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Abstract Diffusion Magnetic Resonance Imaging (dMRI) is
a popular method used by neuroscientists to uncover unique
information about the structural connections within the brain.
dMRI is a non-invasive imaging methodology in which image
contrast is based on the diffusion of water molecules in tissue.
While applicable to many tissues in the body, this review
focuses exclusively on the use of dMRI to examine white
matter in the brain. In this review, we begin with a definition
of diffusion and how diffusion is measured with MRI. Next
we introduce the diffusion tensor model, the predominant
model used in dMRI. We then describe acquisition issues
related to acquisition parameters and scanner hardware and
software. Sources of artifacts are then discussed, followed
by a brief review of analysis approaches. We provide an over-
view of the limitations of the traditional diffusion tensor mod-
el, and highlight several more sophisticated non-tensor models
that better describe the complex architecture of the brain’s
white matter. We then touch on reliability and validity issues
of diffusion measurements. Finally, we describe examples of
ways in which dMRI has been applied to studies of brain
disorders and how identified alterations relate to symptom-
atology and cognition.
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Introduction

A strength of Magnetic Resonance Imaging (MRI) is the great
number of tissue contrasts that can be created through the
design of the acquisition sequence and selection of parame-
ters. Examples of tissue contrasts include T1 contrast that is
used for anatomical imaging and T2* for functional imaging.
The ability to measure molecular diffusion of water in tissues
gave rise to diffusion MRI (dMRI). While applicable in many
tissues including kidney and muscle, this review will focus
exclusively on the use of dMRI as a non-invasive imaging
technique that can be used to examine white matter pathways
in the brain. dMRI is one of the key technologies included in
the NIH (National Institutes of Health) Human Connectome
Project, used for mapping anatomical connections in the living
human brain through the use of tractography.

In this review, we begin with a definition of diffusion and
how diffusion is measured with MRI. Next we introduce the
diffusion tensor model, the predominant model used in dMRI.
We then describe acquisition issues related to acquisition pa-
rameters and scanner hardware and software. Next, we pro-
vide a brief review of analysis approaches followed by a sec-
tion on potential artifacts. Several non-tensor models are in-
troduced. We then touch on measurement reliability and va-
lidity issues. Finally we provide examples of ways in which
dMRI has been applied to studies of brain disorders and how
identified alterations relate to symptomatology and cognition.

Diffusion Measurement with MRI

Diffusion magnetic resonance imaging is a type of MRI in
which image contrast is based on the diffusion of water mol-
ecules in tissue. dMRI is a non-invasive method that does not
require any type of exogenous contrast agent. While a
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complete description of the physics of diffusion is beyond the
scope of this review, these can be found in several review
articles in the literature (Beaulieu 2002; Le Bihan 2003).

Diffusion is the randommotion of molecules due to kinetic
energy. This motion, which is often referred to as BBrownian^
motion after the botanist Robert Brown, was well described by
Albert Einstein (Einstein 1926). Since diffusion is a random
process, it is not possible to predict the motion of a single
molecule. However, in a free medium the translation proba-
bility distribution of a molecule is well described using a 3
dimensional Gaussian distribution.

In the 1960s it was discovered that magnetic resonance is
particularly well suited to the quantitative measurement of
diffusion (Stejskal and Tanner 1965). By adding a pair of
magnetic field gradient pulses with equal magnitude on either
side of the refocusing RF pulse of a spin echo pulse MRI
sequence, Stejskal & Tanner (Stejskal and Tanner 1965) en-
abled the measurement of diffusion of water molecules, albeit
in one direction at a time. To measure the diffusion of water
along a specific direction (e.g. x), a magnetic field gradient is
applied along this direction of interest (e.g. x). This magnetic
field gradient labels the location of the water molecules along
the gradient direction. After a short delay a second magnetic
field gradient is applied with the same amplitude and in the
same direction as the first gradient. Water motion along the
direction of the applied gradients, between the applications of
the pair of gradients, leads to an attenuation of the MR signal
from the collection of water molecules in each voxel, and the
magnitude of the signal loss is used to calculate the apparent
diffusion coefficient.

Even though this concept was described in 1965, the mea-
surement of diffusion using MR was not developed into an
imaging modality until the mid 1980s, when LeBihan and
colleagues showed that diffusion measurements could be
made using a clinical scanner (LeBihan 1990). Due to long
imaging times, however, subject movement artifacts made
these measurements very difficult. The development of
echo-planar imaging (EPI) which enabled a single slice to be
imaged in 100 msec, largely solved the intra measurement
movement problem (Beaulieu et al. 1993). In a medium with-
out barriers and in the absence of flow, mean displacement
across all water molecules is zero but the mean square of the
displacement is non-zero, proportional to time, with the pro-
portionality constant (the diffusion coefficient D) dependent
on molecular weight, viscosity, and temperature. In areas
without barriers, such as cerebral spinal fluid (CSF) in the
brain, the diffusion coefficient is about 3 × 10−3 mm2/s and
the order of magnitude distance water molecules diffuse dur-
ing the diffusion encoding of the sequences is 10 μm. In
tissue, however, water diffusion is hindered or restricted by
the various barriers created by the cellular microstructure
(Fig. 1). Such structures are typically smaller than the charac-
teristic distances traveled by water molecules during diffusion

imaging. For example, axons in the human corpus callosum
have a median diameter of 0.6–1.0 μm with a range from 0.2
to 10 μm (Aboitiz et al. 1992). Interactions with cellular struc-
tures will tend to reduce the mean distance traveled by water
molecules compared to the intrinsic diffusion of Brownian

Fig. 1 Principles of diffusion magnetic resonance imaging (dMRI) from
Le Bihan 2003. In the presence of a spatially varying magnetic field
(induced through a magnetic field gradient, the amplitude and timing of
which are characterized by a ‘b’ factor), moving molecules emit
radiofrequency signals with slightly different phases. In a small volume
(voxel) containing a large number of diffusing molecules, these phases
become randomly distributed, directly reflecting the trajectory of
individual molecules (that is, the diffusion process). This diffusion-
related phase distribution of the signal results in an attenuation of the
MRI signal. This attenuation (A) quantitatively depends on the gradient
characteristics (embedded in the b factor) and the diffusion coefficient
(D), according to A = e–bD. As diffusion effects are small, large gradient
intensities must be used, which requires special MRI hardware (reprinted
from (Le Bihan 2003) with permission)
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motion. To indicate that dMRI is sensitive to effects beyond
Brownianmotion (cellular interactions, flow and other biolog-
ical processes), the diffusion measured in dMRI is referred to
as the apparent diffusion coefficient (ADC). Indeed, dMRI is
sensitive to tissue microstructure specifically because it is a
measurement of the voxel by voxel deviation in from that of
the intrinsic Brownian diffusivity of water.

Diffusion Tensor Model

If the diffusion is the same in all directions (isotropic) then
making a single measurement, in a single arbitrary direction is
sufficient to measure the diffusion of the sample. However, in
the case where diffusion may be influenced by the environ-
ment, such as by highly organized structures of white matter
fibers, then the measured diffusion is dependent on the direc-
tion, making the diffusion anisotropic. A new model which
allowed for the measurement of anisotropic diffusion was
needed to better describe the imaging results and by
extension the underlying microstructure. Basser et al. (1994)
introduced the diffusion tensor model in 1994. Since the tensor
model contains six free parameters, a minimum of six vol-
umes with linearly independent diffusion encoding gradients
are needed to apply the tensor model, although the collection
of more than six directions is desirable as more directions lead
to improved precision and accuracy of the resultant diffusion
tensor. The tensor model parametrizes the diffusion in each
voxel with an ellipsoid, the mathematical description of an
egg shaped object (Fig. 2). The major axis of the ellipsoid
(ε1 ) points in the direction of the maximum diffusivity (λ1 )
of that voxel. The direction of maximum diffusion is usually
assumed point in the direction of the major fiber tract in the
voxel. The diffusivities along the medium (ε2 ) and minor (ε3 )
axes of the diffusion ellipsoid, which are perpendicular to the
main fiber orientation, are also computed (λ2,λ3 ) in the tensor
analysis. The introduction of the diffusion tensor model was
crucial because it allowed a rotationally invariant description
of the shape of water diffusion; before the introduction of the
tensor model the diffusivity was only determined along the
direction of the diffusion encoding direction used for each
diffusion volume collected (Moseley et al. 1990; O’Donnell
and Westin 2011). This improved modeling is much better
suited for the examination of complex white matter tracts in
the human brain.

The three diffusion values computed along the axes of the
diffusion ellipsoid are rotationally invariant, meaning the
same diffusion values are computed independent of the orien-
tation of the brain in the scanner. Several numeric (or scalar)
diffusion metrics are often computed from the three diffusion
values (λ1;λ2;λ3 ) derived from the tensor model (Le Bihan
et al. 2001) (Table 1). These include three diffusivity metrics:
the axial diffusivity (AD = λ1 ) which is the maximum

diffusivity in the voxel (often interpreted as the diffusion
along the primary fiber tract), the radial diffusivity (RD =
λ2 þ λ3ð Þ=2 ) average of the diffusivities in the axes perpen-
dicular to the major axis, and mean diffusivity (MD =
λ1 þ λ2 þ λ3ð Þ=3 ) which is the average of the diffusivity
values of the three axes of the diffusion ellipsoid. A fourth
commonly used diffusion metric is fractional anisotropy (FA),
which parametrizes the degree to which the diffusion ellipsoid
deviates from spherical:

FA ¼
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3

2
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In addition to scalar metrics, information information about
the voxel microstructure is contained in the directional infor-
mation contained in the diffusion tensor ellipsoid. In voxels
with high fractional anisotropy the direction of maximum dif-
fusion is often assumed to be parallel to the major fiber bundle
in the voxel. Combining the scalar and directional information
from adjacent voxels can allow for the parcellation of fiber
tracts in white matter and is the basis for diffusion
tractography.

Acquisition Issues

The specific capabilities of the hardware and software limit
the types of dMRI studies that are possible on a given scanner.
Performance capabilities that impact dMRI data quality in-
clude but are not limited to magnetic field strength, maximum
gradient slew rate, maximum gradient field magnitude, system
signal to noise, head coil channel count, and software options.
Gradient slew rate capabilities limit both how quickly the
diffusion encoding gradient reaches maximum value and
how fast the imaging readout can take place. The rapidly
changing magnetic fields produced by the gradient coils dur-
ing the diffusion encoding and echo planar readout can induce
electric fields in the body of the subject. These electric fields
can cause stimulation of the peripheral nerves in the subject,
leading to rhythmic twitching or a vibration sensation in some
subjects. While MRI scanners are designed to prevent periph-
eral nerve stimulation (PNS) that is a danger to the subject,
PNS can be annoying or uncomfortable to the subject and
hence is to be avoided. MRI scanner manufacturers and the
FDA (Food and Drug Administration) have set gradient ramp
rate limits such that scan protocols that are stimulating to most
people cannot be created.

The selection of acquisition parameters can have a large
impact on the resulting data. A partial list would include:
voxel size (partial voluming), b value, smoothing, TR (repe-
tition time, or the time starting at the application of an
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excitation pulse to the application of the next excitation pulse),
TE (echo time, or the time between application of radiofre-
quency excitation pulse and the peak of the signal induced in
the coil), partial fourier, parallel imaging, bandwidth, scanner
software version and hardware changes. Thus, it is best to
keep all aspects of the acquisition constant throughout a study.
Software updates can introduce unexpected changes in acqui-
sition parameters where default sequence parameters changes
might occur. Hardware upgrades and updates can also impact
data. One approach to prevent systematic differences in acqui-
sition parameters within a study is to collect the data contem-
poraneously across groups that are being compared. Multi-site
studies and studies that use scanners of different models and
manufacturers can also complicate data comparability. Many

of the approaches proposed for multi-site fMRI studies are
also applicable to dMRI (Glover et al. 2012).

Artifacts

DiffusionMRI is impacted bymany sources of artifacts (Jones
and Cercignani 2010). These artifacts can be grouped in sev-
eral different types based on their causes: artifacts caused by
the scanner software and hardware, artifacts caused by the
subject, and artifacts introduced into the data during process-
ing and analysis. The aim here is not to provide an exhaustive
listing of every possible artifact found in diffusion imaging but
rather to point out the most common artifacts observed.

Fig. 2 Tensor matrix illustrated by Jellison et al. 2004: Top left, Fiber
tracts have an arbitrary orientation with respect to scanner geometry (x, y,
z axes) and impose directional dependence (anisotropy) on diffusion
measurements. Top right, The three-dimensional diffusivity is modeled
as an ellipsoid whose orientation is characterized by three eigenvectors (1,
2, 3) and whose shape is characterized three eigenvalues (1, 2, 3). The
eigenvectors represent the major, medium, and minor principal axes of
the ellipsoid, and the eigenvalues represent the diffusivities in these three

directions, respectively. Bottom, This ellipsoid model is fitted to a set of at
least six noncollinear diffusion measurements by solving a set of matrix
equations involving the diffusivities (apparent diffusion coefficient,
ADC) and requiring a procedure known as matrix diagonalization. The
major eigenvector (that eigenvector associated with the largest of the three
eigenvalues) reflects the direction of maximum diffusivity, which, in turn,
reflects the orientation of fiber tracts. Superscript T indicates the matrix
transpose (reprinted from (Jellison et al. 2004) with permission)

Table 1 Diffusion Metrics

dMRI Metrics Brief Description Common Interpretation Known Limitations

Axial diffusivity (AD) Diffusivity in the direction of maximum
diffusion in the voxel.

Sensitive to axonal injury
(Budde et al. 2009)

In voxels with crossing fibers, axonal loss in
one fiber tract can lead to increased AD.

Radial diffusivity (RD) Average of the diffusivities in the
axes perpendicular to the major
axis of diffusion.

Sensitive to myelin loss
(Song et al. 2002)

Voxels containing crossing fibers will have
high RD.

Mean diffusivity (MD) Average of the diffusivity values
of the three axes of the diffusion
ellipsoid.

Sensitive to cellularity, edema,
and necrosis (Alexander
et al. 2007)

Large variability in measurement. Detection
power depends on whether observed
voxel has several crossing fibers or a
single fiber (Vos et al. 2012).

Fractional anisotropy (FA) Parameter describing how elongated
(or egg shaped) the diffusion tensor
ellipsoid is.

Sensitive to a wide range
of pathologies

Voxels containing crossing fibers with high
integrity can have low fractional anisotropy
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dMRI studies typically cover the entire brain and include
dozens to a hundred complete volumes with varying diffusion
encoding directions per study. DWI has fairly low signal to
noise and is very susceptible to motion. To reduce the effects
of subject motion and to keep the studies to clinically viable
times of 5–20 min, dMRI studies use very fast imaging
methods. Because rapid imaging methods are required, com-
promises are made which can lead to a reduction of image
quality and geometric fidelity.

While several imaging techniques have been used in dMRI
(e.g. Line Scan Diffusion Imaging (Gudbjartsson et al. 1996),
Stimulated Echo Acquisition Mode (Nolte et al. 2000), Fast
Spin Echo (Pipe et al. 2002), and spiral (Lee et al. 1995)), the
vast majority of studies use EPI. We will limit our discussion
to common artifacts found using an EPI readout.

B0/Susceptibility

As with other EPI based image modalities (i.e. fMRI and
arterial spin labeling - ASL), dMRI is sensitive to distortion
and signal dropout caused by inhomogeneity in the static mag-
netic field of the volume being imaged. Signal dropout occurs
in regions where the magnetic field is inhomogeneous within
a voxel causing the magnetic spins in the voxel to dephase to
the point where the signal cancels within the voxel. Distortion
occurs because the expected mapping of phase accumulation
to position is incorrect due to magnetic field inhomogeneity.
This typically occurs in regions of high susceptibility at air-
tissue boundaries such as the medial inferior frontal lobe
above the sinus and temporal poles near the ear canals.

Head Motion

Head motion is a major source of artifact in dMRI and multi-
ple approaches should be taken to avoid or reduce the effect of
motion in dMRI. The most important approach is to prevent as
muchmotion as possible. Be sure the subject is as comfortable
as possible, instructing the subject to remain as still as possi-
ble, warning the subject about the noise and vibration that will
occur during the diffusion imaging. The use of comfortable
padding around the head that helps restrict headmotion can be
helpful. Also keep the imaging time as short as possible.

Even with the use of optimal acquisition methods, howev-
er, some subjects will move during a study. Such motion can
be classified into three categories: motion that occurs between
volumes in the acquisition, motion that occurs within the ac-
quisition of a volume, and motion that occurs within the ac-
quisition of a single slice. Slow scale motion over the course
of minutes that occurs between volumes over the dMRI ac-
quisition will lead to between volumemisregistration through-
out the dMRI time series and artifacts in the tensor computa-
tion. To prevent such artifacts image processing pipelines that
include motion corrections/registration should always be used

with dMRI. Head motion that occurs over the seconds it takes
to acquire a single diffusion volume can lead to a misregistra-
tion of the slices within the volume, particularly if an inter-
leaved slice acquisition is used (Fig. 3). Fast head motion that
occurs during the acquisition of a single diffusion slice can
lead to the artifactual reduction or even even complete disap-
pearance of signal in part or all of one or more slices in a
volume (Fig. 4). While most traditional dMRI processing
pipelines apply motion correction as a processing step, many
do not apply methods that correct for within volume slice
misregistration or motion induced signal loss in a slice.
Approaches that can be used to reduce artifacts in these cases
include removing affected volumes before processing or the
use of methods to detect outlier voxels, slices or volumes and
then use interpolation methods to estimate the signal or use
robust methods to de-weight the contribution of the artifactual
voxels in the computation of the tensor (Chang et al. 2005;
Dubois et al. 2014).

Spiking

EPI based dMRI methods are particularly stressful on the
scanner hardware due to the fast switching times, high gradi-
ent amplitudes and gradient switching induced vibrations that
occur during the imaging. Spike noise is usually caused by a
hardware problem that causes the scanner readout electronics
to register an erroneously large signal during the scan. When
the scanner reconstruction system creates the image, the spike
can result in wavy or Bcorduroy^ patterns in the image. The
exact frequency, angle and intensity of the wavy pattern will
depend on when the spike(s) occur during the image acquisi-
tion. Although scanner hardware has improved greatly over
the past 20 years, spike noise remains a sporadic source of
image artifact onmanyMRI systems. Spike noise can serious-
ly impact image quality of the affected slices. The best ap-
proach to prevent spike noise is by insuring the scanner is
working properly through a robust quality assurance program.
The service engineer should be notified immediately when
spiking is observed to insure the problem is rectified. For this
reason good dMRI practice includes evaluating image quality
during data acquisition and including automated QA (quality
assurance) methods that evaluate dMRI images for spike
noise. For data that contain spikes, the options depend on
the severity of the problem, from excluding the subject data
to rejecting whole volumes or using interpolation
methods to replace corrupted slices using interpolation
from similar volumes (Chavez et al. 2009).

Vibration

The ramping of the strong diffusion gradients used to create
diffusion weighting causes large, periodic mechanical stresses
on the gradient hardware. These stresses lead to acoustic noise
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and vibration in the gradients. The mechanical vibration of the
gradients can be transmitted through the patient table to the
subject’s brain (Gallichan et al. 2010). The amplitude of the
table vibration will have a complex dependence on the direc-
tion of the diffusion sensing gradient, the details of the magnet
design, and subject and sequence parameters. Understanding
the symptoms of vibrational artifacts and checking the data for
these effects is important in dMRI. Methods have been devel-
oped to automatically check for and correct such artifacts and

should be considered (Gallichan et al. 2010; Mohammadi
et al. 2012).

Eddy Currents

An eddy current is a transient electrical current created in the
conducting structures of the magnet by the changes in the
magnetic field gradients. Echo planar diffusion imaging is
particularly prone to eddy-current artifacts because of the

Fig. 3 Illustration of the effect of subject motion during the acquisition of
a dMRI volume. Slices were acquired using an interleaved acquisition, in
which the odd slices were acquired sequentially followed by the even
slices. A clear stair step pattern is seen in the sagittal and coronal views

due to motion between the first (odd slices) and second (even slices) parts
of the acquisition. In the axial projection the slices appear unaffected by
the motion

Fig. 4 Illustration of the effect of
fast individual subject motion on
dMRI data. Nine spatially
consecutive slices are shown from
one volume of an interleaved type
dMRI acquisition. One slice (red
box) has a near absence of signal
while a second slice (yellow box)
shows a more subtle signal
reduction. This artifact was
caused by fast subject motion
over the several hundred
milliseconds it took to acquire the
red and yellow slices, which were
acquired sequentially in time
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relatively long EPI readouts combined with strong diffusion
gradients which are switched rapidly. Unlike the distortions
created by main field inhomogeneities, eddy currents effects
are dependent on the strength and direction of the diffusion
encoding gradient. These eddy currents cause translation,
stretching and shearing distortions in the phase encoding di-
rection of the image, depending on the direction of the
gradient.

Eddy current distortions lead to gradient direction depen-
dent spatial misregistration between the different diffusion-
encoding directions and the images collected without diffu-
sion encoding. Eddy current distortions are typically corrected
using a twelve degree of freedom affine registration of the 4D
volume to the image collected without diffusion encoding,
simultaneously correcting the data for subject motion. Such
methods work reasonably well for data collected with the
moderate b values of about 1000 s/mm2 used in most studies.
At b values greater than 1000 s/mm2, these methods may fail
due to the lack of signal intensity needed to perform the nec-
essary registrations.

Analysis Approaches

Once collected, the diffusion imaging data is typically run
through a series of processing steps, or processing pipeline,
with the final goal being the generation of one or more diffu-
sion metrics that can that be used to investigate possible group
differences between populations or in a correlation analysis
with cognitive metrics. The analysis pipeline will usually have
3 major sections, data preprocessing (eddy current correction,
motion correction, and brain extraction), computation of the
diffusion tensor and scalar maps, and quantitative analysis.
There are a large number of software packages available to
perform diffusion and other MRI analysis; many such pack-
ages are found on The Neuroimaging Informatics Tools and
Resources Clearinghouse webpage (NITRC, https://www.
nitrc.org/).

The goal of most dMRI studies is to compare DTI metrics
between two or more subject populations or investigate corre-
lations between DTI metrics and relevant cognitive measures.
DTI metrics commonly used in such analyses include mean
diffusivity (MD), axial diffusivity (AD), radial diffusivity
(RD), fractional anisotropy (FA) (Fig. 5). Many methods have
been used for preparing the individual diffusion data for sta-
tistical group comparison or correlations analysis. The various
methods share a common goal of extracting summary mea-
sures for statistical comparison, with the differences being
how they go about identifying common anatomical areas
across subjects for comparison. The method most appropriate
for a given study will depend on the questions the study is
trying to answer.

Region of Interest

A region of interest (ROI) approach is often used when the
study has hypotheses involving specific brain regions of inter-
est or pathways. A histogram approach can be used when
white matter integrity alterations are thought to be diffuse
across the brain. Voxel based morphometry (VBM) allows
for a voxel by voxel comparison by transforming the scalar
maps into a common template space and then applying statis-
tical analyses on the imaging data. By including the direction-
al information from the tensor, diffusion tractography based
methods allow for several types of analyses including ROI
definition based on specific white matter tracts but also novel
metrics associated with connectivity between brain regions.

ROI analysis is based on the manual delineation of specific
regions of the brain or on an automatic parcellation method.
The shape of the ROI can either follow the shape of an ana-
tomic structure (i.e. corpus callosum, internal capsule, etc) or
have a geometric shape (i.e. spherical, cubical, etc). Ideally,
ROIs are determined on imaging data (T1) independent from
the DTI data and then registered onto the diffusion parametric
map to avoid position bias. Summary statistics (i.e. mean,
standard deviation, etc) from the DTI scalar map of interest
(i.e. FA, MD, etc) is then computed across subjects. Statistical
analysis can then be performed on the resulting values.

Manually placed ROIs have been used in many studies.
The main advantage to manual ROI methods are the high
sensitivity to small changes in DTI values in focal, hypothe-
sized parts of the brain. Use of manually placed ROIs has
several disadvantages, however, including that the method is
labor intensive, requires significant anatomic knowledge, re-
quires a clear a priori hypothesis that specific brain regions are
of interest, can have low intra- and inter- rater reliability and
can have the difficulty of precise registration of the anatomic
data to the diffusion data. These disadvantages notwithstand-
ing, manual ROI methods can be useful for studies with mod-
erate sized subject groups and specific hypothesis of subtle
changes in small, well defined brain regions, although the
use of manually placed ROIs is much less common today than
5 or 10 years ago.

Automated methods for ROI definition can be performed
using parcellation of anatomic data and then transfer of the
ROI onto the diffusion data or through the registration of DTI
data onto a template space with the application of a common
ROI based on anatomic information (i.e. specific tracks from
the JHU [John Hopkins University] atlas; (Hua et al. 2008)).
Automated ROI methods have the advantage that they require
less labor, the ROI selection rules will be consistently applied,
and the method can be scaled to studies with large subject
numbers. The disadvantage is that ROI placement accuracy
should be confirmed for every subject to ensure that the ROI
placement algorithm has not failed due to anatomic variability,
motion, or other processing failures.
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Histogram Analysis

In a histogram analysis the full range for a particular DTI
metric is divided into discrete bins and a count is performed
within a region of interest to determine the number of voxels
with parameter values that fall within the range of each bin. A
histogram analysis can be used to look for subtle changes that
impact large areas or the entirety of the brain. Numeric char-
acteristics of the histogram such as peak location, mean, me-
dian as well as more complex representations of the histogram
shape (Dehmeshki et al. 2001) can then be compared between
groups. Histogram analyses can be sensitive to diffuse effects,
have less need for manual intervention, and provide fewer
tests (hence a lower correction for multiple comparisons).
Drawbacks include a lack of anatomic specificity, selecting
an appropriate bin size, normalization, and smoothing level,
decisions on how to handle partial volume voxels and the care
needed to remove tissue of non-interest (CSF, WM, Lesion,
artifact, etc). As with manual ROI placement, histogram anal-
ysis is less common now than in the past.

Voxel Based Method

The voxel based method (VBM) analysis approach is a com-
mon method to analyze MRI data. Originally developed for
structural imaging (Ashburner and Friston 2000), it was
quickly used in DTI analysis (Foong et al. 2002). In a voxel
based approach subject images are registered to a common
template space. Individual anatomy is distorted to achieve a
voxel-wise correspondence across subjects. A statistical anal-
ysis is then performed voxel-wise to uncover group differ-
ences or correlations between DTI metrics and descriptor var-
iables for the study populations.

The image processing for a VBM analysis usually includes
computation of the scalar map of interest (i.e. FA or MD) in
the data acquisition space, registration of the data to a com-
mon template space and spatial smoothing. Once the paramet-
ric maps are registered to a common location, statistical anal-
ysis is performed on the resultant data on a voxel-wise basis
using multiple regression or similar methods followed by sig-
nificance testing. Multiple comparison corrections must be
performed on the resulting maps to reduce the type-1 error
because of the large number of voxels in the image space.
Both parametric and non-parametric methods can be used
for correction.

VBM methods are frequently used for DTI analyses.
Because VBM is automated, the methods have the potential
to be highly reproducible and scalable to large study samples.
VBM also allows for testing across the whole brain while
providing high anatomical specificity. VBM results can have
a strong dependence on the details of the steps used in the
analysis pipeline, i.e. the template chosen, the smoothing level
used, the methods for image registration and the methods used
to correct for multiple comparisons. In particular, the automat-
ed registration methods may fail, in some cases spectacularly,
resulting in misregistration of the anatomy and possibly faulty
conclusions. Checking each registrationwill guard against this
error. Other concerns include the level of interpolation needed
in these registrations, which invariably lead to partial volum-
ing, the high significance level needed due to overcome the
large number of comparisons causing subtle effects to be
missed.

Tract Based Spatial Statistics

Tract-based spatial statistics (TBSS) is a type of VBM which
is included in the FSL package that is specifically designed for

Fig. 5 Example DTI data from a healthy subject. DTI scan parameters
2 mm isotropic resolution, TR = 8500 ms, TE = 90 ms, 30 diffusion
volumes with b = 1000 and 6 volumes with b = 0, two averages, scan
time = 11 min. Top row shows b = 0 s/mm2 scan followed by 4 different

slices with b = 1000 s/mm2 and different gradient orientations. Bottom
row mean diffusivity, axial diffusivity, radial diffusivity, fractional
anisotropy, tensor color map
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DTI analyses (Smith et al. 2006). TBSS differs from standard
VBM in that it does not require a highly accurate initial reg-
istration as with standard VBM but instead uses a template
based on a skeletonized fractional anisotropy map that is de-
rived from the nonlinearly aligned FA images of the popula-
tion being studied. After the skeleton is created, each subject’s
data is projected on this skeleton and the maximal FAvalue for
each point in the skeleton is determined for the subject.
Voxelwise statistics can then be carried out on this skeleton-
space FA data.

TBSS is a more sophisticated approach than traditional
VBM allowing more precise spatial comparison across sub-
jects, preventing partial volume effects and preventing cross-
contamination of different tissues (Peng et al. 2014).
However, TBSS has some disadvantages. First, TBSS reliabil-
ity is subject to preprocessing steps choice, see detailed de-
scription in Reliability and Validity section (Madhyastha et al.
2014). Second, as with other purely DTI based methods TBSS
does not allow proper estimation of diffusion in voxels where
there are crossing tracts or junctions (Smith et al. 2006). Third,
detection of signal in voxels that are farther away from tract
centers is reduced because they have lower contribution to the
average of voxels projected to that tract location (Smith et al.
2006). Fourth, when regions are located exactly between two
skeleton points, they can be split into two locations when
projected to nearest skeleton (Zalesky 2011)(de Groot et al.
2013; Keihaninejad et al. 2012)(Schwarz et al. 2014) Schwarz
and colleagues (Schwarz et al. 2014) propose modifications to
the TBSS standard pipeline that maximize (de Groot et al.
2013; Keihaninejad et al. 2012) through the use of groupwise
registration based on Advanced Normalization Tools (ANTS;
(Avants et al. 2008)) or alternate non-linear registration algo-
rithms that exclude the skeleton projection step.

Tractography

In addition to producing scalar metrics of diffusion, the tensor
model also produces voxel-wise information of the local ori-
entation of the primary diffusion vector, which for white mat-
ter is assumed to be the direction of the dominant fiber bundle.
Tractography pieces together this directional information to
infer physical connectivity among brain regions. Diffusion
tractography is currently the only noninvasive, in vivomethod
for studying structural brain connectivity. Various methods
have developed that vary based on the approach taken of
how to connect the vectors and what other information is used.
Deterministic tractography was the first tractography ap-
proach described (Mori et al. 1999), it involves reconstruction
of a white matter tract by selecting a seed starting point and
following a streamline based on the preferred direction of
diffusion ellipsoids until an ending criteria is reached and the
entire pathway is delineated. A disadvantage of the determin-
istic tractography is that because the resolution of dMRI

measurements (voxel size) is much larger than an axon, there
are typically thousands of axons passing through a given vox-
el, and they may not all go in the same direction (Wiegell et al.
2000). Although individual axons are usually organized into
large bundles containing thousands of axons that are coher-
ently organized to connect the same basic brain regions, these
fiber bundles cross each other, split or merge with one another,
or fan out as they reach gray matter structures. To help over-
come the limitations caused by multiple fiber orientations in a
voxel as well as the effects effects of measurement noise,
probabilistic tractography was developed. In probabilistic
tractography, most likely fiber orientations are estimated at
each voxel along with the probability distribution that a fiber
would run along these directions. These probability distribu-
tions are then used to trace thousands of probable connections
based on slightly jittered orientations (Behrens et al. 2003).
The resulting set of probable paths constitute a measure of the
connection probability. Examples of packages that have deter-
ministic tractography options are FACT (Fiber Assignment by
Continuous Tracking (Mori et al. 1999), AFNI (3dTrackID
http://afni.nimh.nih.gov/pub/dist/doc/program_help/
3dTrackID.html), CAMINO (http://cmic.cs.ucl.ac.uk/
camino/), DTIStudio (Jiang et al. 2006) and TrackVis (http://
trackvis.org/). Examples of packages that have options for
probabilistic tractography are FSL (http://fsl.fmrib.ox.ac.uk/
fsl/fslwiki), TRACULA (https://surfer.nmr.mgh.harvard.edu/
fswiki/Tracula), CAMINO, AFNI (3dTrackID http://afni.
nimh.nih.gov/pub/dist/doc/program_help/3dTrackID.html).

Figure 6 shows an example of how diffusion tractography
can be used to estimate the paths of 18 specific white matter
tracts by using the TRACULA package (Yendiki et al. 2011).
Tracula combines global probabilistic tractography methods
from FSL and prior distributions on the neighboring anatom-
ical structures of each pathway derived from an atlas and a
FreeSurfer cortical parcellation and subcortical segmentation
of the subject that is being analyzed to constrain the
tractography solutions. TRACULA is automated and elimi-
nates user interaction (e.g., to manually drawn seed ROIs or
threshold setting on path angle and length). TRACULA has
been used to identify ROIs relevant to neuropsychiatric dis-
ease being studied (Lee et al. 2015; Wozniak et al. 2014).
Figure 7 shows an example of how DSI Studio (http://dsi-
studio.labsolver.org/) software can be used to estimate white
matter streamlines from diffusion MRI data acquired under
the Human Connectome Project (HCP; WU-Minn
Consortium (Sotiropoulos et al. 2013; Van Essen et al.
2012)). DSI Studio uses a generalized deterministic fiber
tracking algorithm with quantitative anisotropy to generate
tractography maps (Fang-Cheng et al. 2014).

Finally, diffusion tractography can also be used to generate
subject specific connectivity matrices of the brain. Just as a
connectivity matrices can be constructed from functional con-
nectivity among brain regions, measures of anatomical
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connectivity from tractography (.e.g. number of streamlines,
probabilistic connections) can also be used to construct ana-
tomical connectivity matrices. Graph theoretical approaches
can then be used to quantify network properties such as

clustering coefficient, path length, degree distribution, modu-
larity, centrality, hubs and efficiency (Bullmore and Sporns
2009; van den Heuvel et al. 2008). Graph theory analysis on
dMRI data has provided evidence of disrupted topological

Fig. 6 Radiological views of the
18 reconstructed white matter
tracts overlaid on fractional
anisotropy map in a control
participant [coronal (a), sagittal
(b) and axial (c)], and 3D
anatomical view (d). CCG =
cingulum-cingulate gyrus bundle;
CST = corticospinal tract;
FM = corpus callosum-forceps
major; Fm = corpus callosum-
forceps minor; SLFP = superior
longitudinal fasciculus-parietal
endings; SLFT = superior
longitudinal fasciculus-temporal
endings; ILF = inferior
longitudinal fasciculus;
CAB = cingulum-angular bundle;
UNC = uncinate fasciculus;
ATR = anterior thalamic
radiations (reprinted from (Lee
et al. 2015) with permission)

Fig. 7 Example of whole brain tractography using 3 T diffusion MRI
data. The streamline color code (DSI studio; http://dsi-studio.labsolver.
org/) indicates local fiber orientation (red: left-right; green: anterior-
posterior; blue: inferior-superior). The surface approximates the boundary
white/grey matter and was obtained by thresholding the fractional anisot-
ropy (FA) map. Top left: side view with cortical surface; Bottom left: side
view with cortical surface removed revealing tractography streamlines;

Top right: frontal view with cortical surface; Bottom right: coronal slice
through corpus callosum. Data from the Human Connectome Project
(HCP), WU-Minn Consortium (Principal Investigators: David Van Essen
and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes
and Centers that support the NIH Blueprint for Neuroscience Research;
and by the McDonnell Center for Systems Neuroscience at Washington
University
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organization of white matter networks in brain disorders (Cao
et al. 2013; Ottet et al. 2013b; Vecchio et al. 2015).

Beyond Tensor

Many dMRI studies to date have been interpreted using the
tensor model. DTI has proven to be an invaluable method for
discovering information about the underlying microstructure
of the brain, particularly in the white matter. Among the model
assumptions are that, on a per voxel basis, the underlying
structure is comprised of a single compartment with hindered
but not restricted diffusion which obeys a three dimensional
Gaussian distribution over time (Basser and Jones 2002). This
model, however, is known to be incorrect, even in the most
simple case of a voxel containing just a single bundle of par-
allel axons (e.g. in the corpus callosum), the tissue consists of
two different water compartments: one compartment inside
the axons (where water is mostly restricted to stay within the
axon itself) and one extracellular compartment around the
axons (where water is hindered by axonal boundaries but not
prevented from diffusing over distances many times the
axonal diameter). Further, at least on the 2 mm scale of
a typical dMRI voxel, up to 90 % of the brain white
matter may not be well modeled as a single collection
of parallel axons (Jeurissen et al. 2013). Early in the
development of dMRI it was realized that more sophis-
ticated models are needed to better describe the complex
architecture of the brain’s white matter, with several
water pools and where within-voxel fiber crossing, fan-
ning, Bkissing^, or bending are common.

Recent technological advances in scanner hardware,
pulse sequences, reconstruction methods, computer
speeds, and analysis methods have been developed to
make the use of diffusion models beyond DTI practical
in large scale human imaging studies. The evolution in
diffusion imaging is most clearly demonstrated by the
efforts of the NIH funded Human Connectome Project
(Sotiropoulos et al. 2013). A major advance has been
acceleration of imaging acquisition using simultaneous
multi-slice EPI with multiband (MB) excitation and
multiple receivers, enabling acceleration of diffusion da-
ta acquisition by a factor of 3 or more. This accelera-
tion has made the collection of the additional data need-
ed for non DTI models clinically feasible.

So many alternatives to the tensor model of diffusion
have been proposed over the past 20 years that
a comprehensive listing is well beyond the scope of this
paper. All the beyond the tensor model descriptions in-
clude additional fitting parameters, most require addi-
tional diffusion volumes and/or acquisition of diffusion
data with more and/or higher b values.

DSI

Perhaps the most complete model is diffusion spectral imag-
ing (DSI). The goal of DSI is to completely characterize the
probability diffusion function (PDF) at each voxel. The PDF
is the diffusion probability distribution as a function of dis-
tance and direction of water in each voxel (Basser and Pajevic
2002; Rathi and Westin 2015; Tuch et al. 2003). A measure-
ment of the PDF provides a fairly complete description of
water diffusion in the brain, however there are limitations to
this methodology. First, a DSI acquisition requires collecting
diffusion data with high angular sampling (lots of diffusion
directions) with a large range of b values sampled using an
equal lattice spacing, requiring many hundreds of diffusion
volumes (Tuch et al. 2003). Even with recent advances in
imaging and analysis methods such acquisitions may not be
practical for most clinical populations, although DSI has been
successfully used in a few cases.

HARDI

High angular resolution diffusion imaging (HARDI) is the
name given to a diffusion acquisition with high angular sam-
pling in the diffusion direction. The exact criteria for classifying
a dMRI acquisition as a HARDI acquisition is not consistent in
the literature, but an acquisition with many directions (from 60
to 250+) and a single, higher b value, in which the diffusion
signal has a much lower contribution for isotropic diffusion, are
typically used as a criteria. High angular sampling allows for
the application of models beyond DTI to extract orientation
diffusion function (ODF), the probability distribution for water
diffusion in a given direction without regard to the magnitude
of the diffusion. The ODF can then be evaluated to look for
multiple peaks in diffusion probability, which are then labeled
as distinct fiber bundles within the voxel. Fiber tracking algo-
rithms which account for voxels identified with two or more
crossing fibers can then be used to track through such areas.
Many such analysis methods have been used on HARDI data
including spherical harmonic deconvolution (Hess et al. 2006;
Tournier et al. 2004), generalized diffusion tensor imaging
(Ozarslan and Mareci 2003), and q-ball (Tuch 2004) imaging.

Diffusion Kurtosis Imaging (DKI)

Kurtosis is a dimensionless statistic that quantifies the
Bpeakedness^ or deviation from a Gaussian of a distribution.
Diffusion kurtosis imaging (DKI) is an extension of DTI that
parametrizes the kurtosis, i.e. deviations from a Gaussian dis-
tribution of the diffusion probability distribution function
(Jensen et al. 2005). A distribution with a positive kurtosis
will have a sharper peaked and higher tails while a negative
kurtosis will have a flatter peak and lower tails compared to a
Gaussian distribution with the same variance. Early in the
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development of diffusion imaging diffusion signal loss was
observed to deviated from linearity as a function of diffusion
b value (Niendorf et al. 1994, 1996). The deviations was be-
lieved explained as resulting from there being two water pool
compartments in the voxel with fast and slow diffusion prop-
erties. The kurtosis model is just including the second order
term in the expression of the log of the signal loss as the
cumulant expansion in powers of the diffusion b value
(Jensen et al. 2005):

ln S bð Þ
.
S 0ð Þ

� �
¼ −b⋅Dþ 1

.
6⋅b2⋅D2⋅K þ 0 b3

� �

where S bð Þ is the signal with diffusion encoding b,D is the
apparent diffusion coefficient (ADC), K is the apparent diffu-

sion kurtosis, and O b3
� �

are higher order terms in the
expansion.

The kurtosis model includes the next rank tensor to the
diffusionmodeling, the rank 4 (3×3×3×3) tensorK in addition
to the rank 2 (3 × 3) diffusion tensor D. Because both tensors
are fully symmetric with respect to an interchange of indices,
however, only 6 components in the DTI tensor and 15 com-
ponents in the DKI tensor are independent (Jensen and
Helpern 2010). From the kurtosis computation many
rotationally invariant scalar metrics can be computed. All the
voxel-wise scalar parameters computed from the DTI model
including axial, radial and mean diffusivity as well as fraction-
al anisotropy can be derived from the DKI fit, however the
modeling should be more accurate because the explicit non-
linear diffusion change is properly modeled in the fit. In addi-
tion, several new measures can be derived, including mean
kurtosis (MK - the average diffusion kurtosis in all directions),
axial kurtosis (AK - the kurtosis along the axial direction of
the diffusion ellipsoid), and radial kurtosis (RK - the kurtosis
along the radial direction) (Jensen and Helpern 2010).

A DKI imaging acquisition is relatively simple to imple-
ment onmost clinical DTI capableMRI scanners, however the
DKI model requires at least three b values including one high
b value (e.g. b = 0 s/mm2, 800 s/mm2, 2600 s/mm2 (Yan et al.
2013)) with at least 15 independent diffusion gradient direc-
tion per diffusion shell (Jensen and Helpern 2010). This re-
quirement does increase the time needed to acquire a DKI
compared to a DTI data set. Figure 8 shows the parametric
maps of a diffusion data set reconstructed using DKI methods.
Recent improvements in scanner hardware and software and
improved analysis methods have allowed many brain imaging
studies that have used DKI have been published in the
literature.

CHARMED

The composite hindered and restricted model of diffusion
(CHARMED) is an expansion of the DTI methodology that

relates the measured signal to biophysical measures in the
tissue compartment (Assaf and Basser 2005; Assaf et al.
2004). The assumption in the CHARMEDmodel is that white
matter contains two independent pools: the axonal space in
which restricted diffusion takes place and extracellular space
in which hindered diffusion takes place. Separating the con-
tribution of restricted diffusion from diffusion of the other
compartments provides for a better characterization of the
axonal water compartment. The CHARMED model parame-
trizes the diffusivity of the hindered component (the non-
axonal pool), the volume fraction and the fiber directions of
the restricted component (axonal pool). While the
CHARMED approach has the potential to offer improved
characterization of white matter in clinical populations, to
our knowledge this method has not been applied to clinical
populations to date. This is likely caused by the need to ac-
quire diffusion data over a wide range of b values (up to 10,
000 s/mm2) and along many diffusion directions, requiring a
protocol that takes an increased acquisition time. A recent
study has shown that by using an optimized sampling scheme
it is possible to reduce acquisition times sufficient for clinical
studies (Santis et al. 2014).

NODDI

Neurite orientation dispersion and density imaging (NODDI)
is a diffusionMRI technique for estimating themicrostructural
complexity of dendrites and axons in vivo (Jelescu et al. 2015;
Zhang et al. 2012). This technique builds on the work of
Alexander (2008) and requires diffusion data with high angu-
lar resolution with at least two shells but is achievable in a
clinical setting. A typical NODDI MRI sequence acquires
whole-brain images with 2 mm (isotropic) voxels resolution
in around 25 min although the scanning time can be shorter
(e.g. 10 min scan) if the angular resolution is reduced.
Information provided by the orientation and dispersion of
white matter allows the quantification of spatial distribution
(bending and fanning) of axons which describes the quality of
brain connectivity (Fig. 8). One limitation of the method is
that model fits only cylindrical axons, with particularly com-
promised accuracy of orientation distribution in regions where
there is fanning and axon crossing. Nevertheless, with opti-
mized parameters, NODDI provides the ability to examine
density and orientation of neurites in the whole brain using a
clinical scanner with clinically feasible scanning times.

Reliability and Validity

The clinical applicability of this brain architecture metric re-
lies on the ability to generate reproducible findings that are
scanner-independent, and inherently site-independent. One
method used to test for quality assurance and reproducibility
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of diffusion weighted imaging data across sites is the use of
phantoms. Phantoms eliminate subject variability and allows
examination of scanner quality and acquisition reproducibili-
ty. For example, Belli and colleagues (Belli et al. 2015) re-
cently conducted a large-scale study in which a standard
doped water phantom was scanned at 26 different center sites
with standard acquisition protocols and standardized instruc-
tions for investigators. They reported that more than 80 % of
mean apparent diffusion coefficient (ADC) measurements
were within 5 % from the nominal value and the highest de-
viation from this mean was 9.3 % (overall SD = 3.5 %). Their
findings suggest that reliability of diffusion weighted imaging
data can be attained if acquisition protocols and instructions
are standardized across studies or sites.

Reliability in data acquisition is also essential for longitu-
dinal studies in which the research topic involves examining
white matter changes over time to understand disease trajec-
tory or to monitor therapeutic effects in clinical samples.

While longitudinal data acquisition requires consideration of
additional sources of variance such as MRI system instabil-
ities, variability in head position in relation to the head coil
and operator differences, there are reports in the literature of
test-retest reproducibility in longitudinal studies. For example,
Jovicich and colleagues (Jovicich et al. 2014) evaluated the
test-retest and multi-site reliability of DTI tract-based spatial
statistics taken from ten clinical 3 T MRI sites. They found
good test-retest reliability on a variety of metrics and produced
values consistent with those reported in fewer sites,
supporting the conclusion that adding testing sites is not nec-
essarily a source of increased noise/decreased reliability.
Reliability of data acquisition parameters proposed by the
Human Connectome Project have been examined with intra-
class correlation coefficients (ICCs) suggesting higher reli-
ability for (i) first order metrics (vs. second order metrics)
when examining global network properties; (ii) volume-
based parcellation (vs. surface-based parcellation); (iii) high-

Fig. 8 Diffusion and parametric maps from a high resolution, MB-DTI,
multi-shell data set. Scan parameters include MB = 3, 1.5 mm isotropic
resolution, TR = 3300 ms, TE = 68 ms, 30 diffusion directions and 4
b = 0 s/mm2 volumes per shell, shells with b = 1000, 1500, 2000, 2500
s/mm2, image time = 8:30 per scan. Two data sets were acquired withwith
opposite phase encode directions thenmerged together using the FSL tool
eddy. Top row shows b = 0, 1000, 1500, 2000, 2500 s/mm2 volumes from
the same gradient direction. Second row parametric maps of MD, RD,
AD, FA, and FA color map computed using tensor model. Third row

contains parametric maps fit using the NODDI toolkit (http://mig.cs.ucl.
ac.uk/index.php?n=Tutorial.NODDImatlab), isotropic volume fraction
(fiso), the intracellular volume fraction (ficvf), the extracellular volume
fraction (fec), the concentration parameter of the Watson distribution
(kappa), and the orientation dispersion index (ODI). The fourth row
contains parametric maps from DKI fit to the data from the DKE toolkit
(http://academicdepartments.musc.edu/cbi/dki/dke.html), mean kurtosis
(kmean), radial kurtosis (krad), axial kurtosis (kax), kurtosis fractional
anisotropy (kfa), and kurtisos mean (mkt)
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resolution (vs. low resolution) when examining global met-
rics; (iv) low-resolution (vs. high resolution) when examining
local metrics; (v) association and primary cortices (vs. limbic
and paralimbic regions); hubs (vs. non-hubs); and multiband
acquired data (vs. conventional dMRI sequences) (Zhao et al.
2015).

Reliability of white matter integrity metrics (FA, MD, AD,
RD) also needs to be considered. In general, there is evidence
of high test-retest reliability for these metrics (most ICCs in
the 0.9+ range). However, reliability seems to be associated
(i) with spatial location within the brain so that limbic and
cingulum tracts both have shown lower reliability (ICC of
0.7+) and (ii) with age so that greater variability and poor
reliability for tract volume measurements is found in younger
patients such as in pediatric epilepsy patients (as low as ICCs
0.5+) (Carlson et al. 2014).

dMRI Reliability may also vary depending on the adopted
analysis approach. For example, there is evidence that tract-
based methods have better reproducibility and test-retest reli-
ability than ROIs (Brandstack et al. 2014). A study that eval-
uated the reliability of identified white matter tracts from dif-
fusion MRI data collected at two separate scans used a variety
of combinations of data analyses including (i) two alternative
tractography algorithms (deterministic tensor tractography
(FACT (Mori et al. 1999)) and probabilistic algorithm model-
ing (FDTBedpostX/ProbtrackX (Behrens et al. 2003, 2007)));
(ii) two alternative seeding approaches (white-matter and
gray-matter seeding); and (iii) three types of network
weighting were recorded for each set of streamlines, two
based on streamline density and a third on tract-averaged FA
(Buchanan et al. 2014). Buchanan and colleagues found that
network metric reproducibility can be improved by using
probabilistic (not deterministic) methods, seeding from the
white matter (rather than gray matter), and selecting stream-
line density weighting (not streamline density weighting with
length correction) (Buchanan et al. 2014).

dMRI Reliability can also be affected by the choice of data
processing steps. Madhyastha et al. (Madhyastha et al. 2014)
cautioned that small preprocessing choices can have signifi-
cant effects on test-retest reliability. They examined reliability
of different preprocessing steps included in TBSS: (i) the use
of a subject-specific (vs common individual template); (ii)
motion correction, eddy current correction, and tensor
estimation using either the FSL pipeline or the DTIPrep pipe-
line (Liu et al. 2010); (iii) noise removal with DTIPrep; and
(iv) smoothing using either 1 voxel median filter (GTRACT;
(Magnotta et al. 2012)) or 1 voxel box kernel (FSL fslmaths).
After comparison of different preprocessing steps,
Madhyastha and colleagues (Madhyastha et al. 2014) reported
that two pre-processing steps improve TBSS reliability by
systematically increasing the number of voxels in the skeleton
that overlapped within an individual subject (increasing reli-
ability by improving within-subject skeleton alignment):

1) the use of a common individual template and 2) smoothing
a 1-voxel median filter.

While post-mortem diffusion imaging data is useful to in-
vestigate ex vivo white matter integrity in humans, there is
evidence that reliability of diffusion properties of postmortem
DTI samples degrades over time (Miller et al. 2011). Although
diffusion anisotropy may still be detected in the major white
matter tracts as late as a post-mortem interval (PMI) of
14 days, regional FA and ADC values in mice (4.7 T) quickly
declined with increasing PMI, as did the number of and co-
herence of reconstructed fiber pathways (D’Arceuil and de
Crespigny 2007).

There are two main factors that affect reliability and valid-
ity of dMRI studies: data collection and data processing. In
order to maximize reliability and validity, selection of scan-
ning parameters needs to be carefully considered keeping in
mind that the goal is to maximize efficiency of data collection
aiming for the best signal to noise ratio. DMRI acquisition
parameters for individual sites are determined by hardware
and software platform.

The review of scanning parameters based on individual
platform differences is beyond the scope of the current man-
uscript. However, one general principle to maximize signal is
to reduce echo time (TE; time between application of
radiofrequency exCitation pulse and the peak of the signal
induced in the coil) to improve signal to noise ratio. Echo time
is often limited by strength of gradients and how fast can these
gradients change. Guidelines for proper data collection using
parameters compatible with the Human Connectome Project
can be found in (Setsompop et al. 2013). Once the most opti-
mal scanning parameters are selected, the stability of scanner
is paramount for high data quality collection. Echo-planar
imaging (EPI) is the most common image acquisition used
in MRI, including dMRI. There has been extensive work in
developing stability monitoring for EPI particularly for fMRI
scanning protocols (Friedman and Glover 2006). Such quality
assurance procedures include regular measurements (prefera-
bly weekly assessments) of signal-to-noise ratio (SNR),
signal-to-fluctuation-noise ratio (SFNR), percent fluctuation,
and drift to evaluate scanner performance periodically
(Friedman and Glover 2006). While Marcus and colleagues
(Marcus et al. 2013) provide standard quality control guide-
lines for structural and functional MRI data collection, a stan-
dard quality control for dMRI data has not been implemented
yet (currently under construction). A final recommendation to
maximize reliability and validity under data collection is that
data from different groups should be collected contemporane-
ously to avoid systematic differences in scanner state.

Regarding analysis issues that may affect reliability and
validity, factors such as susceptibility-induced distortions,
transformations during correction of eddy current distortions,
motion correction, estimation of the tensor, voxel-wise quan-
titative parameters, anisotropy bias, orientation encoding,
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extraction of quantitative parameters, corticospinal fluid con-
tamination, data normalization, smoothing, group difference
sensitivity, statistical analyses, and skeletonization are cov-
ered extensively (Jones and Cercignani 2010). Jones and
cercignani (Jones and Cercignani 2010) identify several
Bpitfalls^ related to the above factors, and provide recommen-
dations to address these potential issues that may affect reli-
ability and validity.

Areas of use and Work in Clinical Samples

Disruption of brain anatomical connectivity can result in
alterations of brain function underlying psychiatric clinical
symptoms and poor cognition. Diffusion weighted imaging
is particularly useful for the examination of white matter in-
tegrity of long-range tracts making it valuable to examine
brain functional architecture in psychiatric conditions that
have been related either to localized disruptions in brain con-
nectivity (e.g. ischaemic damage) or disrupted global connec-
tivity (e.g. schizophrenia and autism). The first clinical use of
dMRI was for detection of ischaemic damage (Sevick et al.
1990). Sevick and colleagues (1990) reported that the signal
provided by diffusion weighted images can be used to define
the anatomic locus of ischaemic damage better than T2-
weighted images. dMRI data was identified as an imaging
modality for early detection and accurate localization of isch-
aemic changes in stroke patients. Since this early study, dMRI
has been useful for diagnosing, measuring disease severity,
determining stages of the disease, and monitoring progression
in patients with ischaemic stroke (Roldan-Valadez and Lopez-
Mejia 2014; Simonsen et al. 2015; Uno et al. 2015).

Schizophrenia, a disorder characterized by the disconnec-
tion or lack of integration of thought processes, was the first
psychiatric disorder to be explored with dMRI. One of the first
studies that identified white matter integrity alterations in
schizophrenia patients reported widespread lower fractional
anisotropy in schizophrenia patients when compared to con-
trols despite groups having similar white matter volumes (Lim
et al. 1999). More localized alterations have since been iden-
tified in schizophrenia patients ranging from lower white mat-
ter integrity in the corpus callosum, particularly the frontal
portions (Kubicki et al. 2003; Sun et al. 2003; Wang et al.
2004) to disruption in identified tracts such as the uncinate
fasciculus and cingulum bundle (Fujiwara et al. 2007;
Voineskos et al. 2010). A global approach to the examination
of brain connectivity in schizophrenia can be conducted by
examining connectivity in predetermined nodes at the whole-
brain level (Zalesky et al. 2011). By using whole-brain
tractography, Zalesky and colleagues (Zalesky et al. 2011)
identified specific pairs of nodes between which connectivity
was lower in the schizophrenia patients vs. controls. Network
based statistics specifically identified lower connection be-
tween a cluster of frontal nodes and a group of parietal and

occipital nodes in schizophrenia patients vs. controls via the
cingulum bundle and posterior cingulate (Zalesky et al. 2011).
While a full consensus on white matter integrity disruptions in
schizophrenia patients has not been reached (may be due to
scanner, preprocessing, analysis differences, sample variabil-
ity), there seems to be a general agreement on altered connec-
tivity of networks involving frontal nodes.

Quality of white matter integrity as measured with dMRI
has been previously associated with specific behavioral alter-
ations and clinical symptoms in psychiatric disorders
(Table 2). In schizophrenia patients, for example, lower frac-
tional anisotropy in right inferior frontal white matter has been
correlated with higher motor impulsiveness and aggression
(Hoptman et al. 2002, 2004) and with severity of negative
symptoms (SANS) such as affective blunting and anhedonia
(Wolkin et al. 2003).

Lower fractional anisotropy in white matter regions (unci-
nate fasciculus, sagittal stratum and superior longitudinal fas-
ciculus) has been associated with severity of symptoms
(PANSS) in schizophrenia patients (Michael et al. 2008;
Skelly et al. 2008), although recent findings suggest that these
relationships may be mediated by age (Bijanki et al. 2015).
Nevertheless, the relationship between severity of psychiatric
symptoms and quality of white matter integrity has beenwide-
ly studied in other psychiatric disorders all reporting negative
correlations between (i) quality of white matter integrity (low-
er fractional anisotropy, higher mean diffusivity) in the whole
white matter skeleton and severity of traits in autism spectrum
disorder (ASD) (Gibbard et al. 2013); (ii) fractional anisotropy
(in corpus callosum, cingulate bundle, inferior fronto-occipital
fasciculus and right optic radiation) and symptom severity (in
the obsessing and ordering dimension) in obsessive compul-
sive disorder (Koch et al. 2012); (iii) fractional anisotropy (in
right superior longitudinal fasciculus) and ADHD (attention
deficit hyperactivity disorder) symptom counts (Witt and
Stevens 2015); (iv) fractional anisotropy (in fornix and cingu-
lum) and symptom scores (affective instability and anger re-
spectively) in borderline personality disorder (Whalley et al.
2015); and (v) fractional anisotropy (in uncinate fasciculus,
inferior fronto-occipital fasciculus, anterior internal capsule)
and severity of psychopathy scores in individuals with antiso-
cial personality disorder (Sundram et al. 2012).

The relationship between cognitive performance and white
matter integrity has also been examined in psychiatric disor-
ders. For example, a positive correlation has been reported
between cognitive performance in tasks that assess attention,
memory, executive function and language and fractional an-
isotropy (attention: cingulate gyrus; memory: fornix/anterior
corona radiata; executive function: anterior limb of internal
capsule; language: sagittal striatum) in patients with
Parkinson’s disease (Zheng et al. 2014). Although the rela-
tionship between clinical symptoms/cognitive performance
and white matter integrity needs to be revisited with more
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sophisticated analyses accounting for potential covariates
(such as age, gender, medication, substance use), findings
from the above mentioned studies suggest an association be-
tween brain anatomical organization and clinically relevant
behavioral metrics in psychiatric disorders.

Studies have examined white matter integrity in relatives of
schizophrenia patients to potentially use this tool as an
endophenotype or vulnerability marker of schizophrenia.
Findings, however, have not been consistent. While some
studies have found reduced fractional anisotropy in relatives
of schizophrenia patients when compared to controls (Kang
et al. 2012), other have found a potential compensatory mech-
anism in which relatives of schizophrenia patients have higher
fractional anisotropy than healthy controls and schizophrenia
patients (Goghari et al. 2014; Kim et al. 2012). It is likely that
this inconsistency in white matter integrity alterations relates
to the different genetic makeup of schizophrenia relatives,
while some may carry similar genetic load as their affected
relatives, others may not. A more sophisticated approach that
utilizes white matter integrity metrics as potential biomarkers
of disease vulnerability has been through the direct use of
genotype data as a grouping variable. For example, a study
that identified individuals at risk of developing schizophrenia
through the presence of the rs1344706 SNP in the ZNF804A

gene, found that individuals with this genotype have lower
fractional anisotropy in the corpus callosum, left forceps mi-
nor, and right parietal white matter, a finding that was related
to abnormal myelination (Ikuta et al. 2014). This approach, in
which group comparison is based on genotype, is being in-
creasingly used and is a promising development to allow the
identification of biomarkers of disease in white matter integ-
rity (Ottet et al. 2013a; Perlstein et al. 2014).

DMRI data can also provide information about disease
progression and outcome. For example, while some studies
suggest that there is an age-related decline in whole brain
fractional anisotropy in schizophrenia patients (Wright et al.
2014), others have not found evidence of this decline when
examining white matter tracts (Voineskos et al. 2010). DMRI
data can be a useful tool in diseases that affect the central
nervous system such as amyotrophic lateral sclerosis (ALS).
ALS progression has been found to be correlated to white
matter abnormalities identified with dMRI using Q-ball meth-
odologies. Specifically, disease progression has been found to
be negatively correlated with tract length and fiber density of
corpus callosum in ALS (Caiazzo et al. 2014). In patients with
epilepsy, dMRI metrics have been found to be sensitive to
transient, progressive and permanent diffusion changes asso-
ciated with seizure activity in focal and generalized epilepsy,

Table 2 Example of diffusion MRI findings in psychiatric disorders

Disorder Most Recent dMRI Findings

Addiction (Alcohol Use Disorder) Longitudinal examination of white matter microstructural integrity found that relapsing individuals
with alcohol use disorder had continued worsening, whereas the abstaining individuals showed
improvement in DTI indices of fibre integrity (e.g. callosal genu and body; (Pfefferbaum et al. 2014))

Addiction (Stimulant Use Disorder) Reduced frontal (orbitofrontal, inferior frontal, anterior cingulate) white matter integrity (FA) in
individuals with stimulant use disorder (Chung et al. 2007; Lim et al. 2002; Romero et al. 2010)

Alzheimer’s Disease White matter deterioration in fornix, corpus callosum, cingulum, related to cognitive impairments
(Daianu et al. 2013; Nir et al. 2013)

Amyotrophic Lateral Sclerosis (ALS) Upper motor neuron impairment has been examined using diffusion metrics, which have been found
to correlate with disease severity and duration (Ellis et al. 1999; Iwata et al. 2008). Can be potentially
used for diagnosis, based on reduced FA in corticospinal tract (Liu et al. 2015)

Depression Disrupted white matter integrity in default mode network and in a network including frontal cortex,
thalamus, and caudate (Korgaonkar et al. 2014)

Parkinson’s Disease Full-brain white matter integrity can be used to discriminate between patients and controls
(Skidmore et al. 2015). FAwithin between parkinsonian disorders

Schizophrenia White matter integrity abnormalities identified in specific regions such as corpus callosum and temporal
lobe (Balevich et al. 2015; Ellison-Wright et al. 2014; Lener et al. 2015) Potential trait marker for
schizophrenia identified in right arcuate fasciculus of relatives (Skudlarski et al. 2013; Wu et al. 2015)

Stroke Can be used to monitor outcome: Reduction in lesion volume/complete recovery after 30 days of minor
ischemic stroke onset (Kate et al. 2015); white matter damage after ischemic stroke has been related
to functional outcomes; degree of recovery related to infarct location (Yassi et al. 2015). Tensor-free
approaches allow better detection of damaged tracts than diffusion tensor approaches (Auriat et al. 2015)

Traumatic Brain Injury (TBI) Reduction in white matter integrity related to mild TBI (e.g. lower FA in internal capsule;
(Hayes et al. 2015)) has been found to be proportionally exacerbated with number of blast
exposure and loss of consciousness (Hayes et al. 2015; Morey et al. 2013). Post-injury changes
in white matter integrity associated with changes in memory and learning can be detected with
dMRI (Newcombe et al. 2015)
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and detecting post-operational change (Chaudhary and
Duncan 2014). In stroke, dMRI has been used to examine
white matter changes in patients undergoing rehabilitativemo-
tor training. DMRI data collected at three time points (before
training, 4- and 8 weeks after training) detected a progressive
increase in number and length of fibers in the cortico spinal
tract in chronic stroke patients after robotic neurorehabilitation
(Lazaridou et al. 2013). In patients with multiple sclerosis, the
use of dMRI as a tool that measures outcome for
remyelination and repair has been evaluated. While dMRI
provides good sensitivity to detecting myelin based changes,
it has poor specificity, reproducibility, low SNR, and high
susceptibility to motion artifacts (Mallik et al. 2014). The util-
ity of dMRI for examining disease progression and outcome,
therefore, needs to be carefully interpreted due to potential
confounding variables in observations designed to detect
white matter changes across time such as aging, the effect of
psychotropics, development of other psychiatric comorbidi-
ties, etc.

Given that no single MRI measure is able to provide
complete information on brain structure and function, it
is best to investigate neural abnormalities in neurologic
and neuropsychiatric disorders with a multimodality ap-
proach (Chaudhary and Duncan 2014; Chondrogiorgi
et al. 2015; Dyrba et al. 2015; Libero et al. 2015; Sui
et al. 2015). For example, the utility of dMRI data as a
tool for diagnostic evaluation in amyotropic lateral scle-
rosis (ALS) improves when using a multimodal ap-
proach that incorporates dMRI and magnetic resonance
spectroscopy (MRS) data, so that data from these two
modalities allow the best discrimination between pa-
tients with ALS and controls (Area under the receiver
operating characteristic curve, AUC 0.93 vs. 0.81)
(Foerster et al. 2014).

As to the future, dMRI methods will continue to be used by
neuropsychologists and other investigators studying neuro-
logical and neuropsychiatric questions. The nature of these
studies will continue to improve concurrently with advances
in dMRI methods. Hardware and sequences for acquiring
dMRI data are constantly evolving with the development of
new scanners with faster acquisition (e.g. multiband) that ad-
dress previously noted shortcomings (Feinberg et al. 2010;
Moeller et al. 2010; Zhao et al. 2015). dMRI analysis methods
are also evolving from basic tensor models to more sophisti-
cated models that better describe the complex white matter
architecture of the brain (e.g DKI (Jensen et al. 2005),
CHARMED (Assaf and Basser 2005), NODDI (Zhang et al.
2012), etc.). The ability to examine changes in microstructural
complexity may allow for the examination of synaptic plas-
ticity in dMRI studies performed both before and after inter-
vention. For example, the examination of microstructural
complexity of dendrites and axons before and after cognitive
remediation therapy in schizophrenia patients would allow

one to investigate plasticity within networks that potentially
mediate executive function deficits characteristic of this dis-
ease. Multimodal imaging approaches (that integrate data
from different imaging modalities such as MRI, fMRI,
dMRI) have begun to be used and have the potential to pro-
vide a rich set of information to study neural alterations such
as structural (dMRI) and functional (fMRI) connectivity in
brain disorders. For example, given that recent findings sug-
gest that interventions for depression result in neurogenesis
and synaptogenesis involving restructuring of brain connec-
tions (Bambico and Belzung 2013) a combination of neuro-
imaging methodologies such as dMRI and fMRI can be
useful to monitor microstructural and functional network
changes related to treatment (e.g. antidepressants or cog-
nitive behavioral therapy) and recovery. The number of
subjects included in studies will continue to increase,
from tens of subjects per study to hundreds and thousands
of subjects per study. The ability to include such large
numbers of subjects in a single study will allow for so-
phisticated analyses which merge genetic and dMRI data
into a single analysis. Given the above, multimodal ap-
proaches that examine genetics as well as structural and
functional connectivity differences and changes related to
disease progression, treatment monitoring, and treatment
outcome in neuropsychiatric disorders seem to be the fu-
ture for dMRI research.
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Glossary

MRI Magnetic resonance imaging - non-invasive tech-
nique that provides images of internal structures by
measuring excitability of atoms after application of
high-frequency radio waves within a strongmagnetic
field.

EPI Echo planar imaging - a type of MRI that utilizes
only one nuclear spin excitation per scanned image
allowing faster acquisitions.

dMRI Diffusion magnetic resonance imaging - non-inva-
sive technique that measures the diffusion of mole-
cules (mainly water) in biological tissue (such as the
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brain) allowing characterization of white matter
tracts in the brain.

fMRI Functional magnetic resonance imaging - non-inva-
sive technique that can be used to measure brain ac-
tivity by detecting changes in blood flow and oxy-
genation that occur during neural activity.

ASL Arterial spin labeling - non-invasive technique that
measures cerebral blood flow (without the need of
injection of exogenous tracer) by using water in the
blood as an endogenous tracer.
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