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Abstract The mandate for evidence-based practice has
prompted careful consideration of the weight of the sci-
entific evidence regarding the therapeutic value of various
clinical treatments. In the field of aphasia, a large number
of single-subject research studies have been conducted, pro-
viding clinical outcome data that are potentially useful for
clinicians and researchers; however, it has been difficult to
discern the relative potency of these treatments in a standard-
ized manner. In this paper we describe an approach to quan-
tify treatment outcomes for single-subject research studies
using effect sizes. These values provide a means to com-
pare treatment outcomes within and between individuals,
as well as to compare the relative strength of various treat-
ments. Effect sizes also can be aggregated in order to conduct
meta-analyses of specific treatment approaches. Consider-
ation is given to optimizing research designs and provid-
ing adequate data so that the value of treatment research is
maximized.
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Introduction

A prominent question in the field of aphasiology, as in all
clinical disciplines, is What are the empirically supported
treatment approaches? There is a relatively rich literature on
the treatment of aphasia and related disorders, such as ac-
quired alexia and agraphia, so this question would appear to
be one with a ready answer. In fact, a review of the published
literature yields over 600 articles spanning about five decades
that specify and examine treatment approaches for aphasia
and related disorders (see ANCDS aphasia treatment web-
site http://www.u.arizona.edu/∼pelagie/ancds/index.html).
At last count, 288 articles employed group designs to ex-
amine treatment effects, and the remaining 332 involved
single-subject research, either in the form of case reports
(80) or single-subject experimental studies (252). Although
this large body of treatment literature serves to inform clin-
icians and researchers, it is difficult to discern the relative
potency of the various treatments and to synthesize the find-
ings in a meaningful manner.

Several researchers have conducted systematic reviews of
the aphasia treatment literature and provided useful meta-
analyses of the outcomes from group studies (Whurr, Lorch,
& Nye, 1992; Robey, 1994; Robey, 1998). In general, these
meta-analyses offer converging evidence to suggest that
aphasia treatment brings about meaningful, positive change
in language performance relative to untreated controls. By
necessity, the meta-analyses combined the outcomes from
an array of heterogeneous treatment approaches described
with varying levels of specificity. Because a large number of
aphasia treatment studies employ single-subject methodol-
ogy, Robey, Schultz, Crawford, and Sinner (1999) set out to
complement the meta-analyses of group studies with a syn-
thesis of the data from single-subject treatment research. Of
63 studies meeting criteria for inclusion, only 12 provided
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adequate data to allow the quantification of effect sizes, and
those studies were directed toward a diverse set of language
behaviors, so a meta-analysis was not deemed appropriate.
However, the calculation and reporting of effect sizes from
this cohort of studies provided a starting point from which to
evaluate subsequent research in aphasia treatment. In sum-
mary, the endeavors to synthesize the aphasia treatment liter-
ature offered support for the therapeutic value of behavioral
treatments in general, but also served to guide ensuing ef-
forts to increase the evidence base for specific treatment
approaches.

Among the issues that have come into better focus in
the past decade is the fact that treatment outcome research
is best conducted in phases, so there is a logical, princi-
pled progression in rehabilitation research that encompasses
single-subject as well as group research designs (Robey &
Schultz, 1998; World Health Organization, 1975). New treat-
ments should first be examined with a small number of in-
dividuals to test the therapeutic effect (Phase 1), followed
by additional studies to optimize procedures, discern the
most appropriate candidates for treatment, and further ex-
plore the potential efficacy of the treatment (Phase 2). Pos-
itive results from these pre-efficacy studies should prompt
well-controlled group designs that test the efficacy of the
treatment under ideal conditions (Phase 3). In other words,
large-scale research efforts should be reserved for techniques
that have positive outcomes from Phase 1 and 2 studies
(Garrett & Thomas, 2006; Robey & Schultz, 1998). Only
after a treatment has been shown to be efficacious in Phase
3 studies should research ensue to examine the potency of
treatment under typical conditions of service delivery (i.e.,
Phase 4 effectiveness studies). Finally, practical issues such
as cost-benefit analysis can be addressed (Phase 5).

The fact of the matter is that the majority of aphasia treat-
ment research was completed before the five-phase model
was broadly recognized. Not surprisingly then, some ap-
praisals of the body of literature have been rather harsh
when assessment criteria were grounded in the five-phase
system. For example, the Cochrane Review of “speech and
language therapy for aphasia following stroke” restricted
its selection criteria to include randomized control trials,
which yielded only 12 studies for consideration at that time
(Greener, Enderby, & Whurr, 1999). Such restrictive criteria
limit the extent to which the existing literature can be used to
address questions regarding the value of aphasia treatment.
On this point, we appreciate Tim Pring’s (2004) appraisal
of this situation in his essay entitled “Ask a silly question:
Two decades of troublesome trials.” We acknowledge that
under ideal circumstances the best available evidence would
consist of meta-analyses of high-quality randomized control
trials. However, in the absence of such evidence, the highest
quality and most relevant studies must suffice in constituting
the best current evidence. It is our goal to promote better use

of the existing body of aphasia treatment literature and to
enhance the potential contributions of future research.

In this paper, we focus on the evaluation of single-subject
research because such experimental designs have played (and
continue to play) a foundational role in the development and
testing of aphasia treatments, yet they are often neglected
in attempts to evaluate and synthesize the literature. Our
perspective comes from ongoing systematic review of the
aphasia treatment literature as we seek to synthesize the out-
comes and formulate evidence-based practice guidelines for
aphasia.1 Carrying out this process with single-subject re-
search forces a decision on how best to assess the reported
data in a consistent manner. Extending the synthesis process
established for group studies, we chose to calculate effect
sizes as a means of quantifying the outcomes for individ-
ual participants. We describe our approach here and provide
the rationale for various decisions. This description is in-
tended to assist other researchers, clinicians, and consumers
of research in the quantification of single-subject treatment
outcomes. Although the information presented here is in the
context of aphasia treatment, it has application to a broad
range of neuropsychological research directed toward the
remediation of behavioral impairments.

Why concern ourselves with effect sizes
for single-subject data?

Early applications of single-subject treatment designs were
evaluated by visual analysis of graphical data. However, un-
less differences in performance between measurement pe-
riods are very large, a reliable method of quantification is
needed to detect treatment effects (Johnston, Ottenbacher, &
Reichardt, 1995). That is, a visual analysis can be flawed,
and the impression of a positive treatment effect may be
false and lead to Type 1 error (i.e., concluding an effect
is present when none exists). For example, Matyas and
Greenwood (1990) found that Type I error rates for vi-
sual analyses ranged from 16% to 84%. Applying inferen-
tial statistics that make assumptions about the distributional
properties of the parent population is also problematic be-
cause single-subject data are inherently autocorrelated. In
other words, repeated measures within the same subject are
clearly not independent of one another, thus limiting the
choice of appropriate statistical analyses (Kromrey & Foster-
Johnson, 1996; Robey, Schultz, Crawford, & Sinner, 1999).

An alternative to visual inspection and the use of inferen-
tial statistics is the calculation of a standardized effect size
as a means for assessing change. An effect size is simply

1 See the Academy of Neurologic Communication Disorders and Sci-
ences (ANCDS) website http://ancds.org for information regarding
evidence-based practice guidelines for neurogenic communication dis-
orders.
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a quantity that characterizes the degree of departure from
the null state, which, in this case, is the degree to which
a treatment outcome differs from zero. In other words, an
effect size contrasting pre-treatment and post-treatment lev-
els of performance provides a measure of change observed
through some variable of interest. Because effect sizes are
quantified in standard deviation units, they can be compared
across studies and combined in meta-analyses.

The reporting of effect sizes is not a new idea. Over the
past several decades, many statisticians have advocated this
practice (Bezeau & Graves, 2001; Cohen, 1988; Fan, 2001;
Hyde, 2001; Kirk, 1996, 2001; Nix & Barnette, 1998; Shaver,
1993; Thompson, 1998, 2002; Vacha-Haase, 2001). In fact,
the fifth edition of the Publication Manual of the American
Psychological Association (2001) stated, “For the reader to
fully understand the importance of your findings, it is almost
always necessary to include some index of effect size or
strength of relationship in your Results section. You can es-
timate the magnitude of effect or the strength of the relation-
ship with a number of common effect size estimates . . .” The
manual further states that authors should “provide the reader
not only with information about statistical significance but
also with enough information to assess the magnitude of the
observed effect or relationship” (pp. 25–26). Implementation
of this practice is increasing for group studies, but very few
researchers conducting single-subject research report effect
sizes.

When effect sizes are included in published reports, they
allow clinicians and researchers to develop a sense of the
relative strength of the specific treatments. In addition, when
a line of research produces multiple estimates of an effect
size parameter in the context of independent experiments, it
is possible to pool (i.e., average) them. Finding an average
effect size for a certain body of research literature is the basis
for meta-analysis. From an evidence-based practice perspec-
tive, a meta-analysis of highest quality research on a certain
intervention protocol constitutes the most persuasive form
of clinical scientific evidence (Harbour & Miller, 2001). Of
course, the accumulation of evidence for specific treatments
is an ongoing process, so new evidence must be considered
as it becomes available. Consistent reporting of effect sizes
by researchers would facilitate the ease with which this is
accomplished.

What studies should be considered?

When examining the literature for relevant studies that eval-
uate a treatment approach of interest, the researcher’s goal is
to glean information provided by fundamentally sound scien-
tific evidence regarding the magnitude of treatment effects.
Potential studies are those that state testable hypotheses re-
garding treatment outcomes. Single-subject treatment stud-
ies typically examine pre-treatment versus post-treatment

performance within a given participant, or treatment ver-
sus no treatment conditions across individuals. The studies
must provide quantities necessary for calculating effect size
(e.g., raw data in tables or graphs, exact probabilities, de-
scriptive statistics). Studies with poor experimental validities
that would render an effect meaningless must be excluded
(Wortman, 1994).

What are the dependent variables of interest?

Whereas many of the group studies of aphasia treatment
quantify change using an index of overall language per-
formance, the single-subject studies typically describe the
effects of treatment directed toward relatively specific lan-
guage processes. Therefore, these studies can be logically
grouped according to the nature of the dependent variable.
In our review of the literature, we have found that essentially
all single-subject aphasia treatment studies are directed to-
ward one or more of the following language processes: lexi-
cal retrieval; syntactic production or comprehension; speech
production or fluency; auditory comprehension; and reading,
writing, or some form of alternative communication, such as
gesture.

The majority of aphasia treatment studies focus on the
measurement of direct treatment effects, that is, changes
in the targeted behaviors or items that are trained. Addi-
tional measures of generalization are reported with varying
consistency, including performance on untrained items or
the use of specific linguistic variables in connected speech.
Because these measures sample different levels of perfor-
mance, it is best to consider them separately. Therefore,
in our reviews, three different outcomes are gleaned from
treatment studies: direct treatment effects, generalization to
untrained items, and generalization to connected speech. In
general, these can be considered to reflect increasing levels of
difficulty.

How to calculate effect sizes for single-subject research

Single-subject treatment studies typically are designed to
measure change in performance on a variable (or variables)
of interest in response to the described treatment. Such stud-
ies commonly include behavioral measures before treatment
(the first A phase, A1), during treatment (the B phase), and
after treatment (the second A phase, A2). The ABA design
is ideal for calculating effect size from single-subject re-
search, and its value is enhanced when the ABA phases
are repeated across several sets of stimuli or behaviors
(Backman, Harris, Chisholm, & Monette, 1997; McReynolds
& Thompson, 1986; Sidman, 1960). This type of multiple
baseline design is illustrated in Fig. 1. The value of this de-
sign lies in the repeated measures of the behaviors of interest
over time and the staggered initiation of treatment that allows
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Fig. 1 Example of data from single-subject multiple baseline design. The circled data points are those that contribute to the calculation of
d statistic to index changes in level of performance (see raw data in Table 1)

one to examine the specificity of treatment effect relative to
a control condition.

In the example data provided in Fig. 1, three sets (or
groups) of stimuli were targeted for treatment, and each set
comprised five items (or words). In this example, the partici-
pant might be an individual with acquired agraphia who was
retrained on the spelling of three sets of five words. Using a
multiple baseline design, spelling performance was probed
on items during the first four sessions, and then treatment
was initiated for the five items comprising Set 1. A criterion
for mastery was established a priori, so the items were to be
treated until performance was 80% (4 out of 5 words) or bet-
ter over two sessions. When criterion for Set 1 was achieved,
treatment for Set 2 was initiated, and so forth for Set 3. In
this example, performance was probed on all items during
each session, allowing for consistent sampling throughout
ABA phases. The second A phase traditionally is referred to
as the withdrawal phase. In treatment research, however, it is
not uncommon for some maintenance-promoting activities,
such as homework, to continue during the A2 phase, so it
is better characterized as the post-treatment or maintenance
phase.

In order to measure the degree of change in the behavior
of interest from pre-treatment to post-treatment, the level of
performance from the first A phase is compared to that of
the second A phase. For the example in Fig. 1, the baseline
performance was near zero, but it might be the case that
pre-treatment performance on the dependent variable of in-
terest is at chance or some intermediate level of performance.
Regardless, the comparison of interest is the change in the
level of performance from pre- to post-treatment. The null
hypothesis H0 is that pre-treatment levels will be equal to or
greater than post-treatment levels.

H0 : βlevelA1 ≥ βlevelA2

The research hypothesis for H0 asserts that the overall
level of performance increases from pre-treatment to post-
treatment. In applications where benefit is realized through a
decrease in the target behavior, the sign is reversed. When the
rate of change, or the profile of change, is of interest, it can
be assessed through a different null hypothesis, contrasting
the slope of the A1 period with the slope of the B period. For
the data depicted in Fig. 1, changes in level from A1 to A2 and
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changes in slope from A1 to B are both evident. In our current
review of aphasia treatments, we focus on determining how
much change can be effected by the treatment, and we are
less concerned with how fast the change is made or how
variable the performance is during the treatment phase itself.
For that reason, we calculate the effect size based on changes
in level of performance, rather than changes in slope. In later
phases of outcome research, after treatment efficacy has been
established, information provided by examination of slope
may be of particular interest. For example, if two treatments
have been shown to be effective, it may be useful to compare
the relative efficiency of each by examining differences in
the acceleration and duration of slopes in the learning curve
(i.e., the slope of B compared to the slope of A1).

In order to quantify the magnitude of the change in level of
performance, we use a variation of Cohen’s (1988) d statistic
as calculated by Busk and Serlin (1992, pp. 197–198):

d1 = x̄ A2 − x̄ A1

SA1

where A2 and A1 designate post-treatment and pre-treatment
periods, respectively, x̄ A is the mean of the data collected
in a period, and SA is the corresponding standard deviation.
This statistic was empirically selected from seven potential
estimators for change, on the basis of a Monte Carlo sim-
ulation. The estimators included Percent Non-Overlapping
Data (PND) (Scruggs & Mastropieri, 1998), f 2 (Kromrey
& Foster-Johnson, 1996), and several different equations for
calculating a d statistic: d1 (Busk & Serlin, 1992), d2 (Busk &
Serlin, 1992; White, Rusch, Kazdin, 1989), d overall (Faith,
Allison, & Gorman, 1997), d level-only (Faith et al., 1997),
and d (Center, Skiba, & Casey, 1985–1986). Although our
evaluation of these statistics is ongoing, empirical assess-
ment to date indicates that the first of Busk and Serlin’s d
statistics (d1) is the most reliable estimator of the effect size
when the pre-treatment variance is a non-zero value (see
discussion below).

In multiple baseline designs, effect sizes can be calculated
for each series of data points and then averaged to represent
the treatment effect for a single individual. As illustrated in
Tables 1 and Table 2, a d statistic is calculated for Set 1 on
the basis of 4 pre-treatment probes and 14 post-treatment
probes, for a total of 18 observations. Because each baseline
can comprise a different number of observations, averaging
over baselines is best accomplished using a weighted mean.
In this case, the first d statistic of 8.92 is weighted for the
18 observations (8.92 × 18). It is then added to the cor-
responding weighted values from Set 2 (10.11 × 15) and
Set 3 (9.82 × 19). The sum is then divided by the total
number of observations (18 + 15 + 19). As shown in the
figure and tables, the weighted average d statistic for the
treatment effect for this participant was 9.59. It should be

Table 1 Raw data that are plotted in Fig. 1

Set 1 Set 2 Set 3
Session Phase Value Phase Value Phase Value

1 A1 0 A1 0 A1 0
2 A1 1 A1 0 A1 0
3 A1 0 A1 0 A1 0
4 A1 0 A1 0 A1 1
5 B 2 A1 1 A1 0
6 B 3 A1 0 A1 0
7 B 4 A1 1 A1 1
8 B 5 A1 0 A1 0
9 A2 5 A1 0 A1 1

10 A2 4 B 1 A1 0
11 A2 5 B 2 A1 0
12 A2 4 B 3 A1 0
13 A2 5 B 1 A1 0
14 A2 4 B 3 A1 0
15 A2 5 B 4 A1 1
16 A2 5 B 5 A1 0
17 A2 4 A2 5 B 3
18 A2 5 A2 5 B 4
19 A2 5 A2 4 B 5
20 A2 5 A2 5 A2 4
21 A2 5 A2 4 A2 5
22 A2 5 A2 5 A2 5

Note. A1 = pre-treatment phase; B = treatment phase, A2 = post-
treatment phase. To calculate the d statistic, the values from A1 and A2

phases are evaluated.

evident from this example that calculation of the d1 statistic
is accomplished through basic mathematics. Thus, practicing
clinicians could calculate effect sizes to quantify the magni-
tude of change demonstrated by their patients in response to
treatment.

The one circumstance under which the Busk and Serlin
d1 statistic cannot be calculated is when there is no variance
during the A1 phase. In other words, if each pre-treatment
probe has the same value (such as zero), then the A1 variance
equals zero, so the calculation for d becomes impossible. In
such cases, some other estimate of variance must be used.

Table 2 Analysis of data presented in Table 1 (and Fig. 1)

Set 1 Set 2 Set 3 Sum

Mean A1 0.25 0.22 0.25 –
Mean A2 4.71 4.67 4.67 –
Mean A2 – Mean A1 4.46 4.45 4.42 –
SD A1 0.50 0.44 0.45 –
d 8.92 10.11 9.82 –
# observations A1 + A2 18.00 15.00 19.00 52.00
Weighted d 160.56 151.70 186.62 498.88
Weighted d for all data – – – 9.59

Note. A1 = pre-treatment phase; A2 = post-treatment phase; SD =
standard deviation.
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Busk and Serlin (1992) and White et al. (1989) addressed this
issue by pooling the variance from A1 and A2 for the calcula-
tion of a different d statistic (Busk and Serlin’s equation for
d2). However, as Busk and Serlin point out, the pooling of the
A1 and A2 variances assumes that they are relatively homoge-
neous, a condition that is often violated in the single-subject
data that we have reviewed. Another option is to replace the
zero-variance value with the mean variance of the other A1

phase data for the same individual. Discerning the best res-
olution of this issue is a focus of our current research. In the
meantime, we use Busk and Serlin’s d2 equation:

d2 = x̄ A2 − x̄ A1

spooled

where A2 and A1 designate post-treatment and pre-treatment
periods, respectively, x̄ A is the mean of the data collected in a
period, and spooled is the square root of the weighted average
of the variances for A1 and A2.

Many researchers conducting single-subject experiments
collect the necessary information to calculate effect sizes,
but the data are not included in the published manuscript. In
order to calculate the effect sizes, it is necessary to determine
the individual values for the pre-treatment and post-treatment
phases for each set of trained items. The values may be avail-
able in tables, or they may be retrievable from graphs. The
values are easy to retrieve from graphs when plotted in whole
number increments. For example, when there are 5 items to
be trained in a particular set, and the probe data are presented
as the total number correct, one can easily discern the value
of each data point. When the units are fractional, or the reso-
lution of the plots is insufficient for determining exact values
of the data points, it may be easiest to enlarge the size of
the graph and use a ruler to line up the Y-axis values with
data points. If uncertainty remains regarding the value of the
data points, an alternative approach is to measure the verti-
cal distances from abscissa to the center of plotted points,
and to substitute distance for the original values (Faith et al.,
1997). This is simply a linear transformation of the original
values, in which x ′ = xc, where x′ is distance, x is the orig-
inal score, and c is a constant. Calculation of the d statistic
can be accomplished using the set of distances in place of
the original values. When measuring these values, particular
care should be taken to ensure reliability. We suggest tap-
ing a photocopy of the graph to a table top with the page
adjusted so the abscissa is parallel to the drawing arm of a
T-square. A vertical line is drawn from the center of each
data point through the abscissa. Distances are then measured
using a digital caliper, with one arm of the caliper set in
the center of a data point and the other set at the intersec-
tion of the corresponding vertical line and abscissa. Mea-
surement increments should be consistent, for example, at
0.001 inch.

It is important to establish reliability in the measurement
of effect sizes, in particular when the values are gleaned from
other papers and the measurements are made by hand. Inter-
rater reliability should be established by re-measurement of
a subset of plots (0.10–0.20). Levels of inter-rater reliability
should be greater than 0.90.

Addressing some challenging questions
when calculating effect sizes

Despite efforts to provide guidelines for the evaluation of
research data, the actual process of calculating effect sizes is
fraught with questions regarding how to handle data that are
not ideal. While there may be some latitude in establishing
rules for the gray areas, it is important to document the
decision-making process so that uniform rules are applied
to all studies. Below we address some of the challenging
questions that we have faced.

What is the minimum number of pre-treatment baseline
probes that will still allow calculation of effect size? Mathe-
matically, two observations in the baseline period are neces-
sary to solve for d1. As in all forms of research, the greater the
number of valid observations, the more accurate is the result
of any analysis. However, as a practical matter in clinical-
treatment research, the first baseline period is often brief so
that treatment can begin. Since a crucial estimate arising out
of the initial A period is the standard deviation, we suggest
three observations as a minimum. When the data are avail-
able, d1 is averaged across multiple baselines, thus providing
an opportunity to combine short A1 periods in early baselines
with longer durations in later baselines.

What is the minimum number of post-treatment probes
that will still allow calculation of effect size? Mathematically,
only one observation in the A2 period is necessary for the
calculation of d1. Once again, a greater number provides
a better estimate and, more importantly, offers information
regarding the durability of the treatment effect over time.
We prefer three probes, but two are considered allowable.
As noted above, there is benefit from averaging d1 across
multiple baselines so that shorter A2 periods in later baselines
are combined with long A2 periods from early data sets.

Can an effect size be calculated from data in an AB design,
that is, when there is no A2 phase? The problem with such
data is that they only provide information about the slope
in phases A and B, and do not sample the performance after
treatment is completed (A2). Therefore, they do not provide
adequate information for the calculation of effect size.

How are the data used for items that are never treated?
The data from performance on untreated items do not con-
tribute to calculation of effect sizes for direct treatment.
However, these data may be examined as an index of ex-
perimental control to confirm the treatment effect is specific
to the trained items. Alternatively, improved performance
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on untrained items may provide evidence of generalization.
Change in the level of performance on the untrained items
could be estimated by comparing a series of representative
data points collected at the beginning of the treatment pro-
tocol (to approximate an A1 phase) with a series of repre-
sentative data points collected at the end of the maintenance
period (to approximate an A2 phase).

How should data be analyzed for behaviors probed infre-
quently or at highly irregular intervals? These data should
not be included in calculation of effect sizes.

How should follow-up data be analyzed? There is marked
variability in research reports regarding the inclusion of
follow-up probes obtained well after the cessation of treat-
ment, so it is difficult to include such data in a meta-analysis.
However, it is mathematically feasible to calculate an effect
size to measure the change in level of performance from
A1 to the mean performance at follow-up. The design can
be conceived as A1BA2A3, where A3 represents the extended
follow-up probes. The effect size obtained from the A1 to A3

phase can be compared to the effect size from the A1 to A2

phase, thus providing an index of the durability of the trained
behavior.

How should data be considered in more complex designs,
such as, A1BA2CA3? When B and C are two complementary
treatments offered in sequence (e.g., phonetic and semantic
modules in a protocol combining phonetic and semantic cue-
ing), the calculated effect size should be centered on the A1

and A3 periods. However, if B and C are completely differ-
ent treatments, the effect for B should be calculated for the
initial A1BA2 sequence, and the effect for C should be calcu-
lated from the A2CA3 sequence. To control for order effects
in such cases, some participants should undergo treatment
using A1CA2BA3 sequence. Ultimately, however, if the data
from such designs are to be summarized in a single meta-
analysis, the comparison of A1 and A3 can be used which
reflects the overall effects of sequential treatment.

How are effect sizes calculated if the treatment is designed
to decrease an undesirable behavior rather than increase a
desirable behavior? In such cases, absolute values of calcu-
lated effect sizes are used.

How to interpret the magnitude of the effect size

The interpretation of the magnitude of the effect size is not
an easy task. It requires an informed means of developing
benchmarks to discern the magnitude of small, medium, and
large effect sizes for a particular treatment. Ideally, this is an
empirical endeavor. In the absence of such data, the bench-
marks set forth by Cohen (1988) for the d statistic based
on between-group designs are often cited, with 0.2, 0.5, and
0.8 as benchmarks for small-, medium-, and large-sized ef-
fects, respectively. However, Cohen (1988) makes it clear
that these benchmarks are based on certain applications in

psychology, and the referents may have very little utility
in other contexts. Even limited exposure to the magnitude
of effect sizes in single-subject research makes it clear that
Cohen’s benchmarks are inappropriate in this context. A
more reasoned approach is to examine the available effect
sizes from an array of single-subject studies directed toward
similar behavior. In the area of aphasia treatment, a starting
point is offered by the effect sizes reported in the Robey
et al. (1999) review of single-subject research in aphasia.
With one extreme outlier removed from the effect sizes de-
rived from 12 studies, the first, second, and third quartiles for
the d statistic were 2.6, 3.9, and 5.8, corresponding to small-,
medium-, and large-sized effects. These values offered ini-
tial benchmarks for the interpretation of the data in several
recent single-subject studies in acquired alexia and agraphia
(Beeson & Egnor, 2006; Beeson, Magloire, & Robey, 2005).

Greater understanding of the magnitude of effect sizes
is emerging as meta-analyses are conducted for treatments
directed toward specific language processes. We recently
provided tentative benchmarks for single-subject effect sizes
for syntactic production treatment, based on a review of
14 studies with retrievable effect sizes for the direct treatment
effect (Robey & Beeson, 2005). Using rounded values from
the 95% confidence intervals, small, medium, and large effect
sizes yielded the following benchmarks: 6.0, 12.0, and 18.0.
Similarly, a review of 12 studies with retrievable effect sizes
for lexical retrieval treatments yielded benchmarks of 4.0,
7.0, and 10.1 for small, medium, and large effect sizes (Robey
& Beeson, 2005).

Averaging effect sizes across studies: Conducting
a meta-analysis

A meta-analysis can be conducted when a group of effect
sizes is available that is relevant to a common question. The
application of meta-analysis to single-subject research in
aphasia is discussed in detail in Robey et al. (1999), so we
provide only an overview here. In effect, the meta-analysis
provides an average effect size derived from all valid and
relevant evidence. The primary studies in the meta-analysis
should meet inclusionary criteria with regard to relevance
and validity (Moher et al., 1999). Each study contributes no
more than one effect size to any averaging process in or-
der to avoid excess influence from any one study. However,
some studies contribute estimates of effect size for direct
treatment effects (e.g., probes of treated tokens) as well as
generalization effects (e.g., probes of untreated tokens). All
averages are weighted for the number of observations cor-
responding to each effect. In the case of multiple baseline
across-subjects designs, average effect sizes can be calcu-
lated for each subject, and a weighted average of the ef-
fect sizes for all subjects represents the treatment effect for
the entire single study. When implemented appropriately, a
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meta-analysis objectively and fairly combines the results of
many independent studies into a single and coherent conclu-
sion. Ideally, separate meta-analyses will be conducted for
each of the relevant dependent variables of interest.

Conclusions and advice to researchers and clinicians

In this paper we have presented our current approach to the
analysis of single-subject data so that treatment outcomes
can be quantified in a standard manner and synthesized us-
ing meta-analysis. The advantage of this approach is that it
offers a means to evaluate new treatment approaches relative
to existing approaches, and it helps to shape an emerging ex-
pectation regarding what constitutes a potent treatment. This
enterprise will advance more rapidly as researchers routinely
report effect sizes or at least provide the necessary data re-
quired for their calculation.

To increase the likelihood that a given study will con-
tribute to the treatment outcomes research in a significant
manner, researchers should clearly state the intention of the
study so that the testable hypothesis regarding treatment out-
comes is evident. For example, information should be pro-
vided regarding the following questions: What is the phase
of the research? What are the dependent variables of inter-
est? Does this study examine direct treatment effects only or
are there measures of generalization? With regard to sam-
pling performance over time, at least three pre-treatment and
post-treatment probes should be obtained on the dependent
variable(s) of interest. The addition of follow-up probes at
some time after the cessation of treatment will enhance the
value of the study by providing an index of durable changes
in level of performance over time. Graphic display and/or
tabled data should clearly provide the values obtained for
the probes during pre-treatment, treatment, post-treatment
(withdrawal or maintenance), and follow-up phases. The ap-
propriate effect sizes should be reported along with the raw
data and the equation(s) used, so that subsequent researchers
can verify the quantification of the outcome. Finally, the dis-
cussion of the results should interpret the findings relative
to other aphasia treatment outcomes, both from quantitative
and qualitative perspectives, and it should offer comments
regarding the direction of future research that will advance
evidence-based practice.

In closing, we appreciate the mandate to provide empir-
ical support for treatments implemented in clinical practice
has prompted critical review of the existing aphasia treat-
ment literature. This endeavor inevitably engenders a certain
amount of regret regarding the weaknesses of previous stud-
ies, but it also provides insight regarding the direction and
rigor necessary for future research. We anticipate that in-
creased understanding of single-subject treatment outcomes
and routine calculation of effect sizes will help to promote

evidence-based practice in aphasia and other areas of neu-
rorehabilitation.
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