treatment of IC-ASD in 
this patient population. Regarding TMS parameters, inhibi-
tory TMS dosing was used in 14/16 studies, (Casanova et al., 
2012, 2014, 2020, 2021; Enticott, 2012; Sokhadze et al., 
2009, 2010, 2012, 2014a, b, 2016, 2017, 2018; Wang et al., 
2016) with studies by Ameis and Ni being the only excita-
tory TMS treatments.(Ameis et al., 2020; Ni et al., 2021) 
In recent work on TMS in ASD, LF-rTMS is more often 
researched compared to HF-rTMS or iTBS based on the 
neurobiological hypothesis of parvalbumin (PV) deficiency 
attributed to ASD. (Hashemi et al., 2017; Lee et al., 2017; 
Steullet et al., 2017) PV containing cells are susceptible to 

Table 3  Detailed results of the multivariate meta-analyses examining behavioral and cognitive outcomes in ASD patients treated with TMS

I2
JWR=Jackson−White−Riley multivariate heterogeneity statistic

robumeta function in Stata
a Results for each subdomain were calculated via the meta mvregress function in Stata and results for the overall estimate were calculated via the

Outcome Number of
Studies

Hedges’ g
Effect Size

Standard
Error

95% CI Test
Statistic

P-valuea I2
JWR

A. Behavioral Measures
  ABC Hyperactivity 10 0.297 0.043 (0.210, 0.383) t = 6.90  < 0.001 3.64%
  ABC Irritability 8 0.329 0.042 (0.245, 0.414) t = 7.85  < 0.001 0.00%
  ABC Lethargy/Social Withdrawal 6 0.299 0.049 (0.199, 0.399) t = 6.03  < 0.001 5.42%
  RBS-R Compulsive Behavior 4 0.355 0.047 (0.260, 0.450) t = 7.53  < 0.001 0.00%
  RBS-R Ritualistic/Sameness 7 0.422 0.041 (0.339, 0.505) t = 10.23  < 0.001 0.00%
  RBS-R Stereotypic Behavior 8 0.397 0.049 (0.297, 0.498) t = 7.98  < 0.001 37.14%
  RBS-R Total Score 9 0.638 0.079 (0.478, 0.797) t = 8.04  < 0.001 69.89%
  Overall 10 0.435 0.033 (0.359, 0.511) t = 7.99  < 0.001 98.92%
B. Cognitive Measures
  Commission Error Rate 5 0.759 0.221 (0.261, 1.259) t = 3.44 0.007 78.37%
  Total Error Rate 6 0.777 0.232 (0.254, 1.301) t = 3.36 0.008 80.16%
  Overall 8 0.735 0.207 (0.242, 1.228) t = 6.77 0.009 97.39%
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oxidative injury and make up the largest subgroup of cortical 
inhibitory interneurons. Reduced numbers of PV-express-
ing cells have been reported in human postmortem brain 
samples (Hashemi et al., 2017) and animal models of ASD. 
(Lee et al., 2017) Additionally, reduced levels of PV expres-
sion are associated with ASD-like behavioral deficits and 
sensory-motor symptoms associated with ASD. In animal 
models, long term reversal of PV deficits by pharmacologic 
or cell type specific gene rescue normalizing or diminishes 
these symptoms.(Lee et al., 2017; Mukherjee et al., 2019; 
Selimbeyoglu et al., 2017) Thus, researchers have identi-
fied a possible excitatory/inhibitory (E/I) imbalance in IC-
ASD, also termed “electrophysiological endophenotype” as 
a target of intervention in the treatment of ASD. (Rojas & 
Wilson, 2014; Sokhadze et al., 2009; Steullet et al., 2017) 
The E/I imbalance may represent glutaminergic cortical 
excitotoxicity, (Rojas, 2014) hyperplasticity due to dysfunc-
tion of N-methyl-D-aspartate receptor mediated long-term 
depression and potentiation-like plasticity mechanisms, 
or inhibitory GABAnergic dysfunction; all of which may 
be modulated by specific TMS protocols and monitored 
via electroencephalogram (EEG) guided ERP. (Buzsáki & 
Wang, 2012; Jeste & Nelson, 2009) Abnormal oscillations in 
high gamma band have been observed in this patient popula-
tion, as well as changes in TMS derived biomarkers of corti-
cal inhibition in response to the inhibitory cTBS; (Casanova 
et al., 2020, 2021; Jannati et al., 2020; Kirkovski et al., 2022; 
Oberman et al., 2016; Oberman et al., 2014a, b) adding fur-
ther evidence of an abnormal E/I balance in IC-ASD which 
may be modified by inhibitory TMS protocols. (Buzsáki & 
Wang, 2012; Casanova et al., 2020; Jeste & Nelson, 2009) 
Encouragingly, multiple studies have reported normaliza-
tion of gamma wave activity with use of LF-rTMS in IC-
ASD persons. (Brown et al., 2005; Casanova et al., 2020; 
Floris et al., 2016; Rippon et al., 2007; Snijders et al., 2013; 
Sokhadze et al., 2009, 2014a, b, 2016).

Regarding the two studies with excitatory TMS dosing, 
Ameis and colleagues utilized 20 Hz HF-rTMS in an effort 
to improve EF in IC-ASD individuals. (Ameis et al., 2020) 
Their rationale was driven by previous rTMS research in 
schizophrenia which used similar rTMS parameters and 
demonstrated improvements in cognitive and functional 
impairments in schizophrenia comparable to those observed 
in IC-ASD. (Maxwell et al., 2015) While improvements 
across the entire group were negligible in their study, indi-
viduals with significant adaptive functional impairment 
demonstrated robust EF improvements compared to sham. 
(Ameis et al., 2020) This is of clinical interest given that, 
based on the excitotoxic PV hypothesis of ASD, it may be 
assumed that HF-rTMS would have minimal clinical effect. 
However, these findings by Ameis and colleagues suggest 
that phenotypic expression of low adaptive functioning abili-
ties in IC-ASD may be an indicator of clinical response in 

the realm of EF to HF-rTMS compared to IC-ASD individu-
als with higher adaptative functioning. Furthermore, guided 
by previous neuroimaging research demonstrating pSTS 
hypofunction in ASD, (Yang et al., 2015) Ni and colleagues 
utilized the iTBS protocol in their work. They found that 
significant clinical response was more likely for individuals 
with baseline higher intellectual functioning, better social 
cognitive performance, and less attention deficit hyperactiv-
ity disorder symptomology, and when treatment occurred 
over the course of 8 weeks rather than 4 weeks. (Ni et al., 
2021) The direct correlation between time in treatment and 
clinical response was observed by Sokhadze in 2018 as well. 
(Sokhadze et al., 2018) Thus, future research is warranted 
regarding greater clarification and identification of possible 
ASD subtypes, their neurobiologic underpinnings, outcome 
measures specific to a site of TMS modulation, (Cole et al., 
2019) as well as the possible correlation between clinical 
response and time in TMS treatment.

TMS coil placement technique was investigated as well. 14/16 
studies targeted the DLPFC (Ameis et al., 2020; Casanova et al., 
2012, 2014, 2020, 2021; Sokhadze et al., 2009, 2010, 2012, 
2014a, b, 2016, 2017, 2018; Wang et al., 2016) with 13/14 using 
the traditional “5 cm rule” of coil placement at 5 cm anterior, and 
in the parasagittal plane, to the site of FDI maximal stimulation. 
(Casanova et al., 2012, 2014, 2020, 2021; Sokhadze et al., 2009, 
2010, 2012, 2014a, b, 2016, 2017, 2018; Wang et al., 2016) Cur-
rent TMS literature suggests that when the “5 cm rule” is used, 
the DLPFC is not accurately targeted in 33% (George, 2010) to 
68% of individuals, (Herwig et al., 2001) leading.

In our review, Ameis and Ni conducted the only two stud-
ies to incorporate use MRI guided TMS targeting. (Ameis 
et al., 2020; Ni et al., 2021) In light of this information and 
regular use neuronavigation in other TMS research areas, 
(Cole et al., 2020; Li et al., 2020) consideration of either 
MRI guided or Beam F3 targeting in future research is 
warranted.

The results of our meta-analysis were divided into two 
sections, behavioral and cognitive. In the behavioral realm, 
the ABC and RBS-R results were indicative of mild to 
moderate clinical improvements. Cognitively, the Kanizsa 
oddball task was used most often. (Kanizsa, 1976) The 
results of our meta-analysis indicate large and significant 
improvements in rates of total errors and commission errors 
with LF-rTMS treatment. However, our study was limited 
quantitatively as we were able to retrieve only published 
and statistically significant data which primarily character-
ized criterion B symptoms of ASD. Additionally, only 12/16 
studies were able to be included in the meta-analysis due to 
availability of data, TMS protocols, and target of treatment. 
However, reported improvements in RRB via this treatment 
modality is encouraging in light of the fewer pharmacologi-
cal options in treatment of criterion B symptoms. (American 
Psychiatric Association, 2013; Zhou et al., 2021).
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Fig. 2  Meta-analyses of Behav-
ioral Scale and Cognitive Task 
Change Scores in ASD Patients 
Administered TMS Treatment 
A Meta-analysis of Behavioral 
Scale Change Scores: ABC B 
Meta-analysis of Behavioral 
Scale Change Scores: RBS-R 
C Meta-analysis of Kanizsa 
Oddball Cognitive Task

Hedges’ g
Worsening Improvement

-analysis of Behavioral Scale Change Scores: ABC Subscales
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Limitations

Our study has several limitations. In controlled studies, 
blinding was done inconsistently, randomization did not 
occur in 2/9 studies due to feasibility concerns, (Sokhadze 
et al., 2009, 2014a, b) and waitlist controls were often 
utilized over sham TMS. Waitlist controls demonstrate IC-
ASD symptom stability over time rather than fully inves-
tigating for a placebo response as would be observed with 
sham controls. 4/16 (Sokhadze et al., 2010, 2016, 2017; 
Wang et al., 2016) studies had no control group and 3/16 
incorporated NT individuals as controls only for baseline 
data. (Casanova et al., 2020, 2021; Sokhadze et al., 2016) 
Thus, only 2/16 studies in our systematic review were 
randomized control trials, (Ameis et al., 2020; Ni et al., 
2021) and all studies included in the meta-analysis were 
open label in design. This is of significant importance in 
pediatric TMS research design as recent literature reports 
a lack of separation from sham TMS when investigating 
the use of TMS in the treatment of adolescent refractory 
MDD. (Croarkin et al., 2021) In our review, Ameis and 
colleagues conducted the only double blinded, sham con-
trolled, and parallel study; a design urgently needed in 
future research. (Ameis et al., 2020) We were also lim-
ited in our investigation into the core social features of 
IC-ASD. The RBS-R well characterizes a wide breath 
of Criterion B symptomology (Lam & Aman, 2007) and 

was measured in all reviewed behavioral studies. Signifi-
cant improvements in the ABC subscales of hyperactivity 
and irritability were also frequently reported, though are 
likely influenced primarily by Criterion B symptomology. 
In contrast, improvements in socially mediated symptoms 
were not as well characterized. Significant improvements 
in the ABC subdomain of lethargy/social withdrawal were 
reported in 5/13 behavioral studies. (Casanova et al., 2021; 
Sokhadze et al., 2016, 2014a, b, 2017, 2018) The SRS-2 
well characterizes social symptom burden, (Constantino & 
Gruber, 2012) but was only used in 6/16 behavioral studies 
(Casanova et al., 2012; Ni et al., 2021; Sokhadze et al., 
2009, 2010, 2014a, b, 2017) and results were reported in 
4/6. (Casanova et al., 2012; Ni et al., 2021; Sokhadze et al., 
2010, 2017) Moreover, 2/4 found no statistically signifi-
cant improvement in SRS-2 scores. (Casanova et al., 2012; 
Sokhadze et al., 2009) Additionally, because we relied on 
data reported by authors, we were restricted by what inves-
tigators chose to present. There are also very few studies 
with small sample sizes that could lead to inflated esti-
mates of effect sizes due to a publication bias which favors 
the publication of positive over negative studies. While 
attempts were made to adjust for publication bias using 
selection models, the results need to be interpreted with 
caution given there was not a way to correct for depend-
encies among effect sizes. Likewise, the small number of 
studies and lack of control for dependencies among effect 

E. Sokhadze (2012)

E. Sokhadze (2014a)

E. Sokhadze (2014b)

E. Sokhadze (2016)

Casanova (2020)

E. Sokhadze (2010)

Casanova (2012)

E. Sokhadze (2014a)

E. Sokhadze (2016)

Casanova (2020)

Casanova (2021)

Commission Error Rate

Total Error Rate

Commission Error Rate Overall
Total Error Rate Overall

Study

1800

3240

3240

3240

3250

900

1800
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3250

3240

Total Pulses

12 weekly

18 weekly

18 weekly

18 weekly

18 weekly

6 sessions

12 weekly

18 weekly

18 weekly
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18 weekly

Session Frequency

Hedges’ g
Worsening Improvement

C. Meta-analysis of Kanizsa Oddball Cogni
ve Task Change ScoresFig. 2  (continued)
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sizes also limits the confidence we can place on Egger’s 
test for small-study effects.

Other limitations include a lack of reporting on patient 
sociodemographic factors, an absence of multi-center tri-
als, limited involvement of other research groups as M. F. 
Casanova or E.M. Sokhadze were authors on 13/16 studies. 
(Casanova et al., 2012, 2014, 2020, 2021; Sokhadze et al., 
2009, 2010, 2012, 2014a, b, 2016, 2017, 2018; Wang et al., 
2016) Moreover, as observed in other areas of IC-ASD 
research, biologically female IC-ASD patients were under-
represented. (Mo et al., 2021) In studies investigated, the 
ratio of male to female was nearly 4.5:1 rather than 3:1 as 
reported in recent literature. (Loomes et al., 2017) In addi-
tion, while the average age of the study by Ameis and col-
leagues was 22, their maximum age was 35; serving as an 
outlier in our systematic review. (Ameis et al., 2020) Lastly, 
results from behavioral measures may be limited by inform-
ant- vs self-reporting. Close family members are often used 
as informants. However, many family members of individu-
als with ASD carry the diagnosis or demonstrate autistic 
traits without meeting criteria of the disorder (Rubenstein 
et al., 2019) and often under report symptoms in others 
which they experience. (De la Marche et al., 2015) Addi-
tionally, due to interpersonal and social deficits observed in 
ASD, self-appraisal of social/emotional symptoms can be 
uniquely challenging. (Rankin et al., 2016).

Conclusions

Overall, the results of our review and meta-analysis indicate that 
TMS and TBS may be a safe therapeutic option for pediatric 
and young adult individuals with IC-ASD. Additionally, that 
RRBs as well as cognitive and EF deficits may be therapeu-
tically targeted via TMS pulses to the DLPFC. Notably, the 
study by Ni and colleagues shows promise for improvement in 
social symptoms via targeted TBS pulses to the pSTS. (Ni et al., 
2021) However, the results of our study are limited by a lack of 
randomized sham-controlled trials, an inability to include ran-
domized control trials in our meta-analysis, likely TMS pulse 
underdosing, inconsistent use of neuronavigation, and under-
representation of biologically female individuals. Regardless, 
given current limitations and side effect profiles associated with 
psychopharmacologic treatment of ASD, (Alfageh et al., 2019; 
Hutton, 2008; Smith & Pierce, 2022; Zhou et al., 2021) con-
tinued research into TMS as a therapeutic option in IC-ASD is 
warranted. Moreover, it is possible that future research investi-
gating modulation of other neural networks and cortical regions 
may result in improvement to other IC-ASD symptom domains. 
(Guo et al., 2019; Joshi et al., 2019; Williams, 2016) Specifi-
cally, attempts to target the default mode, salience, and affective 
networks may be of benefit as they are commonly associated 

with complex cognitive and emotional tasks which may be chal-
lenging for individuals with ASD. (Lavin et al., 2013; Singh 
et al., 2020; Smith et al., 2019; Williams, 2016) Given the high 
prevalence of suicidality, mood and anxiety disorders in autistic 
youth, future research should also consider targeting these co-
morbidities via TMS. (Hollocks et al., 2019; O’Halloran et al., 
2022; Schwartzman et al., 2021) Lastly, relative to current TMS 
research on other neuropsychiatric conditions, the number of 
TMS pulses administered in 14/16 IC-ASD TMS studies were 
significantly lower; (Casanova et al., 2012, 2014, 2020, 2021; 
Enticott, 2012; Sokhadze et al., 2009, 2010, 2012, 2014a, b, 
2016, 2017, 2018; Wang et al., 2016) raising concern for under-
dosing. (Carmi et al., 2019; Cole et al., 2020; Li et al., 2020).

Regarding use of specific TMS modalities, 15/16 stud-
ies in our review utilized rTMS. (Ameis et  al., 2020; 
Casanova et al., 2012, 2014, 2020, 2021; Enticott, 2012; 
Sokhadze et al., 2009, 2010, 2012, 2014a, b, 2016, 2017, 
2018; Wang et al., 2016) However, given the promising 
work from Ni and colleagues (Ni et al., 2021) and that 
TBS has been safely used in similar patient populations, 
(Elmaghraby et al., 2021) can be rapidly administered in 
accelerated protocols, has been researched as a diagnostic 
tool to detect IC-ASD in pediatric patients, (Cole et al., 
2020; Huang et al., 2005; Jannati et al., 2020; Pedapati 
et al., 2016) use of TBS should be strongly considered 
in future work. Moreover, given the absence of seizure 
activity uncovered in our review and very low frequency 
reported in others, (Elmaghraby et  al., 2021) further 
research into TBS and dTMS as a therapeutic option in 
IC-ASD is warranted. (Cole et al., 2020) Although, known 
ethical considerations must be taken into account. (Davis, 
2014; Maslen et al., 2014).

In summary, the field of IC-ASD TMS research would 
undoubtably benefit from greater use of neuronavigation 
software, (Herwig et al., 2001; Nauczyciel et al., 2011) 
robust study design, (Croarkin et al., 2021) gender match-
ing, use of agreed upon and consistent TMS protocols, 
as well as increased reporting of sociodemographic fac-
tors. Additionally, incorporation, focus, and reporting on 
outcomes measures related to criterion A of IC-ASD as 
well as adaptive functioning is needed to obtain a greater 
understanding of phenotypic expression of IC-ASD and 
response to treatment. Based on our review, meta-analysis, 
and previous meta-analysis work, (Barahona-Correa, 2018) 
further investigation into the use of TMS targeting various 
networks and cortical regions for the treatment of ASD 
related social impairments and RRBs, cognitive deficits, 
common psychopathologic co-morbidities, and executive 
functioning deficits is warranted.
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