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Abstract The etiologies underlying variation in adult cogni-
tive performance and cognitive aging have enjoyed much at-
tention in the literature, but much of that attention has focused
on broad factors, principally general cognitive ability. The
current review provides meta-analyses of age trends in herita-
bility of specific cognitive abilities and considers the profile of
genetic and environmental factors contributing to cognitive
aging to address the ‘missing heritability’ issue. Our findings,
based upon evaluating 27 reports in the literature, indicate that
verbal ability demonstrated declining heritability, after about
age 60, as did spatial ability and perceptual speed more mod-
estly. Trends for general memory, working memory, and spa-
tial ability generally indicated stability, or small increases in
heritability in mid-life. Equivocal results were found for exec-
utive function. A second meta-analysis then considered the
gap between twin-based versus SNP-based heritability de-
rived from population-based GWAS studies. Specifically, we
considered twin correlation ratios to agnostically re-evaluate
biometrical models across age and by cognitive domain. Re-
sults modestly suggest that nonadditive genetic variance may
become increasingly important with age, especially for verbal
ability. If so, this would support arguments that lower SNP-
based heritability estimates result in part from uncaptured
non-additive influences (e.g., dominance, gene-gene interac-
tions), and possibly gene-environment (GE) correlations.
Moreover, consistent with longitudinal twin studies of aging,
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as rearing environment becomes a distal factor, increasing
genetic variance may result in part from nonadditive genetic
influences or possible GE correlations. Sensitivity to life
course dynamics is crucial to understanding etiological con-
tributions to adult cognitive performance and cognitive aging.
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Several thorough reviews of behavior genetics of cognitive
aging have appeared in the last 5 years (Finkel and Reynolds
2009, 2010; Johnson et al. 2014; Reynolds and Finkel 2015).
Because of the scope of the issues inherent in genetic investi-
gations of cognitive aging, most of these reviews relied on
fairly global overviews that allow for identification of major
trends and issues. As these reviews exist, we feel at liberty to
focus on two very specific issues that serve to showcase the
two primary approaches currently in use in investigations of
genetic influences on cognitive aging. First, behavior genetic
approaches have expanded in the last decade or so to consider
a broader array of domains such as executive functioning and
working memory. Sufficient data is available to examine age
trends not only in general cognitive ability, but also at the level
of these specific abilities, providing the necessary data to sup-
port and interpret molecular approaches. Second, with the
incredible advances in molecular genetics in the last decade,
researchers have been combing the genome to identify specif-
ic genes associated with cognitive function and cognitive ag-
ing. It should be possible, then, to trace the proportion of
genetic variance associated with cognitive functioning to a
complete set of cognitive genes. However, research on these
issues has not produced a straightforward answer. In the cur-
rent chapter we use meta-analytic approaches to address the
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worldwide literature on twin- and family-based studies of
adult cognition and cognitive aging and consider these results
in light of empirical findings of “missing” heritability.

Adult Lifespan: Decreasing, Stable, or Increasing
Heritability?

Meta-analyses of genetic influences on general cognitive abil-
ity in childhood and young adulthood have demonstrated that
the resulting heritability estimates and patterns of correlations
are consistent with the predictions of polygenic theory
(Bouchard and McGue 1981; Chipuer et al. 1990;
Erlenmeyer-Kimling and Jarvik 1963). In other words, the
more genetically related individuals are, the more similar their
cognitive ability [see Box 1.1]. However, meta-analyses fo-
cusing on age differences in heritability estimates report de-
creasing twin similarity and increasing heritability from child-
hood through young adulthood (Bergen et al. 2007; Bouchard
2013; McCartney et al. 1990). Multiple effects are assumed to
account for these age differences: as twins grow up and move
out of the house, parents have decreasing control over their
environments and twins begin to select their own environ-
ments. That selection is not independent of their genetically-
influenced personality and cognitive phenotypes (i.e., active
gene by environment correlation plays a role).

However, evolutionary pressures and environmental influ-
ences continue to change as adulthood progresses, in addition
to the variable action of genetic factors. What can we predict,
then, about stability or change in heritability of cognitive abil-
ity in the second half of the lifespan? The active gene by
environmental correlation that develops in the first half of
the lifespan could continue into the second, resulting in steadi-
ly increasing heritability as MZ twins choose more similar
environments than DZ twins. Alternately, as individuals age
beyond child-bearing and child-rearing years, the evolution-
ary imperative to weed out deleterious genetic mutations
wanes (Hamilton 1966; Kirkwood et al. 2011). Therefore,
the consequence of mutations may begin to accumulate,
resulting in increasing divergence of MZ and DZ twin corre-
lations (as MZs are more likely to share the mutations) and
thus increasing heritability with age. In contrast, as twins con-
tinue to age and experience their separate lives, they may
continue to “grow apart,” as McCartney and colleagues
(McCartney, et al. 1990) claimed. The accumulation of unique
environmental factors (environmental assaults, individual ex-
periences, disease) including stochastic chance processes
(Finch and Kirkwood 2000) may drive down both MZ and
DZ twin similarity, resulting in decreased heritability and in-
creased estimates of nonshared environmental variance. Final-
ly, it is possible that all of these influences have achieved a
state of equilibrium by midlife, resulting in fairly stable heri-
tability estimates across the second half of the lifespan.

@ Springer

Two recent analyses have attempted to address the issue of
age differences and age changes in heritability of general cog-
nitive ability in adulthood. In a fairly comprehensive review of
existing cross-sectional and longitudinal twin studies of cog-
nitive aging extant at that time, Finkel and Reynolds (Finkel
and Reynolds 2009) concluded that heritability of general
cognitive ability increased to 80 % in midlife but then de-
creased to 60 % in late adulthood, with a corresponding in-
crease in nonshared environmental variance. In contrast,
Christiansen and McGue (Christiansen and McGue 2013) re-
cently reported heritability estimates hovering around 60 % in
cross-sectional twin data including over 2000 pairs and cov-
ering most of adulthood (age 46-90). Thus, evidence for both
stable and decreasing heritability with age has been reported.

It is possible that these contrasting results are a conse-
quence of differing definitions of general cognitive ability.
In fact, it may be misguided to focus our efforts to understand
the etiology of cognitive aging on general cognitive ability.
Beginning with Schaie’s classic longitudinal studies of cogni-
tive aging (Schaie 1996), the psychometric work by Horn and
Cattell (Horn and Cattell 1966, 1967), and the application of
modern growth analysis (McArdle et al. 2002; McArdle et al.
2000), it has been clear that cognitive ability is not a unitary
construct and that there are different patterns of cognitive ag-
ing across cognitive domains. Similarly, twin studies of cog-
nitive aging that focus on individual cognitive domains report
different patterns of genetic and environmental variance
across domains and ages (Johansson et al. 2004; Lee et al.
2010; Lessov-Schlagger et al. 2007; McArdle et al. 1998;
Reynolds et al. 2005). Therefore, in the hope of clarifying
the etiology of cognitive aging, we have conducted a meta-
analysis of cross-sectional twin and family studies of specific
cognitive abilities in adulthood to examine patterns of age
differences in heritability estimates across cognitive domains.

Meta-analysis of Heritability Estimates

A review of the literature generated 27 articles reporting cross-
sectional results from 19 different twin and family studies of
adulthood and aging that incorporated measures of specific
cognitive functioning (see Supplement 1). Although there
are several longitudinal twin studies of cognitive aging, only
5 reported information about specific cognitive abilities, a
number insufficient to support the meta-analytic techniques
used here. Because at most half of the studies reported esti-
mates of environmental variance (shared or unique) and very
few estimated dominance, this meta-analysis focused on
narrow-sense heritability. Table 1 presents the characteristics
of the 178 heritability estimates collected from these studies,
clustered in 6 major cognitive domains: verbal (35 estimates),
spatial (20), general memory (45), speed (27), executive func-
tioning (24), and working memory (27). Clustering into
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Table 1 (continued)

Cognitive domain (# tests)

% Female

Data®

Age®

N pair

N indv

Type

Country

Source

Study

Spatial (1)

H 66

30 MZ 71.6 (4.8)

51 DZ

164

Older Twin

Speed (1)

Verbal (1)

Working memory (1)

Speed (2)

H 61

665 (1.8)

64 MZ

96 DZ

241

Twin

Finkel and Pedersen 2014

General memory (1)

Speed (2)
Verbal (1)

H 100

56.0 (11.0)

108 MZ
170 DZ

556

Twin

UK.

Singer et al. 2006

TwinsUK

Working memory (1)

Verbal (1)

H

479 (3.3)

179 MZ
169 DZ
349 MZ

U.S. Twin 690

Kremen et al. 2005

Vietnam Era Twin Study of Aging

General memory (6)

H

55.4 (2.5)

1237

Twin

Kremen et al. 2014

265 (DZ)

#Mean age (standard deviation) if reported, otherwise age range

® Type of data reported: H heritability estimate, 7C twin correlations

¢ NA indicates “not applicable”

9 NR indicates “not reported”

domains followed the authors’ labels or standard interpreta-
tions of the individual tests. Digit span tasks were considered
measures of working memory. General memory included pri-
marily measures of episodic memory. Three studies reported
twin correlations (TC) instead of heritability estimates (H);
structural equation modeling was used to calculate heritability
estimates from the twin correlations and number of pairs
(Boker et al. 2011). Taken together, the 19 studies included
9916 participants (1929 MZ pairs and 1890 DZ pairs) ranging
in age from 14 to 98, with a mean age of 55 (median=65).
Fifty-three percent of the participants were women. A full
description of all studies and cognitive tasks is available from
the authors.

Identifying a common metric of dispersion/accuracy repre-
sented the greatest challenge to our meta-analysis. A few stud-
ies reported confidence intervals (16.9 %) and another 15.7 %
reported standard errors for their estimates. Forty-five percent
reported twin correlations, which could be used to generate
heritability estimates and corresponding standard errors via
calculation (McCartney, et al. 1990; Sham 1998) or structural
equation modeling (Boker, et al. 2011). However, 22.5 % re-
ported neither standard errors nor sufficient information to
estimate standard errors. In the interest of consistency, we
chose to calculate an approximate standard error for each her-
itability estimate following Koots and Gibson (Koots and Gib-
son 1996), who used 2N for parent-offspring pairs, where N
is the total number of twin pairs in the current case. The aver-
age difference between this metric and the reported or calcu-
lated standard errors (where available) was .007; the smallest
difference by an order of magnitude of any of the standard
error metrics we investigated.

Two approaches were used to summarize the data points
within each domain. First, the common standard error estimate
(27N was used to calculate 95 % confidence intervals around
each heritability estimate. Estimates were then plotted (with
confidence intervals) by the mean age of the sample (left side
ofFigs. 1,2, 3,4, 5, and 6). Where mean age was not reported,
the midpoint of the reported age range was used. A reference
line is included in the figures to indicate the average heritabil-
ity across ages. Second, a multi-level random effects regres-
sion model was fitted to the data points (SAS Proc Mixed,
SAS, Cary, NC), including both linear and quadratic age com-
ponents (right side of Figs. 1, 2, 3, 4, 5, and 6). Covariates
included gender, publication year, and region (U.S., Europe,
non-European). Estimates were adjusted for sampling vari-
ability by including the estimated standard errors as a level 1
predictor with unit-constrained variance (Hox 2010), and
between-study random effects estimated. Given the small
sample of heritability estimates within each domain (ranging
from 20 to 45), there was insufficient power to differentiate
between linear and quadratic models in 5 of the 6 cognitive
domains. Model fit statistics and parameter estimates with
standard errors are reported in Supplemental tables 1 and 2.

@ Springer
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Verbal

S

Heritability and 95% CI
o
o
=
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(R X

20 40 60 80
Mean Age

Verbal
15

05 o —

Heritability

20 30 40 50 60 70 80 90

-0.5

Mean Age

Fig. 1 Heritability of verbal ability: estimates and expected curve across age

Results for verbal ability are presented in Fig. 1: both the
individual point estimates presented on the left and the fitted
curve presented on the right suggest decreasing heritability in
the second half of the lifespan and the quadratic regression fit
significantly better than the linear model (change in model
fit=6.4, df=1, p<.05). A reference line in the left panel indi-
cates average heritability across the entire age range: before
age 60, 75 % of the study heritabilities are greater than the
average, whereas after age 60, 73 % of the heritabilities are at
or below the average. Maximum (.61) and minimum (.28)
heritabilities estimated by the regression model are reported
in the right panel. The pattern of decreasing heritability indi-
cated here for verbal ability is similar to the pattern reported by
Finkel and Reynolds (2009) for general cognitive ability; the
same pattern is suggested by the results for spatial ability
(Fig. 2) and perceptual speed (Fig. 4), although the compari-
sons of regression models did not achieve significance. Note
that most measures of general cognitive function rely on four
primary domains (verbal, spatial, memory, and speed) and in
the current analyses 3 of those 4 domains manifested the same

Spatial

Heritability and 95% CI
o
o
f—

20 40 60 80
Mean Age

pattern reported for general cognitive ability by Finkel and
Reynolds (2009). In contrast, the pattern of results for general
memory (Fig. 3) and working memory (Fig. 5) suggest stabil-
ity or possible increases in heritability, although the quadratic
model did not achieve significance.

Executive function (Fig. 6) presents the sparsest data and
the greatest puzzle in these analyses. The individual point
estimates and the quadratic regression model for executive
functioning suggest an increase in heritability in late adult-
hood. However, closer examination of individual heritability
estimates suggested that the age trends for executive function-
ing might be more complicated, with multiple inflection
points across adulthood. A model including three linear slopes
(age 20-50, age 50-65, age 65-90) provided a marginally
better fit to the data than the linear model for executive func-
tioning (change in model fit=4.8, df=2, p<.10); whereas the
quadratic model did not improve fit over the linear model
(change in model fit=1.0, df=1, ns). Both the quadratic and
three-slope models are presented in right half of Fig. 6; the
different heritability estimates at age 90 arising from the two

Spatial
15
1
.
§ 05 e
k)
=
0 . . . : : : )
20 30 40 50 60 70 8 90
-0.5

Mean Age

Fig. 2 Heritability of spatial ability: estimates and expected curve across age
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General Memory
1.5

1
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E /__\
-

0 . . . . . . :
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-0.5

Mean Age

Fig. 3 Heritability of general memory: estimates and expected curve across age

models are indicated. As a result of the paucity of data, it is
impossible to determine whether heritability for executive
function increases to .77 or decreases to .27 in late adulthood.
Even examination of the few longitudinal data points available
for executive function cannot provide clarification: both mod-
est increases (.52 to .61) and modest decreases (.52 to .43) in
heritability estimates for measures of executive function are
reported from wave 2 (mean age 72.7) to wave 3 (mean age
76.6) of the National Heart Lung Blood Institute twin study
(Lessov-Schlagger et al. 2007).

Thus, the meta-analyses revealed the most support for two
of'the three possible patterns of differences in heritability with
age (stability and decrease), and the patterns varied by cogni-
tive domain. Interestingly, three domains of cognitive function
that have been associated with structural changes in specific
brain regions (Raz 2000) — general memory, working memory,
and executive functioning— show patterns of modestly in-
creasing heritability with age at some point in the lifespan. It

Speed

Heritability and 95% CI
=
—
b
—
—a®—

0.0

05
20 40 60 80
Mean Age

is possible that, as Hamilton (1966) suggested, modest in-
creases in heritability result from the accumulation with age
of deleterious genetic mutations that impact physiological
function within the brain. Although the APOE risk haplotype
e4 may have maximal impacts on dementia risk particularly
before age 70 (Blacker et al. 1997), it has shown broad im-
pacts to multiple domains of cognitive aging (Davies et al.
2014; Finkel et al. 2011; Reynolds et al. 2006). Other genes
evaluated likewise do not appear to be associated particularly
with narrow cognitive domains, such as SORL! (e.g., episodic
memory, spatial ability (Reynolds et al. 2013)), or BDNF (e.g.,
hippocampal-dependent memory processes, executive func-
tioning, global cognitive functioning; see (Honea et al. 2013;
Kambeitz et al. 2012; Mandelman and Grigorenko 2012)).
Verbal ability, spatial ability, perceptual speed, and possibly
executive functioning show patterns of declining heritability,
generally after age 60. With respect to these components of
cognition, then, it appears that twins continue to “grow apart”

Speed
1.5
1
2
:@ 0.5 \\
£ N
= 44
0 T T T T |
30 40 50 60 70 80
-0.5
Mean Age

Fig. 4 Heritability of perceptual speed: estimates and expected curves across age
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Working Memory

Heritability and 95% CI
o
o
-

-

e

et

[
-

A

-05

20 40 60 80
Mean Age

Working Memory
15

0.5 *—( 26

Heritability

20 30 40 50 60 70 80 90

-0.5

Mean Age

Fig. 5 Heritability of working memory: estimates and expected curve across age

in late adulthood as McCartney et al. (1990) suggested: accu-
mulation of the effects of individual life choices and experi-
ences generally result in decreasing twin similarity and de-
creasing heritability.

Overstating the Case for Heritable Influences? Missing
Heritability

Measured gene approaches such as GWAS, which assay mil-
lions of single nucleotide polymorphisms scattered across the
genome, have brought about alternative methods to twin and
family designs. For example, the Genome-wide Complex
Trait Analysis (GCTA) estimates the aggregate contribution
of SNP variants across the genome to individual differences in
a phenotype, summarized as a narrow-sense SNP-based heri-
tability (Davies et al. 2011; Deary et al. 2012). While the
GCTA approach is conceptually similar to family-based bio-
metrical approaches, the GCTA estimates the genetic related-
ness (i.e., genomic relationship matrix; GRM) among other-
wise unrelated individuals. In other words, even genetically

Executive Function

Heritability and 95% CI
2
o
H—oe——
-+
—t—-

0.0

-05
20 40 60 80
Mean Age

unrelated individuals can coincidentally share some gene var-
iants, though the average genetic relatedness in an unrelated
sample is zero (Yang et al. 2011).

GCTA estimates of SNP-based heritability for fluid and
crystallized abilities have been estimated at .51 and .40,
respectively, based upon GWAS data collected on 3511
unrelated persons from the CAGES consortium ranging
in age from 44 to 93 years (Davies et al. 2011). Moreover,
24 % of the cognitive change between childhood
(11 years) and older adult cognitive performance at ages
65 and older (residual based) is accounted for by common
SNPs as measured using GWA SNP data on a subset of
1940 persons from the CAGES consortium (Deary et al.
2012). Reanalysis of three of the CAGES consortium
samples (N=1804) applied GCTA using a genome-scan
approach to estimate the contribution of about 500k auto-
somal SNPs, reporting “population-sense heritabilities
(ths)” of .36 for crystalized ability, .19 for fluid abilities,
and .26 for cognitive change (Rowe et al. 2013). The
range of SNP-based heritability estimates across the two
studies for fluid ability is attributed to broader age

Executive Function
1.5

-
-
0.5 \71\ 27
~
-~

20 30 40 50 60 70 80

Heritability

-0.5
Mean Age

Fig. 6 Heritability of executive function: estimates and expected curves across age
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Table 2 Multilevel fixed effect estimates of MZ/DZ ratios by cognitive domain
Domain N Obs Fixed effect Estimate (In) se LCL UCL Expected ryiz/tpz “Model”
Verbal 21 Intercept 1.379 0.112 1.114 1.644 2.97 ADE*
Age 0.000 0.009 —0.020 0.021 - -
Age® 0.000 0.000 —0.001 0.000 - -
Spatial 14 Intercept 1.148 0.102 0.885 1.410 2.15 ADE
Age —0.005 0.009 —0.030 0.018 - -
Age? 0.000 0.000 —0.001 0.001 - -
Speed 20 Intercept 1.116 0.092 0.892 1.340 2.05 A?E
Age 0.007 0.011 —0.017 0.031 - -
Age® 0.001 0.000 0.000 0.002 - -
General memory 23 Intercept 1.017 0.185 0.565 1.469 1.76 ACE
Age 0.004 0.011 —0.019 0.028 - -
Age® 0.000 0.000 0.000 0.001 - -
Working memory 15 Intercept 1.453 0.190 1.004 1.902 3.28 ADE
Age —0.012 0.012 —0.044 0.020 - -
Age® —0.001 0.001 —0.003 0.001 - -
Executive functioning 8 Intercept 1.283 0.125 —-0.307 2.872 2.61 ADE
Age 0.006 0.004 —0.005 0.017 - -

Each ratio was transformed accordingly: In(ry;z/rpz +1). N Obs = number of data points contributing to each analysis. Analyses were weighted based on
pair sample size. The fixed effect estimates and standard errors are presented from multi-level modeling in SAS Proc Mixed (Cary, NC), where LCL=
95 % Lower Confidence Limit and UCL=95 % Upper confidence limit. The intercept reflects the expected ratio in natural log units, adjusted for age- and
age-squared terms centered at 65 years, with the exception of Executive Functioning that entered only the linear age term. If the intercept estimates
exceed 1.099 that would indicate an ADE model may be warranted when back-calculated into raw ratio units (i.e., exceed 2.0). Back-calculated expected
I'mz/Tpz ratios are provided. ADE* = support of ADE model based on 95 % CI of the intercept that excludes values 1.099 and below.

composition of the larger CAGES sample set (Davies
et al. 2011) versus the older ages represented in the re-
duced sample set for which the genome scan was applied
(Rowe et al. 2013). Nonetheless, these SNP-based herita-
bility estimates for fluid and crystalized ability measures
are lower than our meta-analytic heritability estimates,
i.e., 56-62 % at the peak for verbal, spatial and speed
traits (see Figs. 1, 2, and 4). This difference is broadly
consistent with GCTA estimates of heritability versus
twin-based estimates in childhood within the same sam-
ple: SNP-based heritabilities (about .20—.30) versus tradi-
tional twin samples (.40—.60) were substantial though
lower (Plomin et al. 2013b; Trzaskowski et al. 2013).
Moreover, recent investigations of Alzheimer Disease
(AD), for which there has been heavy emphasis on con-
sistency of phenotyping, and for which GWAS have
paid off relatively more handsomely than in other do-
mains, have reports of ‘missing heritability’. SNP-based
heritability estimation suggests genetic influences ex-
plain approximately 33 % of the total liability or risk
for AD: APOE itself accounts for 6 %, while nine ex-
tant identified and confirmed genes account for 2 %
(ABCA7, BINI, CD33, CD2AP, CLU, CRI, MS4A464,
MS4A44E, PICALM) (Ridge et al. 2013). Additional can-
didates have been identified based on a meta-analysis of

GWAS studies with over 74,000 individuals (Lambert
et al. 2013). Yet, the median twin-based heritability for
AD is higher at about 57 % (see Gatz et al. 2014;
Reynolds and Phillips 2015). Likewise, a study of the
HRS sample suggested similar findings when evaluating
cognitive functioning constructed from telephone screen-
ing performance based on the MMSE plus an episodic
verbal recall memory task (C. Zhang and Pierce 2014).
The SNP-based heritability ranged from 15 to 33 % on
overall performance while for longitudinal linear decline,
SNP heritability was far lower at about 5 %. One can
debate the linearity vs. nonlinearity of the trajectory shape
as to whether the heritability of the slope was
underestimated (c.f. Reynolds, et al. 2005), but these find-
ings coupled with the findings for AD collectively suggest
that the SNP heritability fails to approach heritability
values from twin studies. Thus, if up to 33 % of AD risk
or cognitive functioning is explained by common variants,
of which only a fraction is due to identified candidates,
more work remains to identify additional candidates and to
‘close’ the gap between the twin-based and SNP-based heri-
tability estimates.

There are a number of explanations proposed for this gap
between SNP heritability estimates and twin- or family-based
heritability estimates. These include the idea that GWAS does
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Fig. 7 MZ/DZ correlation ratios by study (log transformed) with overall
estimate and 95 % CI. Note. Each ratio was transformed accordingly:
In(rvz/tpz +1). The blue circles represent study ratio values scaled
relative to pair sample size. The red diamond represents the overall

not, by design, capture: other structural variants beyond SNPs,
rare variants, poorly tagged or multiple independent variants,
dominance and epistasis (GxG interaction), epigenetics, GE
interplay in the form of gene-environment correlation (e.g.,
active niche-picking), and GxE' interaction (e.g., see Bloom
et al. 2013; Eichler et al. 2010; Gusev et al. 2013; Hemani
et al. 2013; Kaprio 2012; Koch 2014; Liu and Leal 2012;
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fixed effect estimate with a 95 % CI. The solid gray vertical line at
approximately 1.10 natural log units is equivalent to a raw ratio of 2.0.
Dashed gray vertical lines indicate boundaries in natural log units
equivalent to raw ratios of 1.0 and 4.0, respectively

Maher 2008; Plomin 2013; Zhang et al. 2012; Zuk et al.
2012). Hence, while these factors likely play a role in contrib-
uting to human traits such as cognitive abilities they may not

! We note that while others refer to GxE as contributing to the missing
heritability presumably this refers to GxC where C refers to the common
environment, as Gx(nonshared)E leads to dissimilarity amongst relatives.
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be accounted for when applying GCTA and similar methods.
We emphasize that layered on top of these discussions must be
the recognition that any of these explanations may show age-
related dependencies.

Among models proposed to evaluate or uncover missing
heritability, we consider the limiting pathways model and the
local (vs genome-wide) heritability approach.

Limiting Pathways Model The limiting pathway model (LP;
Zuk et al. 2012) suggests that heritability based on twin stud-
ies may contribute to ‘phantom heritability’ in cases where
gene pathways interact, i.e., where there is epistasis. Indeed,
the greater the number of gene pathways that hypothetically
contribute, the greater the occurrence of phantom heritability
(Zuk et al. 2012). According to their models and simulations,
phantom heritability in principle can occur even when patterns
of twin correlations suggest C and may even be higher where
both C and D influence a trait (Zuk et al. 2012). Alternate
designs, such as GCTA, offer lower bound narrow heritability
estimates. Hence, the authors of the LP model propose that
studies focus on individuals from isolate populations which
may provide a more reasonable solution using IBD (identity-
by-decent) sharing (Zuk et al. 2012). However, reliance on
isolate populations presents another set of issues in terms of
trait phenomena and generalizability, among others. More-
over, while emerging work supports the hypothesis that epis-
tasis may be more common than previously realized (Bloom
et al. 2013), findings contrary to that of the LP model are
appearing (e.g., Maki-Tanila and Hill 2014). Indeed, the quan-
tification of epistasis represents a challenge in that even if it is
substantial, epistatic effects may contribute largely to additive
genetic variance (Maki-Tanila and Hill 2014).

‘Local’ and Genome-Wide Heritability Models that aggre-
gate effects across all possible contributing variants at par-
ticular loci, i.e., “local” heritability or loci-based heritabil-
ity, as well as in aggregate across regions or the entire
genome collectively, may provide avenues for discerning
particular gene or regional contributions to an outcome
(Gusev et al. 2013; Rowe et al. 2013) and inform the miss-
ing heritability debate. Via simulation and application to
nine disease traits, Gusev and colleagues (Gusev et al.
2013) considered the contribution of the most significant
GWAS SNP at a locus (thWAS), the contribution of all
significant SNPs at a locus based on conditional linear
modeling (hZGWAS”JOim), the contribution of all SNPs at a
locus constructed using the standard variance component
approach (hzg; i.e., using GCTA), and the contribution of
SNPs at a locus using a variance component adjusted for
linkage disequilibrium (LD) (hzg,LD). Based on simulated
genome-wide data modeled on the Wellcome Trust Case
Control Consortium WTCCCI1:CAD cohort, findings sup-
ported the conclusion that h2g was approximately unbiased

if the causal variants were randomly sampled (i.e., not
weighted towards more common variants) but clearly bi-
ased in both directions if the causal variants were not ran-
domly sampled and included more common variants (e.g.,
returning estimates that were 62 % to 110 % of the true
heritability value). In comparison, while hzg,LD was rou-
tinely downward biased (returning estimates at 94-95 %
of the true value), it was less perturbed at the sampling of
the causal variants. Furthermore, this LD-residualized var-
iance components approach (hzg,LD) was also advocated in
genome-wide and local-heritability contexts with the hzg,
Lp explaining about 29-30 % more heritable variance. In-
deed, comparisons of the aforementioned heritability esti-
mators at the local level at known GWAS loci for the se-
lected traits suggested the presence of additional common
SNPs while at the genome-wide level the additional low
frequency (rare) SNPs contribute to the complex disease
traits evaluated. With respect to the missing heritability
question, this work suggests that even when considering
an additive model, additional heritability may be uncov-
ered when adjusting the standard variance component
model (GCTA) for LD. Relevant work focused on rare
variants suggests, however, that while a portion of rare
variant contributions to a trait may be captured in aggre-
gate analyses, underestimation may be routine due to bi-
directional effects of causal variants and presence of non-
causal variants (Liu and Leal 2012). Hence, aggregate
methods may effectively lose some signal from rare vari-
ants, which may otherwise be highly penetrant and indi-
vidually impactful.

Overall, as GWAS chips have become denser, sample sizes
have become larger, and considerations of genetic architecture
have advanced, the missing heritability gap has narrowed
across a number of traits (Gusev et al. 2013; van Dongen
and Boomsma 2013). Moreover, with respect to cognition,
when considering the same measures of cognitive ability at
the same ages (in childhood), methods such as GCTA have
explained about two-thirds of the heritability estimated from
twin models within the same sample (Plomin et al. 2013b).
However, across the approaches and models undertaken to
evaluate this gap few to none have considered that genetic
contributions, and hence heritability, may differ across the
lifespan. Recognition of this may provide an insight into pos-
sible mechanisms that contribute to the gap in heritability
estimates particularly for cognitive ability and aging.

Meta-analysis of MZ/DZ Correlation Ratios
If the missing heritability gap is due to unaccounted for
nonadditivity (dominance and epistasis), and in the ab-

sence of shared environment (C=0), this should be evident
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in ratios of MZ/DZ correlations that exceed 2.0 (see equa-
tions 1-3 in Box 1.1). However, we note that MZ-DZ
correlation ratios that exceed 4.0, which does not conform
to a traditional ADE model, could result from intensive
gene-environment interplay, e.g., active gene-environment
correlational (rGE) processes such as niche-picking
whereby environments are selected that suit genetically
influenced traits (Plomin et al. 2013a; Scarr and
McCartney 1983). As described above, GE correlation is
theorized to explain the increasing heritability for general
cognitive ability with age from childhood into adulthood
that peaks in young-old age before apparently declining
(Bouchard 2013; Finkel and Reynolds 2009; Plomin et al.
2013a). Hence, for example, individuals may choose (or
not) higher educational, occupational and leisure time en-
vironments, and spouses, conducive to their partly herita-
ble abilities that may further bolster or moderate their
abilities. Such an occurrence would therefore drive in-
creasing MZ similarity over age relative to DZ similarity
(c.f. McCartney et al. 1990). Thus, GE processes could in
principle result in increasing MZ/DZ correlation ratios
such that they exceed 4.0. A further evaluation of twin
correlation ratios, over age, may point to processes that
contribute to missing heritability gap. That is, the missing
heritability gap may narrow or widen with age.

We conducted a meta-analysis of log transformed MZ/
DZ ratios of intraclass correlations based on Sham (1998)
for each of the 6 cognitive domains represented in the
collected twin data similar to that described above for
the meta-analysis of heritability estimates. A total of 103
twin correlations were reported across domains. We
dropped two negative ratio values from analysis resulting
from small negative correlations among DZ pairs (—.04 to
—.11) given that these ratios did not conform to expected
values (Sham 1998). With an analysis sample of 101 cor-
relations across domains and up to 21 ratio values within
a domain, we limited covariates to age and age-squared,
with age centered at the median age of 65 years. For
executive functioning with only 8 data points, we simply
adjusted for age. Analyses accounted for sampling vari-
ance using the inverse number of twin pairs reported giv-
en that the standard error of a ratio of independent corre-
lations is not yet established. Random effects at the study
level were nonsignificant (median=4.18 %, range 0.00 to
16.75 %, all p>.30), but were retained in the model. Sen-
sitivity analyses suggested that study dependency impact-
ed confidence intervals compared to point estimates (not
shown). Results suggest that at age 65 (the centering val-
ue), ratios tilt towards ADE models especially for verbal
(see Table 2, Intercept effect). For general memory, an
ACE model was supported based on the fixed effect esti-
mate, although the confidence interval does not rule out
ADE. With respect to perceptual speed, the answer is
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essentially equivocal as to ACE or ADE with a large
confidence interval although the point estimate lies just
over the ADE boundary. For the remaining traits, partic-
ularly working memory, as well as executive functioning,
and spatial, the estimates favor an ADE model, although
the confidence intervals do not exclude an ACE model.
The age covariates were not individually significant (see
Table 2). However, together the age covariates accounted
for noticeable variance across domains (median=14.70 %,
range=1.64 to 19.92 %), with spatial ability reporting the
smallest effect and executive functioning the largest.
Model fit statistics and information criteria are reported
in Supplemental table 3.

Figure 7 presents the individual ratios, log transformed,
with the corresponding fixed effect estimate and its confi-
dence interval from the age-adjusted model described above.
The forest plots suggest that among the evident heterogeneity
of individual ratios, the ratios tend to increase in magnitude
with age, up to about age 65, perhaps most noticeably for
verbal. The exception is perceptual speed, wherein the ratios
tend to decrease with age and cluster towards an ACE model.
We note that some of the individual ratio estimates show
values exceeding the expected upper boundary of 4.0, incon-
sistent with an ADE model. This is predominantly the case in
studies with average ages between 60 and 75. This outcome is
particularly interesting in light of accelerating declines that
may be observed at approximately 65 years (see Finkel et al.
2003; Reynolds et al. 2005). Moreover, after age 75, there are
no studies reporting ratio values that exceed 4.0. Hence, peak
GE correlational processes may occur around this age before
increasing frailty sets in and when older adults are still gener-
ally able enough to take advantage of their increased leisure
time after retirement to select environments that impact verbal
ability. However, later in adulthood, as frailty increases and
options become more limited, GXE interaction may become
more salient (Reynolds et al. 2014). Moreover, increasing ev-
idence for ADE comes with increasing distance from rearing
environments; hence rearing environment becomes a more
distal impact while proximal environmental influences (even
from mid-adulthood) remain strong.

We would be remiss, however, in not pointing out that the
limited number of observations for analysis, and hence power,
also hampered consideration of other potential moderators
(e.g., cohort, country, etc.) beyond these initial and modest
examinations of age differences. Yet, it is interesting to
consider that even in light of the circumstance such that
epistatic effects may contribute mainly to additive ge-
netic variance (Maki-Tanila and Hill 2014), potential
shifts in the relative nonadditive contributions, or GE inter-
play, may become evident across time. Of course, large lon-
gitudinal twin designs would more appropriately and power-
fully address these potential circumstances. AE is the typical
biometrical model presumed based on twin correlation
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patterns across a number of disparate domains (i.e., M1,
214,]~0.003, SD=.20; Hill et al. 2008). However, the possibly
shifting patterns we observed in the potential contributions of
C or D (and not just simplified to AE) suggest that one should
consider development a life-long process, i.e., one biometrical
model may not explain the whole of the adult lifespan within
or across cognitive domains let alone other psychological and
biomedical traits.

Summary and Conclusions

While the etiology of cognitive abilities and cognitive ag-
ing has enjoyed much attention in the literature, much of
that attention has focused on broad factors, principally
general cognitive ability. In the current review, we consid-
ered age trends in heritability of specific cognitive abilities,
as well as the profile of genetic and environmental factors
contributing to cognitive aging to address ‘missing herita-
bility’. Our findings based upon evaluating 27 reports in
the literature suggest that age-sensitive domains — general
memory, working memory, and executive functioning —
show some modest evidence for increasing heritability
with age, at least up to age 60, whereas verbal ability,
spatial ability, perceptual speed, and possibly executive
functioning show some evidence for declining heritability,
typically after age 60. A second meta-analysis considered
the gap between twin-based versus SNP-based heritability
derived from population-based GWAS studies. Specifical-
ly, via MZ and DZ twin correlation ratios we agnostically
re-evaluated biometrical models (ACE, ADE, AE) across
age and by cognitive domain. Results modestly suggest
that nonadditive genetic variance may become increasingly
important with age, especially for verbal ability. If so, the
lower SNP-based heritability estimates may result in part
from uncaptured nonadditivity. Moreover, consistent with
longitudinal twin studies of aging, as rearing environment
becomes a more distal impact, proximal person-specific
environmental influences strengthen, while increasing ge-
netic variance may be partly a consequence of nonadditive
genetic influences or possibly GE interplay (Finkel and
Reynolds 2009; Reynolds et al. 2005, 2014). Both meta-
analyses focused on age, however, other moderators may
well be important. Cohort factors may be instrumental in
lessening or increasing individual differences in abilities,
and hence heritability estimates may differ as a conse-
quence (c.f., Baker et al. 1996; Heath et al. 1985). Access
to higher educational and occupational opportunities as
well as leisure time pursuits are obvious examples, among
others.

Arguments that findings of twin and family studies
have been superseded by newer molecular techniques lose
sight of the value of twin studies to understanding of

etiology beyond heritability (van Dongen et al. 2012).
Moreover, we suggest from our investigations herein that
biometrical analysis of twins over the life course may
point to dynamic shifts from familial/shared environments
(C) contributions to non-additive genetic effects (D)
across development, and indeed GE interplay contribu-
tions. It is only by trying to unpack missing heritability
differences across complementary designs that we may be
able to more fully evaluate etiologies of stability and
change in cognitive functioning across the full lifespan.
Ideally this would be done using identical phenotyping
(Plomin et al. 2013b) and with close attention to develop-
mental periods. Indeed, the value of rich phenotyping and
opportunities to model GE interplay within a twin context
increase understanding of genetic and environmental
(co)actions (van Dongen et al. 2012).

That said, we recognize that relying on scaled herita-
bility estimates rather than genetic variance —as resorted
to by necessity in the meta-analyses of available literature
presented—may obscure diminutions or amplifications of
genetic and environmental variance that provide clues to
genetic and environmental influences (e.g., Reynolds
et al. 2014). However, this requires longitudinal studies
that would employ continuity and invariance of measure-
ment (or the possibility to model latent scale metrics).
Although conducting the “cradle-to-grave” longitudinal
studies that would help elucidate the continuity and emer-
gence of genetic and environmental influences across the
life course is likely unattainable, collaborations among
existing studies can provide an approximation. One exam-
ple, the consortium on Interplay of Genes and Environ-
ment across Multiple Studies (IGEMS; Pedersen et al.
2013), has created a sample of over 17,000 twins aged
25 to 102. Consortia of this nature will be necessary to
support a true-life course application of both behavior
genetic and molecular genetic methods.

Box 1.1

Genetic Contribution to Differential Cognitive Aging
Patterns: Heritability

Twin and family-based methods aim to uncover etiolo-
gies of cognitive traits and rely on comparisons of ge-
netic and environmental relatedness to estimate their
contributions to individual differences (e.g., see Falcon-
er and Mackay 1996; Plomin et al. 2013a; Sham 1998;
Visscher et al. 2008). A biometrical model of cognitive
performance describes etiological factors that contribute
to individual differences or variance in cognitive perfor-
mance (Vcog), including genetic factors that act addi-
tively (Va), genetic factors that act non-additively such
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as dominance (Vp), shared rearing or common environ-
mental factors (V¢), and nonshared unique environmen-
tal experiences plus any measurement error (Vg) (c.f.
Falconer and Mackay 1996; Plomin et al. 2013a; Sham
1998):

Vecog = Va + Vp + Ve + Vg (13)

Moreover, the relative genetic and environmental contribu-
tions can be estimated relative to the total variance in cognitive
performance:

Veoa/Veos = Va/Veos + Vb/Veos + Ve/Veos
+ VE/Veos (1b)

and, restated as:

1.0=h0+d+2+¢ (Lc)

Broad-sense heritability (h”s) indexes the proportion of var-
iance in cognitive performance that is due to additive and non-
additive genetic variances while narrow-sense heritability (h*y)
indexes the proportion of variance in cognitive performance
scores that is simply due to additive genetic variance (Falconer
and Mackay 1996; Plomin et al. 2013a; Sham 1998).

To estimate these components of variances using twins
reared together, the covariance (C) or correlation (R)
among ecach twin’s cognitive performance score with
their cotwin’s cognitive performance score are computed
for MZ twin pairs (Cyz, Ryvz) and for DZ twin pairs
(Cpz, Rpy). For MZ twins reared together their cognitive
scores covary or correlate because they are genetically
identical with respect to segregating genes, and hence
for additive and nonadditive genetic influences, in addi-
tion to a common, indeed shared, rearing environment
(Falconer and Mackay 1996; Plomin et al. 2013a; Sham
1998):

Cmz = Va+ Vp + V¢ (2a)

RMZ = h2 + d2 + C2 (2b)

For DZ twins reared together, they covary or correlate
with one another for cognitive performance because on
average they share half of their segregating genes, /4 of
dominance deviations, plus a common (shared) rearing
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environment (Falconer and Mackay 1996; Plomin et al.
2013a; Sham 1998):

CDZ ="',Va+'.Vp + VC (33)

RDZ = 1/2hz + 1/4d2 + C2 (3b)

By comparing the difference in the covariances, or corre-
lations, we may evaluate the contributions of genetic versus
environmental influences, under the assumptions of equal en-
vironments and random mating. However, we have too few
pieces of information in data from twins reared together to
estimate both Vp, which tends to increase MZ similarity rel-
ative to DZ similarity, and V¢, which increases both MZ and
DZ similarity. Hence researchers must choose which of these
to estimate, for example, by comparing the ratio of MZ twins
to DZ twin correlations Ryiz/ Rpz (Sham 1998). Under a
scenario with simply additive genetic contributions to pair
similarity this ratio would be exactly equal to 2.0 since MZ
twins are twice as similar than DZ twins with respect to seg-
regating genes, 100 % vs 50 %. To the extent that dominance
contributes to pair similarity the ratio of correlations would
exceed 2.0 and Vp, instead of V- can be estimated. However,
if common environmental experiences were the sole
contributor to pair similarity, both MZ and DZ, the ratio of
correlations would be 1.0; hence for ratios between 1.0 and
2.0 V¢ can be estimated in place of V. Sham (1998) notes
that ratios below 1.0 or above 4.0 do not conform to traditional
biometrical models and in such cases neither ACE nor ADE
models should therefore be fitted (cf. Egs. 2b and 3b above).

Software packages such as OpenMx (Boker et al. 2011) or
MPlus (Muthén and Muthén 1998-2012; Prescott 2004) or
similar are used to fit biometrical models such as that described
in Eq. 1a to evaluate genetic and environmental contributions to
individual differences. The precision of the variance compo-
nents estimates are typically calculated within software pack-
ages; however, approximate se’s for heritability, broad and nar-
row, can be estimated from intraclass correlations and sample
sizes depending on the study design (e.g., Sham 1998).

It should be noted that in longitudinal studies, multivariate
extensions of the described biometrical model are applied, and
unscaled genetic and environmental variance estimates are
emphasized (i.e., Vo, Vp, V¢, Vi) (e.g., McArdle et al.
1998). Considering unscaled or ‘raw’ variances allows
one to evaluate whether genetic and environmental in-
fluences are accumulating or declining with age in tan-
dem, or differentially, which may otherwise be obscured
if relying on heritability and environmentality estimates.
Indeed, unscaled variances may provide clues about po-
tential genetic and environmental (co)actions (e.g., see
Reynolds et al. 2005, 2014, 2007).
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