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Abstract
Recent reports suggest declines in the age-specific risk of Alzheimer’s dementia in higher incomeWestern countries. At the same
time, investigators believe that worldwide trends of increasing mid-life modifiable risk factors [e.g., cardiovascular disease
(CVD) risk factors] coupled with the growth of the world's oldest age groups may nonetheless lead to an increase in
Alzheimer’s dementia. Thus, understanding the overlap in neuroanatomical profiles associated with CVD risk factors and AD
may offer more relevant targets for investigating ways to reduce the growing dementia epidemic than current targets specific to
isolated AD-related neuropathology. We hypothesized that a core group of common brain structural alterations exist between
CVD risk factors and Alzheimer’s dementia. Two co-authors conducted independent literature reviews in PubMed using search
terms for CVD risk factor burden (separate searches for ‘cardiovascular disease risk factors’, ‘hypertension’, and ‘Type 2
diabetes’) and ‘aging’ or ‘Alzheimer’s dementia’ with either ‘grey matter volumes’ or ‘white matter’. Of studies that reported
regionally localized results, we found support for our hypothesis, determining 23 regions commonly associated with both CVD
risk factors and Alzheimer’s dementia. Within this context, we outline future directions for research as well as larger cerebro-
vascular implications for these commonalities. Overall, this review supports previous as well as more recent calls for the
consideration that both vascular and neurodegenerative factors contribute to the pathogenesis of dementia.
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The re la t ionship between vascula r d isease and
Alzheimer’s dementia has been discussed for decades
(de la Torre, 2010; Jellinger, 2010; Kalaria, 2010), with
work from bench to bedside (de la Torre, 2010)
attempting to elucidate the interplay of vascular dysfunc-
tion and dementia (see de la Torre, 2018 for review). As
part of this larger corpus, it has been documented that
mid-life, and to a lesser extent, late-life cardiovascular
disease (CVD) risk factors increase the risk for and devel-
opment of dementia including Alzheimer’s dementia
(Beauchet et al., 2013; Bendlin et al., 2010; Li et al.,
2016; Raz, Knoefel and Bhaskar, 2016; Suzuki et al.,
2019; Tolppanen, Solomon, Soininen and Kivipelto,
2012). In fact, CVD risk factors are no longer seen as
more relevant to vascular dementia as once thought, but
rather reflective of cerebrovascular alterations that may
not only contribute to Alzheimer’s dementia (Nelson,
Sweeney, Sagare and Zlokovic, 2016), but may also be
seen as a common etiology shared among all dementias
(Raz et al., 2016). Yet drug development and recent NIA-
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AA research criteria for Alzheimer’s disease (Jack Jr.
et al., 2018) continue to focus primarily on amyloid- or
tau-based biomarkers despite the fact that they may not
reflect the complete picture of neuropathological alter-
ations present in individuals with Alzheimer’s dementia
at death (Kapasi , DeCarli and Schneider, 2017;
Yarchoan et al., 2012). For example, over 230 different
combinations of neuropathologies that have been reported
to date (Boyle et al., 2018). Thus, considering the poten-
tial overlap of brain structural alterations associated with
CVD risk factors and Alzheimer’s dementia may offer
relevant, more inclusive, targets for drug development
and clinical trials, including trials of already available
drugs on the market for CVD risk factor management
(e.g., Sprint Mind Investigators for the SPRINT
Research Group et al., 2019).

The two-hit vascular hypothesis for Alzheimer’s disease
(Zlokovic, 2011) includes CVD risk factors as part of ‘hit
one’ that leads to the blood-brain barrier dysfunction and
reduced cerebral blood flow that precedes dementia, with
‘hit two’ characterized by an increase in beta-amyloid am-
plifying neuronal dysfunction, neurodegeneration and dis-
ease. As such, we reviewed the literature for commonali-
ties between grey and white matter as well as subcortical
structural alterations associated with CVD risk factors and
Alzheimer’s dementia to better understand the structural
commonalities of regional vulnerabilities associated with
the early stages of disease. More specifically, two co-
authors conducted independent literature reviews in
PubMed using search terms for CVD risk factor burden
(separate searches for ‘cardiovascular disease risk factors’,
‘hypertension’, and ‘Type 2 diabetes’) and ‘aging’ or
‘Alzheimer’s dementia’ with either ‘grey matter volumes’
or ‘white matter’. We hypothesized that our review of stud-
ies reporting regionally localized results would reveal a set
of overlapping brain structural alterations across studies of
CVD risk factors and Alzheimer’s dementia. Results of
this review are placed within the larger context of the rela-
tionship between vascular disease and Alzheimer’s demen-
tia. Additionally, we discuss future directions for structural
neuroimaging research strategies incorporating commonal-
ities across CVD risk factors and Alzheimer’s dementia for
a more holistic approach to understanding cognitive aging
and dementia. Lastly, we describe the larger cerebrovascu-
lar implications of this work. It is our belief that only with-
in this more integrated framework to brain aging, i.e., one
that considers a more complete picture of the neuroanatom-
ical alterations associated not only with Alzheimer’s de-
mentia but also CVD risk factors and how they relate to
real-world cognitive outcomes, will we be able to move
beyond increasingly isolated and unsuccessful clinical tri-
als to slow and ultimately stop risk for and development of
Alzheimer’s dementia.

Literature Review

Neuroimaging of Grey Matter and Subcortical
Structures

Cardiovascular Disease Risk

Studies examining composite CVD risk factor burden scores
that incorporate multiple risk factors such as hypertension,
Type 2 diabetes mellitus, smoking, hypercholesterolemia,
and obesity, report relationships between increased CVD risk
factor burden and decreased regional grey matter and subcor-
tical structures (Table 1, Column A). For example, increased
CVD risk factor burden was associated with decreased frontal
and more posterior regional brain volumes as well as hippo-
campal volumes across participants between the fourth to
eight decades of life (Cardenas et al., 2012; Debette et al.,
2011; Gonzales et al., 2017; Lamar et al., 2015; Leritz et al.,
2011). A review of the literature by Friedman and colleagues
further confirms that in individuals without a history of overt
cardiovascular disease, the presence of CVD risk factors is
associated with these same structural brain changes
(Friedman et al., 2014). Lastly, cumulative CVD risk factor
burden has also been associated with a reduction of subcorti-
cal volumes in the hippocampus, and several subcortical struc-
tures including the nucleus accumbens, caudate, putamen,
pallidum, and thalamus (Cox et al., 2019). While composite
CVD risk factor burden scores are useful in conceptualizing
cumulative risk, they do not reveal the separate contributions
of individual CVD risk factors such as hypertension and dia-
betes mellitus to grey matter structural alterations in the aging
brain.

Mid-life CVD risk factors including hypertension and
diabetes mellitus have been linked to late-life alterations
in whole brain as well as regional grey matter and subcor-
tical structures, with less, albeit still robust, evidence sug-
gesting late-life CVD risk factors are also associated with
late-life structural alterations (see Table 1, Column A and
Friedman et al., 2014 for review). For example, hyperten-
sion has been associated with cross-sectional differences
and increased rates of change in whole brain atrophy in
older adults (Firbank et al., 2007; Wiseman et al., 2004)
as well as specific hippocampal vulnerability (Firbank
et al., 2007; Wiseman et al., 2004). In a qualitative review
of approximately 30 studies conducted in mid- to late-life
adults (i.e., 45 to 80 years of age), hypertension as well as
higher blood pressure in individuals without hypertension
were associated with reductions in frontal, parietal, and
temporal lobe volumes as well as hippocampal volumes
(Beauchet et al., 2013). More recently, an analysis of ap-
proximately 10,000 mid- to late-life participants in the UK
Biobank revealed that hypertension was linked to alter-
ations in global brain outcomes as well as regionally
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specific alterations within the frontal and temporal lobes
and subcortical structures including the pallidum, accum-
bens, thalamus, putamen, hippocampus, and amygdala
(Cox et al., 2019). A recent study in the mid-life
CARDIA cohort confirmed the basal ganglia-thalamic sig-
nature of elevated blood pressure exposure (Jenkins et al.,
2020).

Many of these same results have been reported for mid-
and late-life adults with diabetes mellitus (see Table 1,
Column A; and Moulton, Costafreda, Horton, Ismail and
Fu, 2015 for review). Diabetes mellitus has been associated
with decreased whole brain volumes, particularly grey mat-
ter volumes (Bryan et al., 2014; Reitz et al., 2017); an as-
sociation recently highlighted in a systematic review (Wu,
Lin, Zhang and Wu, 2017). Additionally, work detailing
cerebral localization of diabetes mellitus associates has re-
ported reductions within frontal and temporal regions, in
the presence of mid- (e.g., Bruehl et al., 2009; Moran
et al., 2013) as well as late-life diabetes mellitus (e.g, Erus
et al., 2015; Kumar et al., 2008), although, more severe
diabetes mellitus has been associated with smaller volumes
of all lobes (Schneider et al., 2017). Regional implications
of longer duration diabetes mellitus include middle and
inferior frontal gyri, precentral and posterior cingulate cor-
tices, as well as middle and inferior temporal cortices in
young-old to older adults (Erus et al., 2015; Moran et al.,
2013). There are also multiple reports of associations be-
tween diabetes mellitus and volumetric reductions in the
limbic system (Erus et al., 2015) including the hippocam-
pus (Cui, Abduljalil, Manor, Peng and Novak, 2014; Moran
et al., 2013; Reitz et al., 2017; Roberts et al., 2014; Y. W.
Zhang et al., 2015), the amygdala, as well as subcortical
structures including the putamen (Cox et al., 2019; D. Cui
et al., 2019), the caudate, thalamus, and nucleus accumbens
(Chen et al., 2017; Cox et al., 2019). Thus, CVD risk factors
combined or in isolation have been associated with reduc-
tions in several of the same brain regions, some of which
are also implicated in risk for and development of
Alzheimer’s dementia as outlined below.

Alzheimer’s Dementia Risk and Development

Initial studies as well as more recent work investigating risk
for and development of Alzheimer’s dementia point to the
importance of key brain regions to cognitive decline and
incident dementia (Table 1, Column B). For example, vol-
ume loss in the hippocampus is either associated with or
predictive of Alzheimer’s dementia (Apostolova et al.,
2010; den Heijer et al., 2010; Fox et al., 1996; Zeifman
et al., 2015). Furthermore, longitudinal staging of brain
structural alterations suggest that early in the development
of the disease, there is atrophy of the hippocampus and
subsequent atrophic changes in the amygdala (Eskildsen

et al., 2013). In fact, loss of hippocampal and amygdala
volume along with volume loss within the posterior cingu-
late gyrus, the inferior parietal lobe and the superior frontal
lobe appear to have better prognostic accuracy for conver-
sion from an at-risk state of mild cognitive impairment
(MCI) to Alzheimer’s dementia (Zeifman et al., 2015)
when compared to clinical ratings scores used in the
Alzheimer’s Disease Neuroimaging Initiative (ADNI:
Aksu, Miller, Kesidis, Bigler and Yang, 2011). These re-
sults are consistent with the cortical signature of
Alzheimer’s dementia put forth by Dickerson and col-
leagues (Dickerson et al., 2009) who reported alterations
in the medial and inferior temporal lobes, posterior cingu-
late-precuneus, superior parietal, and superior and inferior
frontal regions forming a structural phenotype of partici-
pants with Alzheimer’s dementia. This structural pheno-
type not only correlates with disease severity ante-mortem
(Dickerson et al., 2009), but also mirrors the topography of
neuropathology found post-mortem. Despite the anatomic
similarities, relatively less work has been done comparing
the neuroimaging phenotype of Alzheimer’s dementia with
the neuroimaging phenotype of CVD risk factors in older
adults.

Commonalities across CVD Risk Factors and Alzheimer’s
Dementia

As a result of this review, several grey matter and subcor-
tical structures appear to be consistently associated with
CVD risk factor burden, hypertension, or diabetes mellitus,
as well as Alzheimer’s dementia (Table 1). More specifi-
cally, 23 areas appeared to be commonly, congruently as-
sociated with our select indices of CVD risk and
Alzheimer’s dementia. These areas include the superior
frontal gyrus, inferior frontal gyrus (pars opercularis, pars
triangularis, pars orbitalis), rostral and caudal middle fron-
tal gyrus, caudal and rostral anterior, posterior, and isthmus
cingulate cortex, entorhinal cortex, supramarginal gyrus,
middle and inferior temporal gyrus, hippocampus, amygda-
la, superior and inferior parietal cortex, the basal ganglia
(caudate, putamen, pallidum, and accumbens), and
precuneus. Although other regions showed overlap, the
congruence of these areas was not as consistent across all
studies reviewed as the 23 regions listed above and outlined
in Table 1. A recent empirical investigation of over 8000
participants in the UK Biobank to determine common,
overlapping grey matter regions between modifiable risk
factors for dementia and Alzheimer’s dementia further sup-
ported our decision making (Suzuki et al., 2019) as do re-
ports that cardiovascular disease risk factors (Silbert et al.,
2018), especially diabetes mellitus (Schneider et al., 2017;
Zeifman et al., 2015; Y. Zhang et al., 2014), are associated
with the cortical signature of Alzheimer’s dementia.
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Neuroimaging of White Matter

Cardiovascular Disease Risk

CVD risk factor burden is also associated with white matter
alterations (see Wassenaar, Yaffe, van der Werf and Sexton,
2019 for a recent review). In a large population-based lifespan
sample, a cardiovascular disease risk score revealed a causal
relationship between overall burden and white matter
hyperintensities (Habes et al., 2016) and more nuanced
diffusion-tensor imaging (DTI) derived white matter integrity
(Habes et al., 2018). Furthermore, in large-scale studies of
older adults, mid-life vascular risk exposure including hyper-
tension, current smoking, and diabetes mellitus were associ-
ated with greater white matter hyperintensity volume (Debette
et al., 2011) and reduced white matter tract integrity within
both association and commissural fibers in late-life (de Groot
et al., 2015). Lastly, a recent study reported that mid- as well
as late-life cardiovascular disease risk factors commonly in-
cluded in quantifications of total burden were associated with
changes in white matter over time (Scharf et al., 2019).

Individually, hypertension and diabetes mellitus are asso-
ciated with increased white matter hyperintensities (Debette
et al., 2011; Firbank et al., 2007; Iadecola et al., 2016;
Marseglia et al., 2019; Meusel et al., 2014) predominantly
within parietal and frontal (for hypertension; Fennema-
Notestine et al., 2016; Salvado et al., 2019) or temporal and
frontal (for diabetes; Moran et al., 2013) white matter regions.
Furthermore, DTI-derived fractional anisotropy also reveals a
loss of white matter integrity associated with these same CVD
risk factors (Gonzales et al., 2017; Haight et al., 2018;
Hoogenboom et al., 2014; Jacobs et al., 2013). Research done
in a cross-sectional study of late-middle-aged men found that
individuals reporting a longer duration of hypertension
showed lower DTI-derived measures of white matter integrity
within several association fibers connecting anterior to poste-
rior regions of brain including the inferior and superior longi-
tudinal fasciculi (McEvoy et al., 2015) with more recent stud-
ies suggesting these associations may exist independent of age
(Sabisz et al., 2019). Similar findings have been noted in more
diverse samples both cross-sectionally (Gonzales et al., 2017;
Kennedy and Raz, 2009) and longitudinally (Wang et al.,
2015a).

There is increasing evidence suggesting that these white
matter alterations maymanifest earlier than originally thought.
For example, investigators have shown tissue damage when
investigating white matter integrity in 30–40 year old adults
with elevated blood pressure (Munoz Maniega et al., 2017;
Weinstein et al., 2015) and blood glucose (Maillard et al.,
2012). These findings suggest that alterations to white matter
integrity may manifest earlier putting, mid-life to young-old
adults at increased risk for earlier pathological aging, lending
credence to an emerging hypothesis that early effects on white

matter integrity may confer a vulnerability across the lifespan
(Jefferson, 2020). When coupled with findings relating CVD
risk factors to alterations in regional white matter integrity that
are also associated with risk for and development of
Alzheimer’s dementia (see below), the assumption that CVD
risk factors influence vascular forms of dementia exclusively
is changing (Nelson et al., 2016; Raz et al., 2016), further
supporting the role of CVD risk factors in dementia regardless
of etiology (Hachinski, 2019; Nelson et al., 2016; Raz et al.,
2016).

Alzheimer’s Dementia Risk and Development

Over the past two decades, a literature has emerged showing
the importance of white matter alterations to risk for (Bangen
et al., 2018; Bryan et al., 2014; Carmichael et al., 2010; Lee
et al., 2016) and development of Alzheimer’s dementia
(Delano-Wood et al., 2009; Libon et al., 2008; Price et al.,
2012; Tosto et al., 2015). For example, periventricular white
matter hyperintensities, more prominent in Alzheimer’s de-
mentia than normal aging (Damulina et al., 2019; Sundar,
Manwatkar, Joshi and Bhandarkar, 2019), appear early in
the course of dementia with white matter damage moving
more distally to include deep white matter and finally white
matter closer to the cortex over time with increasing disease
severity (Spilt et al., 2006; Zimmerman, Fleming, Lee, Saint-
Louis and Deck, 1986). Although a recent study suggested
that maternal family history of Alzheimer’s disease was as-
sociated with higher white matter hyperintensity volumes
within temporal and occipital regions (Salvado et al., 2019),
frontal (Kao, Chou, Chen and Yang, 2019) and parietal white
matter have emerged in non-familial late-onset studies as key
regions of vulnerability associated with Alzheimer’s demen-
tia (Brickman, 2013; Kao et al., 2019). For example, white
matter hyperintensity burden within frontal and parietal re-
gions has been shown to associate with amyloid-PET in these
same regions (Graff-Radford et al., 2019). Furthermore,
higher parietal white matter hyperintensity volumes have
been reported to predict increasing levels of CSF-derived t-
tau (Tosto et al., 2015), and when combined with low base-
line levels of t-tau led to faster rates of entorhinal cortex
atrophy and faster conversion to Alzheimer’s dementia
(Tosto et al., 2015). Superior and inferior parietal, as well
as rostral and caudal middle frontal, supramarginal, and
precuneus white matter hyperintensity burden appear to dis-
tinguish MCI and Alzheimer’s dementia (Lindemer et al.,
2017a) with parietal white matter hyperintensity volume
predicting Alzheimer’s dementia (Brickman et al., 2012;
Brickman et al., 2015) and frontal, as well as temporal white
matter hyperintensities pointing to a decreasing time-to-
Alzheimer’s conversion (Lindemer, Greve, Fischl,
Augustinack and Salat, 2017b).
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Commonalities across CVD Risk Factors and Alzheimer’s
Dementia

When taken together, the alterations of white matter, for ex-
ample, regionally distributed white matter hyperintensities
within the parietal lobe, appear to be associated with both
CVD risk factor burden including hypertension and diabetes
mellitus, as well as Alzheimer’s dementia (Table 2). While
few studies noted a strong role for temporal lobe white matter
alterations across disease states (Lindemer et al., 2017a),
others have advocated for a shared vulnerability to white mat-
ter alterations within frontal as well as parieto-occipital white
matter regions (Kao et al., 2019). Additionally, infarcts within
select subcortical structures including the basal ganglia and
caudate, reported for both CVD risk factor burden and
Alzheimer’s disease (Olazaran et al., 2014), may disconnect
temporal from frontal regions allowing for disruptions within
either region to exert their effect (Catani and Mesulam, 2008;
Geschwind, 1965a, 1965b).

Directions for Future Research and Larger
Cerebrovascular Implications

The congruent alterations in grey matter, subcortical struc-
tures, as well as white matter discussed above suggests the
need for a more integrated approach to structural neuroim-
aging that includes multi-modal capture and analytic inte-
gration of these distinct findings, both to understand the
brain at a more holistic level, but also to decipher how
CVD risk factors and Alzheimer’s dementia may be asso-
ciated with similar brain regions and the role this may play

on behavior. Thus, we will turn our attention away from a
review of the literature to place findings of this review
within a larger context, discuss future directions for re-
search, and implications for the field.

Previous studies investigating cerebral hypo-perfusion, that
is, decreased blood flow through the brain, as it relates to grey
matter atrophy in risk for as well as development of
Alzheimer’s dementia confirm results of this review as it re-
lates to common regional involvement across vascular and
Alzheimer’s disease processes (de la Torre, 2018) and suggest
potential rationale for our noted regional congruence, a topic
we will return to toward the end of this review. Using arterial
spin-labeling investigators reported decreased regional cere-
bral blood flow within the posterior cingulate and precuneus
across MCI and Alzheimer’s dementia compared to controls,
as well as reductions in inferior parietal, superior temporal and
frontal regions for Alzheimer’s dementia compared to MCI
and controls (Dai et al., 2009). Interestingly, increases in
rCBF in this same study were seen within multiple subcortical
and basal ganglia structures including the hippocampus,
amygdala, caudate, putamen, and global pallidus for MCI,
suggesting an attempt at compensation for vulnerability in
the at-risk stage (Dai et al., 2009). These results, and the re-
sults of similar such perfusion studies (see Montagne et al.,
2016 for review), involve nearly all 23 regions highlighted by
the current review. Thus, a link between the vascular compo-
nents of Alzheimer’s dementia, established via rCBF and pat-
terns of atrophy in Alzheimer’s dementia in past literature, is
confirmed and extended to include congruent regions of in-
volvement across CVD risk factors and Alzheimer’s dementia
in the current manuscript.

Table 2 Common regional involvement of white matter hyperintensities associated with both cardiovascular disease risk factors and Alzheimer’s
dementia.

Column A Column B

Cardiovascular Disease Risk Factors references Alzheimer’s dementia references

WMH Generally (Debette et al., 2011; Firbank et al., 2007;
Habes et al., 2016; Iadecola et al., 2016;
Marseglia et al., 2019; Reitz et al., 2017;
Scharf et al., 2019)

(Bangen et al., 2018; Brickman et al., 2018; Carmichael et al.,
2010; Damulina et al., 2019; Delano-Wood et al., 2009;
Lee et al., 2016; Libon et al., 2008; Price et al., 2012;
Sundar et al., 2019)

By Lobe

Frontal (Fennema-Notestine et al., 2016; Jacobs et al., 2013;
Kennedy & Raz, 2009; Salvado et al., 2019)

(Graff-Radford et al., 2019; Kao et al., 2019;
Lindemer et al., 2017a; Lindemer et al., 2017b)

Temporal (Debette et al., 2011; Jacobs et al., 2013;
Moran et al., 2013)

(Lindemer et al., 2017a; Salvado et al., 2019)

Parietal (Fennema-Notestine et al., 2016;
Jacobs et al., 2013)

(Brickman et al., 2012; Brickman et al., 2014;
Brickman et al., 2015; Graff-Radford et al., 2019;
Lindemer et al., 2017a; Tosto et al., 2015)

Occipital (Jacobs et al., 2013; Kennedy & Raz, 2009) (Salvado et al., 2019)

NOTE: Table was compiled based on independent literature reviews by two co-authors via PubMed using search terms for CVD risk factor burden
(separate searches for ‘cardiovascular disease risk factors’, ‘hypertension’, and ‘Type 2 diabetes’) and ‘aging’ or ‘Alzheimer’s dementia’ with ‘white
matter’
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In contrast to the multi-modal imaging across
neurovascular dysfunction in Alzheimer’s dementia noted
above, much of the work to date focused exclusively on struc-
tural brain aging, CVD risk factor burden, and Alzheimer’s
dementia has focused on a single neuroimaging modality ap-
proach. This is despite the fact that the landscape of brain
aging research is rapidly changing (e.g., Montagne et al.,
2016) to incorporate a more nuanced approach to gray and
white matter structures. Advances in image analytics, through
the application of graph theory have made possible the ability
to examine the structural connectivity of grey matter, subcor-
tical structures or white matter as it relates to indices of interest
(Rubinov and Sporns, 2010). These advanced neuroimaging
methods allow analysis of brain structure in a more integrated
form, including but not limited to system properties of how the
brain exchanges information (efficiency), how strong connec-
tions are between brain regions (strength), how important re-
gions are to effective network communication (hubness), and
how groups of brain regions preferentially interact to form
communities (modularity). Information on these metrics of
brain network integrity may fill gaps in the literature related
to the interplay of cortical grey matter, subcortical structures,
and white matter brain structures common to CVD risk factor
burden and risk for and development of Alzheimer’s dementia
in older adults.

We believe one such approach to understand the interplay
of grey matter, subcortical structures, and the white matter that
connects them is via tract-based structural connectomics, that
is, using the cortical greymatter and subcortical volumes com-
mon to CVD risk factor burden and risk for and development
of Alzheimer’s dementia to determine the integrity of white
matter tract-based streamlines connecting these brain regions.
Within the normal aging literature, tract-based structural
connectomics have been used to predict brain age (Lin et al.,
2016), investigate regional importance for brain network effi-
ciency, and particularly relevant to the results of the present
review, better understand reductions in network strength be-
tween frontal and temporal regions (e.g., Zhao et al., 2015).
Likewise, studies have used this analytic approach to outline
regions critically important for efficient network communica-
tion (e.g., temporal and prefrontal, precentral and precuneus,
superior and inferior parietal grey matter regions as well as
limbic and basal ganglia structures) and the changes in such
communication associated with normal aging (Betzel et al.,
2014; Perry et al., 2015; Sun et al., 2015), MCI, and
Alzheimer’s dementia (Daianu et al., 2015; Daianu et al.,
2013; Jacquemont et al., 2017; Mallio et al., 2015; Nir et al.,
2015; Yan et al., 2018). Many of these reported regional as-
sociations are those that show congruent alterations across
CVD risk factors and risk for, as well as development of
Alzheimer’s dementia as reported in the current review.

We recently took a more directed approach to tract-based
structural connectomics as it relates to the 23 ROIs common to

both CVD risk factors and Alzheimer’s dementia. In a
community-based cohort of non-demented older adults (n =
94; ~68 years of age, ~29 on the MMSE). Our investigation
(Boots et al., 2019) revealed that CVD risk factors differen-
tially impact the efficiency and nodal strength of the tract-
based structural connectome within these 23 ROIs in fully
adjusted models that included a term for white matter
hyperintensity burden (i.e., total volume). More specifically,
higher CVD risk factor burden was associated with lower
efficiency within the left hippocampus and right pars
opercularis, and higher efficiency in the right supramarginal
gyrus as well as lower nodal strength in bilateral rostral middle
frontal gyri, bilateral hippocampi, the thalamus bilaterally,
right pars triangularis, and left amygdala (Boots et al.,
2019). Furthermore, the tract-based structural connectome
metric of nodal strength for left and right hippocampi mediat-
ed the association between CVD risk factor burden and cog-
nition, specifically attention and information processing,
while this same metric for the left middle frontal gyrus medi-
ated the association between CVD risk factor burden and at-
tention and information processing, as well as executive func-
tion (Boots et al., 2019). While this work highlights a means
by which tract-based structural connectomics may provide
insight into the structural vulnerabilities and the brain-
behavior relationships common to both CVD risk factors
and Alzheimer’s dementia, it is not the only method of
multi-modal integration available (Liu et al., 2015; Sui,
Adali, Yu, Chen and Calhoun, 2012; Valdes-Sosa, Kotter
and Friston, 2005), and readers are encouraged to consider
what works best for their research interests as well as the
MRI modalities used to support their work.

Conclusion

While a discussion of the possible underlying pathophysiolo-
gy linking common cerebral structures associated with CVD
risk factors and Alzheimer’s dementia is beyond the scope of
this review, as is an outline of the potential temporal nature of
theses alterations over time, multiple empirical (e.g.,
Thompson et al., 2003) and conceptual (e.g., Zlokovic,
2011) studies as well as Special Issue collections exist
(Murphy, Corriveau and Wilcock, 2016), relating to one or
both of these disease states. The focus of this review, however,
was to present evidence of the overlap between grey, white,
and subcortical structural alterations associated with CVD risk
factors as well as risk for and development of Alzheimer’s
dementia. Given the two-hit vascular hypothesis for
Alzheimer’s disease (Zlokovic, 2011) includes CVD risk fac-
tors as part of ‘hit one’, and the results of previous studies
investigating hypoperfusion in Alzheimer’s dementia (see
Montagne et al., 2016 for review), we advocate that the con-
gruent structural imaging findings reported in this study as
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related to both CVD risk factors and Alzheimer’s dementia
further support the consideration of the role CVD risk factors
play across dementia subtypes including Alzheimer’s disease.

Only with a continued more integrated approach to neuro-
degeneration will we be able to move beyond increasingly
isolated and unsuccessful clinical trials to slow risk for and
ultimately stop development of Alzheimer’s dementia. This
position is further supported by the fact that several large-
scale intervention trials of modifiable CVD risk factors includ-
ing targeted foci, for example, the SPRINT MIND trial
(Systolic Blood Pressure Intervention Trial – Memory and
cognition in Decreased Hypertension: Sprint Mind
Investigators for the SPRINT Research Group et al., 2019),
as well as multidomain interventions including diet, exercise,
and vascular risk monitoring, for example, the Finnish
Geriatric Intervention Study to Prevent Cognitive
Impairment and Disability (FINGER: Kivipelto et al., 2013),
have reported success in reducing age-related neurodegenera-
tion. More specifically, targeting lower levels of systolic
blood pressure led to smaller increases in white matter
hyperintensity burden over approximately 4 years (SPRINT
Research Group et al., 2019), and a multidomain 2-year inter-
vention that included vascular risk monitoring led to improved
cognitive functioning (Ngandu et al., 2015), regardless of par-
ticipant characteristics including global mental status
(Rosenberg et al., 2018). Thus, by considering a more com-
plete picture of neuropathological alterations present in indi-
viduals with Alzheimer’s dementia including those associated
with CVD risk factors, more relevant, more inclusive, and
more successful clinical trials may follow.
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