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Abstract
Omega-3 (n3) is a polyunsaturated fatty acid well known for its anti-inflammatory and neuroprotective properties. Obesity is 
linked to chronic inflammation that disrupts metabolism, the intestine physiology and the central nervous system functioning. 
This study aims to determine if n3 supplementation can interfere with the effects of obesity on the mitochondrial activity, 
intestinal barrier, and neurotransmitter levels in the brain of Wistar rats that received cafeteria diet (CAF). We examined 
adipose tissue, skeletal muscle, plasma, intestine, and the cerebral cortex of four groups: CT (control diet), CTn3 (control 
diet with n3 supplementation), CAF, and CAFn3 (CAF and n3). Diets were offered for 13 weeks, with n3 supplementation in 
the final 5 weeks. Adipose tissue Electron Transport Chain complexes I, II, and III showed higher activity in CAF groups, as 
did complexes III and IV in skeletal muscle. Acetate levels in plasma were reduced in CAF groups, and Lipopolysaccharide 
(LPS) was higher in the CAF group but reduced in CAFn3 group. Claudin-5 in the intestine was lower in CAF groups, with 
no n3 supplementation effect. In the cerebral cortex, dopamine levels were decreased with CAF, which was reversed by n3. 
DOPAC, a dopamine metabolite, also showed a supplementation effect, and HVA, a diet effect. Serotonin levels increased in 
the CAF group that received supplementation. Therefore, we demonstrate disturbances in mitochondria, plasma, intestine and 
brain of rats submitted to CAF and the potential benefit of n3 supplementation in endotoxemia and neurotransmitter levels.
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Introduction

Omega-3 (n3) constitutes a group of polyunsaturated fatty 
acids, encompassing alpha-linolenic (ALA), eicosapen-
taenoic (EPA), and docosahexaenoic (DHA) acids. These 
fatty acids play a crucial role in the body as they are not 
internally synthesized. N3 demonstrates anti-inflammatory 
effects by inhibiting NFkB, a transcription factor associ-
ated with inflammatory gene expression. It also reduces 
the production of arachidonic acid-derived eicosanoids 
and decreases inflammatory markers such as cytokines, 
chemokines, acute-phase proteins, and adhesion molecules 
[1]. N3 fatty acids exhibit a positive correlation with anti-
inflammatory and neuroprotective responses [2]. They 
contribute to the proper functioning of neurotransmitter 
synthesis, release, and reuptake. In the brain, the consump-
tion of unsaturated fatty acids enhances spatial learning 
and memory while mitigating the negative impact of 
physiological stress and depressive symptoms on cognitive 
abilities [1, 3–5]. Previous studies from our research group 
have demonstrated the ability of n3 to reduce anxiety-like 
behavior in obese rats through n3 supplementation [6].

The exploration of anti-inflammatory compounds has 
intensified, particularly in addressing conditions and dis-
eases linked to inflammatory responses. Obesity, recog-
nized as a global pandemic due to the rising prevalence 
of overweight individuals, has been a focal point of this 
research [7].

Diet is a key factor for maintaining a diverse gut micro-
biota. An obesogenic diet leading to obesity can induce 
changes in gut microbiota, along with disruptions in the 
intestinal barrier, potentially resulting in endotoxemia. 
This condition involves an increase in LPS in the blood-
stream, activating the immune system through TLR4 [8].

Moreover, obesity is frequently associated with 
metabolic syndrome [9], affecting adipose tissue and 
skeletal muscle physiology. Immune infiltration and 
insulin resistance impact their metabolic function, pro-
moting an inflammatory response through adipokines and 
myokines [10–12].

Several studies have revealed the connection between 
obesity and alterations in neurotransmitter levels in rats, 
including elevated levels of dopamine and glutamate 
and reduced levels of serotonin in the whole brain [13, 
14]. Obesity can disrupt neurotransmitter production and 
release through neuroinflammation and insulin resistance, 
as insulin predominantly signals to neurotransmission via 
anorexigenic effects. Preclinical studies on obesity often 
involve various dietary protocols, such as the cafeteria 
diet (CAF). This diet exposes animals to highly palatable 
and processed foods, resulting in persistent hyperphagia 
and increased energy intake. Consequently, it serves as a 

valuable model for understanding human obesity [6, 15, 
16]. Therefore, the objective of this study is to determine 
whether n3 supplementation can mitigate the adverse 
effects of CAF-induced obesity on the metabolic function 
of adipose tissue and muscle, intestinal permeability and 
neurotransmitter levels in the cerebral cortex.

Methods

Animals

Three-month-old male Wistar rats were obtained from the 
animal facility of the Federal University of Health Sciences 
of Porto Alegre (UFCSPA). They were housed two per cage 
in a 12-h light/dark cycle environment at a temperature of 
21 ºC +− 2 ºC. The animals were divided into 4 groups 
(n = 10/group): CT (control, standard chow), CTn3 (stand-
ard chow + omega-3 supplementation), CAF (cafeteria diet), 
and CAFn3 (cafeteria diet + omega-3 supplementation). This 
study was approved by UFCSPA Institutional Animal Care 
and Use Committee under protocol N° 570/18. All experi-
ments were designed and performed to minimize the number 
and suffering of subjects, following the international laws 
that regulate the care of laboratory animals.

Diet

The two diets (standard, CT, and cafeteria, CAF) were 
administered for 13  weeks. CT consisted of the stand-
ard chow diet (Nuvilab CR-1, Nuvital®) which offered 
3.4 kcal/g (63% carbohydrates, 26% proteins, 11% lipids). 
While the CAF diet consisted of three menus per week con-
taining: bacon mortadella (Perdigão®), strawberry wafers 
(Isabela®), chocolate cookies (Isabela®), pizza-flavored 
crackers (Parati®), white chocolate (Harald®), sausage 
(Alibem®), and orange-flavored soda (Sukita®) offered con-
comitantly with ad libitum stan- dard chow and water. CAF 
diet provided 4.4 kcal/g (48% carbohydrates, 10% proteins, 
and 44% lipids). Food consumption was registered by weigh-
ing the leftovers every menu change. The animals were also 
weighed weekly to determine weight gain.

Omega‑3

Omega-3 (n3) (Vitafor®) was administered by oral gavage 
to the CTn3 and CAFn3 groups. Water (Vehicle = VEH) 
was administered to the CT and CAF groups on the same 
protocol to equal the stress induced by the procedure on 
all groups. The gavage was performed 5 days per week for 
5 weeks from the 9th week of diet. The n3 used had a con-
centration of 10% EPA and 50% DHA, and was administered 
at a dose of 500 mg/kg/day in a volume of 1 ml/kg.
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Tissue and Blood Samples

The tissues were collected immediately after the euthanasia. 
Blood was collected and plasma was separated from whole 
blood by centrifugation and stored at − 80 °C. The cerebral 
cortex, hypothalamus, gastrocnemius muscle, intestine, and 
adipose tissue were dissected and quickly frozen in liquid 
nitrogen.

Electron Transport Chain (ETC) Analysis in Adipose 
and Skeletal Muscle Tissue

About 150–200 mg of frozen adipose and skeletal muscle 
tissue were weighed and homogenized in 1:20 ice-cold 
sucrose buffer in a 1 mL glass-glass tissue grinder. After 
that, the samples were transferred to a 1.5 mL microtube and 
centrifuged at 600G for 10 min at 4 ºC, the supernatant was 
collected for analysis. Total protein concentration was meas-
ured by Bradford method. After that, samples were pipetted 
into microplate wells with distilled water and reagents for 
each complex analyzed [17]. Complex I was read at 340 nm, 
Complex II at 600 nm and Complexes III and IV at 550 nm 
using the SpectraMax® M Series, SoftMax Pro 5.4.1. For 
the calculation of enzymatic activity, we employed the fol-
lowing formula: enzyme activity (nmol  min−1  mg−1) = (∆ 
Absorbance/min × 1,000) / [(extinction coefficient × volume 
of sample used in ml) × (sample protein concentration in mg 
 ml−1)].

Plasma LPS and Acetate Quantification

A volume of 150uL of plasma was hydrolyzed with 74 uL 
of NaCl 150 mM and 300 uL of HCl 8 M, and incubated for 
4 h at 90 ºC. 3 mL of hexane was added and centrifuged at 
3.500 rpm for 10 min. The upper phase achieved after the 
centrifugation was withdrawn, and the pellet was reconsti-
tuted in 50 uL of methanol and transferred to a vial. An 
aliquot of 3 uL was injected into the analytical system. The 
Nexera-i LC-2040C Plus system coupled to LCMS-8045 tri-
ple quadrupole mass spectrometer (Shimadzu, Kyoto, Japan) 
was used for the analysis [18].

Neurotransmitters in the Cerebral Cortex

A 50 mg portion of cerebral cortex tissue was homogenized 
in 500 μL of 2% formic acid, and 50 μL of this homogen-
ate was delicately transferred to plastic microtubes. To this 
mixture, 930 μL of acetone and 20 μL of an internal standard 
analyte (at a concentration of 250 ng/mL) were added. After 
vigorous vortexing for 30 s, the sample underwent centrifu-
gation at 10.000G for 6 min. Subsequently, 880 μL of the 
resulting supernatant was carefully collected, followed by a 
drying process under a nitrogen flow at room temperature. 

The desiccated material was then reconstituted in 50 μL of 
ultrapure water. Of this solution, 20 μL was injected into the 
liquid chromatograph (Nexera UFLC) that was integrated 
with the LCMS-8045 triple quadrupole mass spectrometer 
(Shimadzu, Japan). Optimization of the mass spectrometer 
involved the assessment of parameters including source tem-
perature, capillary energy, nebulization flow, and collision-
induced dissociation gas flow. Moreover, MRM transition 
optimization was conducted for a range of analytes, namely 
dopamine, serotonin, glutamate, GABA, homovanillic acid 
(HVA), and acetylcholine [19].

Western Blot

To quantify the protein expression of claudin-5 in the intes-
tine, the tissue samples were initially homogenized in a 
lysis buffer containing a protease inhibitor cocktail. Sub-
sequently, the samples underwent centrifugation for 10 min 
at 8000 rpm, and the protein concentration was determined 
using the Bradford protein assay. A mixture of Laemmli 
buffer and 30 µg of proteins was heated to 100 °C for 3 min. 
Following this, the proteins were loaded onto a 10% SDS-
PAGE gel and electrophoresed at 140 V for 2 h. The proteins 
were then transferred onto nitrocellulose membranes and 
blocked overnight at 4 °C with 5% nonfat milk in Tris-buff-
ered solution (TBS) with Tween. The membranes were sub-
sequently rinsed with distilled water and incubated overnight 
with primary antibodies against claudin-5 (1:1000, Cat# 
ABT45, RRID: AB_11205041; MilliporeSigma, Burlington, 
Massachusetts), and β-actin (1:30,000 Cat# HRP-660009; 
Proteintech).

The following day, the membranes were washed with 
TBS and then incubated for 2 h with a horseradish peroxi-
dase-conjugated secondary antibody. Subsequently, a chemi-
luminescent signal was visualized using a Chemi-Doc MP 
Imaging System (Bio-Rad Laboratories, Hercules, Califor-
nia) after the exposure of membranes to an electrochemilu-
minescence solution (Bio-Rad Laboratories). The signal was 
measured and quantified utilizing ImageJ software.

Statistical Analysis

The data analysis was performed using GraphPad Prism 9 
statistical software (GraphPad Software, San Diego, CA, 
USA) and SPSS v29 statistical software (IBM SPSS Sta-
tistics for Windows). Normality testing was conducted in 
Prism using the Kolmogorov–Smirnov test, and histograms 
were generated in SPSS to confirm the normal distribution 
of the data. Two-way ANOVA with a Bonferroni post hoc 
analysis was carried out, considering the effects of diet and 
n3 supplementation. The interaction between those vari-
ables was also analyzed. The outcomes were presented as 
the mean ± standard error of the mean (SEM). Outliers were 
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eliminated using the ROUT test, and statistical significance 
was defined at a p-value of less than 0.05.

Results

The analysis of the Electron Transport Chain (ETC) in the 
mitochondria of adipose tissue showed higher activity of 
complexes I, II, and III. A diet effect was found in the activ-
ity of Complex I (F (1, 24) = 8,784, P = 0.0068), Complex 
II (F (1, 24) = 5,629, P = 0.0260), and Complex III (F (1, 
24) = 27,33, P < 0.0001), showing an increase following 
CAF. Complex IV did not exhibit statistically significant 
differences among the groups. Additionally, n3 supplemen-
tation showed no effect. None post hoc differences were 
found, (Fig. 1).

We also evaluated the activity of ETC in the skeletal mus-
cle. The evaluation of Complex I and Complex II did not 
show statistically significant differences. However, Complex 
III exhibited a diet effect (F (1, 20) = 11.14, P = 0.0033), 
with higher levels in the CAF groups, and also a n3 

supplementation effect (F (1, 20) = 9.771, P = 0.0053), which 
n3 decreased complex III activity. Complex IV also showed 
a supplementation effect (F (1, 20) = 4.684, P = 0.0427), 
indicating a decrease of its activity. No differences in the 
post hoc tests were found, (Fig. 2).

Acetate levels in the plasma were diminished across all 
CAF groups, highlighting a significant diet effect (F (1, 
28) = 8.979, P = 0.0057), (Fig. 3A).

Plasma lipopolysaccharide (LPS) levels showed a sig-
nificant interaction between diet and n3 supplementation (F 
(1, 28) = 5,609, P = 0,0250), a significant diet effect (F (1, 
28) = 13.07, P = 0.0012), and a supplementation effect (F (1, 
28) = 3,046, P = 0,0919), with a reduction observed in the 
CAFn3 group compared to CAF (CAF x CAFn3 P = 0,0141), 
(Fig. 3B).

We analyzed by Western blot the expression of claudin-5, 
a tight junction protein, in the intestine. We found reduced 
Claudin-5 expression in CAF-fed animals (diet effect: F 
(1, 16) = 6.238, P = 0.0238). However, no differences were 
found in multiple comparisons analysis, (Fig. 4).

We also evaluated neurotransmitter levels in the cerebral 
cortex. Dopamine levels showed a significant interaction 
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Fig. 1  Activity of the Electron Transport Chain (ETC) in mitochon-
dria of adipose tissue. A Complex I, B Complex II, and C Complex 
III showed diet effect, with higher activity in CAF groups. D Com-

plex IV did not show statistical significant differences. Data are pre-
sented as mean ± SEM. n = 7/group. CT = control diet, CAF = cafete-
ria diet, VEH = vehicle, n3 = omega-3, two-way ANOVA
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Fig. 2  Activity of the ETC on skeletal muscle. A Complex I and B 
Complex II did not show significant differences. C Complex III has 
shown higher levels in CAF groups showing a diet effect and lower 
levels in n3 groups showing a supplementation effect. D Complex IV 

shows a supplementation effect. Data are presented as mean ± SEM. 
n = 6/group. CT = control diet, CAF = cafeteria diet, VEH = vehicle, 
n3 = omega-3, two-way ANOVA, Bonferroni post hoc
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between diet and n3 supplementation (F (1, 23) = 4.854, 
P = 0.0379). In CAF-fed animals, dopamine levels were 
significantly increased in the group that received n3 sup-
plementation (CAF x CAFn3 P = 0,0355).

Additionally, DOPAC levels indicate a supplementation 
effect (F (1, 26) = 9.198, P = 0.0054), with a statistically sig-
nificant difference between CAFn3 and CAF (CAFn3 x CAF 
P = 0.0125). HVA levels were higher in the CAF groups, 
indicating a diet effect (F (1, 26) = 5.343, P = 0.0290). Fur-
thermore, HVA levels showed a supplementation effect (F 
(1, 26) = 8.881, P = 0.0062).

On the other hand, serotonin levels revealed a supplemen-
tation effect (F (1, 26) = 5.165, P = 0.0315), with serotonin 
levels in the CAFn3 group higher than those in the CAF 
group (CAFn3 vs CAF P = 0.0227). In contrast, acetylcho-
line, adrenaline, and glutamate did not show statistically 
significant results, (Fig. 5).

Discussion

One of the major disturbances in metabolism caused by 
obesity is mitochondrial dysfunction in both white adipose 
tissue and skeletal muscle [20–24], which disrupts energy 
expenditure and facilitates fat accumulation over time. In 
humans, it has been described a reduction in the activity 
of the ETC complexes I, II, III and IV in the subcutaneous 
white adipose tissue from the abdominal region of individu-
als with obesity and type 2 diabetes [25]. Interestingly, the 
present study showed higher activity of complexes I, II, and 
III in both adipose tissue and complex III in muscle of CAF 
animals. The increased activity of ETC complexes in muscle 
tissue following obesity was already shown elsewhere [25, 
26]. It was described that increased mitochondrial activity 
following a high-fat diet may be due to the stimulation of a 
range of mitochondrial proteins, including enzymes of the 

fatty acid oxidation pathway, citrate cycle, and respiratory 
chain [26]. Also, overexpression of lipoprotein lipase in the 
skeletal muscle causes increased fatty acid influx, promoting 
extensive mitochondrial proliferation [27]. This compensa-
tion could result in a period during which the muscle tissue 
increases its metabolic activity before experiencing a perma-
nent dysfunction. Indeed, our previous study using samples 
from the same animals as in the present study showed an 
increase in insulin resistance, indicated by an increase in 
the HOMA-IR index and elevated plasma triglyceride levels 
[28]. In those analyses, n3 was able to reduce insulin resist-
ance and triglyceride levels, while our observations of ETC 
complexes showed an effect of n3 at complex III and IV in 
the muscle but not in adipose tissue; this observation may 
be related to the metabolic activity of each tissue. The dura-
tion of the obesogenic diet may explain this phenomenon of 
an initial increase in the mitochondrial activity, followed by 
mitochondrial dysfunction after long-term administration of 
a high-fat diet [29]. It’s worth noting that comparing enzy-
matic activity across different tissues—like adipose tissue 
and muscle—can be tricky because of methodological fac-
tors. As explained in the methodology section, the protocol's 
calculation accounts for total protein expression in the sam-
ples. As a result, muscle mitochondria might seem to have 
lower enzymatic activity compared to adipose tissue. This 
apparent discrepancy is due to the formula's adjustment for 
differences in protein concentration between tissues. Thus, 
it's crucial to exercise caution when interpreting and com-
paring enzymatic activity across different types of tissues.

Acetate stands as the most prevalent short-chain fatty 
acid (SCFA) generated by the gut microbiota, originating 
from the microbial fermentation of residual peptides and fats 
[30–32]. Rats subjected to a high-fat diet (comprising 60% 
fat) displayed an amplified turnover of acetate. This was cou-
pled with a significant modification in the microbiota profile, 
resulting in an elevated Firmicutes/Bacteroidetes ratio. In 
prior studies, our research group observed an increase in 
acetate levels in rats exposed to a 20-week CAF protocol 
[33]. In another study, we found that zinc supplementation 
was effective in restoring the reduced concentration of ace-
tate induced by CAF in the proximal part of the colon [34]. 
However, in the present study, a protocol of a 13-week diet 
yielded a reverse effect, with lower levels of plasmatic ace-
tate in the CAF groups. The diet duration may be related to 
this finding, as SCFA levels are highly influenced by changes 
in the microbiota over time. This result also highlights the 
complexity of the effects of obesogenic diets on the organ-
ism since the findings of the studies should consider not only 
the composition but also the duration of the diets.

We also observed a reduction in the expression of clau-
din-5 in the intestine following CAF, suggesting a compro-
mised intestinal barrier that allows the migration of com-
pounds from the digestive tract into the bloodstream. This 
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is an expected finding, as obesity can lead to a condition 
known as leaky gut, characterized by increased gut perme-
ability, allowing the influx of pathogen-associated molecular 
patterns (PAMPs) into the bloodstream [8]. One of the com-
mon PAMPs found in the gut is LPS, a constituent of gram-
negative bacteria in the gut microbiota [31]. Consistent 
with our current and previous studies, we found an increase 
in plasma LPS levels in CAF-fed animals [8, 34, 35]. LPS 
in the bloodstream can interact with Toll-like receptor 4 
(TLR4) and trigger pro-inflammatory responses, even in 
the absence of an infection, a condition known as endotox-
emia [35]. n3 supplementation was effective in reducing LPS 
levels in the CAF groups, consistent with prior findings [8, 
34]. Interestingly, it did not impact the expression of clau-
din-5, suggesting that n3 may act not directly on the gut 
barrier. However, a previous microbiota analysis indicated 
that CAF promoted an increase in the Proteobacteria phylum 
(Gram-negative bacteria), and n3 significantly decreased it, 
highlighting the potential of n3 in reducing endotoxemia by 
modulating the gut microbiota [34].

There is growing evidence showing the effect of diet and 
obesity on neurotransmitter levels in the brain. Dopamine 
is a neurotransmitter that has been studied in obesity sce-
narios, once it is involved with behaviors that include food 
intake. In high fat diets, it was shown a decrease in dopamine 
receptor D2 (D2R) binding potential, and reduction in dopa-
mine transporter (DAT) function and membrane localiza-
tion. Additionally, obesogenic diets can disrupt satiety and 
reward signal in the brain through disrupting insulin sensi-
tivity in striatal pathways; insulin induces dopamine release 
and reuptake, however, hyperinsulinemic conditions such as 
obesity and insulin resistance disrupt that system [36–38]. 
In CAF, there is evidence of lower dopamine concentration 
in the nucleus accumbens [37]. Two main metabolites of 
dopamine: 3,4-dihydroxyphenylacetic acid (DOPAC) and 
homovanillic acid (HVA) [39] are also affected by diverse 
conditions; in Parkinson’s disease for example, lower lev-
els of HVA in cerebrospinal fluid of untreated patients are 
related to lower levels of dopamine in the nigrostriatal sys-
tem [40, 41]. In the present study, CAF was able to decrease 
dopamine and increase HVA concentration in the cerebral 
cortex. We hypothesized that these findings are due to a 
reduction in dopamine transporter (DAT) function, shifting 
the dopamine metabolization through its principal metabo-
lite: HVA. We also showed that n3 was able to reverse the 
decrease of dopamine in the cerebral cortex caused by the 
CAF, in the same way, HVA levels were higher with n3 sup-
plementation. Serotonin levels were increased by n3 in obese 
rats. These findings corroborate the scientific literature that 
has been shown the positive effects of DHA and EPA on the 
central nervous system [42–45]. One of the mechanisms that 
n3, especially EPA, can interact with neurotransmitter levels 
is by inhibiting E2 series prostaglandins that, in turn can 

inhibit serotonin release [45]; indeed, plasma n3 levels was 
positively associated with the serotonin metabolite 5-HIAA 
in cerebrospinal fluid [46]. Another mechanism of n3 action 
is by optimizing cell membrane fluidity, particularly by 
DHA, once that n3 is a key component of cell membrane, 
and its well functioning prevents the ROS (reactive oxygen 
species) in the way that both of this alterations can highly 
impact dopaminergic neurons that are highly sensitive to 
those factors [47]. In the same way a more fluid membrane 
increases significantly the sensitivity of 5-HT, one of the 
most important serotonin receptors [48]. All of those fac-
tors modulate neurotransmitter levels since they are closely 
related to the homeostasis of brain cells [49, 50]. In humans, 
several studies have shown that insufficient n3 PUFAs are 
linked to depressive and anxious moods, decreased cog-
nitive function, disrupted sleep, and increased tendencies 
toward aggression and impulsivity [51, 52]. In summary, n3 
emerges as a crucial component for the proper functioning 
of the central nervous system.

Conclusion

In summary, our investigation unveils a compelling com-
pensatory effect in the mitochondria of adipose tissue and 
skeletal muscle, despite the metabolic effects of obesity. This 
observed enhancement in ETC complexes' activity under-
scores the intricate relationship between metabolic pathways 
and mitochondrial function, providing valuable insights into 
potential avenues for therapeutic interventions. Our study 
also identifies the influence of the cafeteria diet on plasma 
acetate levels, coupled with an elevation in LPS. Notably, 
the successful reversal endotoxemia induced by LPS through 
n3 supplementation highlights the potential of this inter-
vention in mitigating inflammatory responses associated 
with obesity. Additionally, our investigation sheds light on 
the impact of obesity induced by CAF on neurotransmit-
ter levels, suggesting a potential link to behavioral changes 
observed in previous studies. Nevertheless, it is important 
to acknowledge the limitations of our research. Our data 
are derived from an animal model and may not be directly 
applicable to human physiology. Furthermore, our dietary 
and supplementation methodologies may not be universally 
applicable. As discussed, other studies utilizing similar pro-
tocols but extending the duration of the diet have yielded 
divergent results, underscoring the complexity of the vari-
ables involved in obesity research. In conclusion, while our 
study offers valuable insights, further research is warranted 
to fully elucidate the mechanisms underlying obesity-related 
metabolic alterations and to validate potential therapeutic 
interventions in human populations.
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