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Abstract
Heterotopic ossification (HO) is a pathological process characterized by the aberrant formation of bone in muscles and soft 
tissues. It is commonly triggered by traumatic brain injury, spinal cord injury, and burns. Despite a wide range of evidence 
underscoring the significance of neurogenic signals in proper bone remodeling, a clear understanding of HO induced by 
nerve injury remains rudimentary. Recent studies suggest that injury to the nervous system can activate various signal-
ing pathways, such as TGF-β, leading to neurogenic HO through the release of neurotrophins. These pathophysiological 
changes lay a robust groundwork for the prevention and treatment of HO. In this review, we collected evidence to elucidate 
the mechanisms underlying the pathogenesis of HO related to nerve injury, aiming to enhance our understanding of how 
neurological repair processes can culminate in HO.
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Introduction

Heterotopic ossification (HO) is characterized by the abnor-
mal formation of bone in soft tissues where bone typically 
does not form, which can be induced by multiple factors, and 
nerve injury is commonly considered the predominant fac-
tor [1–3]. Approximately 10% to 53% of HO patients suffer 
from postcentral nervous system injury [2]. Injuries to the 
spinal cord or peripheral nerves can also lead to HO [3, 4]. 
HO is most commonly observed in the hip joint in patients 
with spinal cord injury, but within patients with traumatic 
brain injury, HO may occur throughout the body such as in 
the shoulder and knee joints [2]. However, the structure and 
characteristics of HO induced by different forms of trauma 
exhibit significant similarities. The cellular origins of HO 

formation are relatively complex [5]. Cells involved in path-
ological ossification may originate from the osteogenic dif-
ferentiation of various stem cells under specific stimuli [6]. 
The formation of cartilage occurs first followed by cartilage 
ossification in traumatic HO. In addition, some mesenchy-
mal stem cells (MSCs) at the site of traumatic HO injury 
accompanied by nerve damage can also affect cartilage ossi-
fication and the differentiation into osteoblasts.

Both HO and the nervous system have been shown to play 
significant roles in bone development and growth [7–9]. The 
surface of the periosteal bone is covered by primary sensory 
and sympathetic nerve axons [5]. The mechanism driving 
HO is intricate and not entirely elucidated. At the injury site, 
sensory neurons receive and convey local information to the 
brain. This results in the brain sending neuroendocrine sig-
nals to the hypothalamus, initiating repair [9]. Various neural 
factors have been identified as key players in bone forma-
tion, such as nerve growth factor (NGF) [10] brain-derived 
neurotrophic factor (BDNF) [11] and neurotrophic factor 
(NT) [12, 13]. These neurotrophins and their receptors are 
diffusely expressed within the skeletal tissue promoting bone 
formation [14]. Localization of neurotransmitter receptors in 
the skeletal microenvironment plays a crucial role within the 
bone metabolism. These neurotrophins can signal through 
tyrosine kinase receptor (TrKs) and neurotrophins receptor 
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(p75NTR) to regulate downstream signaling pathways con-
tributing to the formation of HO [15].

The cerebrospinal fluid of patients with brain injuries 
exhibits osteogenic induction properties. The site of brain 
injury can promote the release of osteogenic inducers and 
neurotrophins [16]. These neurotrophins are extensively 
involved in neural development. Neurotrophins play a cru-
cial role in promoting the development and survival of sen-
sory and sympathetic neurons, as well as in regulating the 
differentiation of neural precursors [17]. In addition, neu-
rotrophins can promote the formation of granulocytes and 
monocytes, reduce cardiomyocyte apoptosis, regulate blood 
glucose levels, induce the differentiation of bone marrow 
mesenchymal stromal cells (BMSCs), enhance memory and 
contribute to the treatment of Parkinson’s disease [18].

While the exact methods by which these nervous factors 
stimulate HO remain enigmatic, it is evident that some nerve 
fibers located near skeletal cells release neurotransmitters 
and neuropeptides. It has demonstrated that abundant neu-
rite-like protrusions are in contact with the trabecular bone 
and nearby blood vessels through electron microscopy [19]. 
Neural fibers observed in the callus formed post-fracture can 
interact with osteoblasts and its precursors [7]. This inter-
action regulates bone metabolism through the secretion of 
neuropeptides and neurotrophic factors. These proteins regu-
late bone metabolism via multiple signaling pathways. The 
differentiation of MSCs is steered by both the transforming 
growth factor-beta (TGF-β) and bone morphogenic protein 
(BMP) pathways, which are integral to skeletal develop-
ment and bone formation [20]. Notably, the BMP pathway 
is vital for regular bone formation and is also implicated 
in HO development [21–23]. Specific inflammatory factors 
such as TNF-α have also been identified as contributors to 
HO except the TGF-β pathway [1, 20, 24].

Given this complexity, understanding the pathogenesis of 
HO in relation to the nervous system becomes paramount. 
This review aims to synthesize current knowledge on how 
the nervous system fosters bone formation and endochondral 
ossification. It will further explore the roles of neural factors 
and TGF-β in HO development.

Nerve Injury and HO

HO arises following nerve injury and represents a complex 
dysfunction rooted in bone formation and remodeling [25]. 
In vitro research shows that cerebrospinal fluid from patients 
can stimulate bone growth after nerve injuries [16]. Serum 
obtained shortly after traumatic brain injury (TBI) contains 
humoral factors that encourage osteoblast differentiation 
within skeletal muscles and enhance the growth of skeletal 
muscle mesenchymal cells, both pivotal in advancing ossifi-
cation and HO [26, 27]. In a model of polytrauma involving 

TBI and fracture, it was observed that TBI can alter the local 
neuroinflammatory state during the fracture healing process, 
stimulating endochondral ossification and early fracture 
healing in the contralateral limb [28]. Interestingly, serum 
from TBI model mice intensifies the proliferation and dif-
ferentiation of pericytes, exacerbating endochondral bone 
formation within this model [29]. Neuroendocrine modula-
tion advances bone formation post TBI, and TBI patients 
exhibit expedited fracture healing [30].

Patients with combined trauma and nerve injury face a 
substantially higher HO risk than those without combined 
trauma [31]. Nerve injuries can compromise the blood–brain 
barrier, prompting the release of cytokines that promote 
osteogenic factors in the bloodstream [31, 32]. BMPs, part 
of the transforming growth factor family, which are crucial 
in endochondral osteogenesis and fracture healing, are often 
employed to induce HO in vivo [25, 33]. Utilizing bone 
morphogenetic protein-2 (BMP-2) in spine fusion surgeries 
has been linked with possible complications of HO [34]. 
Postbrain injury, elevated BMP gene and protein expression 
levels have been reported [27].

Evidence has shown enhanced fracture callus forma-
tion in TBI patients [35–38]. Osteoinductive factors are 
released in areas where HO is induced by brain damage 
[16]. Slc33a1wt/mut mice in dorsal root ganglion cultures 
and sciatic nerve crush injury models have demonstrated 
injury-induced axonal regeneration through heightened 
BMP signaling [39]. There is a notable increase in the down-
stream BMP signaling pathway components pSmad1/5/8 
and Bmpr1a, as well as in the number of myelinated axons 
within cortical neurons of mice. Conversely, injuries from 
BMP signaling could be mitigated with therapeutic Noggin, 
a BMP signaling antagonist [39]. Both BMP-2 and neuro-
trauma induce the growth of nerve-derived adult pluripotent 
cells (NEDAPS) to facilitate bone formation [40, 41]. Neu-
ral injury-induced HO in mouse models has shown effec-
tive BMP-2 suppression using pyrophosphate [41]. BMP-2 
directly influences sensory neurons, initiating a neurogenic 
inflammatory response, which promotes nervous system 
remodeling and osteogenic stem cell release, culminating 
in bone formation [3, 42].

Chemically modified mRNA encoding BMP-2, when 
optimally delivered to osteotomies in rat femurs, aids in 
bone defect healing [43]. Increased BMP expression might 
enhance HO occurrence in rat tendons [44]. Overexpressing 
BMP-2 in the Tie2 + lineage produces HO in mice, linking 
abnormal BMP-2 signaling to skeletal muscle fiber inju-
ries and increased Tie2 + lineage fibro-adipogenic precur-
sor cells [45]. Around bone injury sites, BMPs may extend 
into surrounding muscle tissue, potentially inducing HO 
[46, 47]. Tfr2 deletion in osteoblasts attenuates the BMP-
MAPK signaling pathway, inhibiting HO formation in mice 
[48]. Despite the involvement of the central nervous system 



1630	 Neurochemical Research (2024) 49:1628–1642

in BMP signaling, the role of BMP in synapse formation 
in neurons has been proposed [49]. Additionally, BMP-2 
appears to stimulate human peripheral neurogenic pluri-
potent cell differentiation into fibroblasts [50]. Targeting 
fibrinogen or the BMP signaling pathway might aid cen-
tral nervous system repair [51]. Regarding bone repair, 
neurotrophin-3 (NT-3) might act as an osteogenic factor 
preceding BMP-2, inducing BMP-2 mRNA expression in 
injured growth plates [52]. Peripheral nerve progenitors can 
differentiate into osteoblasts and chondrocytes, leading to 
HO [4]. Trauma-induced neuroinflammation induces early 
osteogenic differentiation in endoneurial cells and activates 
HO-essential factors [53]. Osteoblast-specific transcription 
factors in endoneurial cells advance HO as blood enters the 
new bone formation site [8].

Studies suggest that inflammatory factors are released, 
such as TBI. These factors, combined with neural elements, 
accumulate within the nervous system. They then traverse 
the blood–brain barrier, entering peripheral circulation, 
which subsequently drives HO formation [26, 27, 29]. More-
over, trauma-induced HO predominantly unfolds via endo-
chondral ossification [5, 54, 55]. Recent findings emphasize 
the critical role of osteogenic progenitors residing within the 
endoneurium, positing them as the chief osteogenic precur-
sors in HO development [8]. Importantly, the regulation of 
endochondral ossification is deeply influenced by both the 
BMP pathway and inflammatory mediators. These agents 
synergistically activate osteogenic progenitors, bolster-
ing the onset of HO [23, 56]. Tendon and muscle-resident 
interstitial cells also activate chondrocytes and osteoblasts 
within HO [56].

Furthermore, osteoporosis is another bone metabolic 
disorder following central nervous system trauma. Patients 
with TBI may experience an increased risk of bone loss and 
osteoporosis [57]. Following injury to the central nervous 
system, there is an increase in sympathetic outflow which 
activates bone resorption [58]. TBI significantly reduces 
the bone density of cortical bone with in the mouse model 
[59]. TBI can disrupt the function of the hypothalamic–pitui-
tary–adrenal axis leading to a deficiency in pituitary-secreted 
growth hormone, which in turn induces catabolic effects 
resulting in decreased bone mass and bone density [60]. 
Furthermore, TBI has been also associated with vitamin D 
deficiency which is able to lead to osteoporosis [61]. Osteo-
protegerin (OPG) plays a crucial role in the negative regula-
tion of osteoclast-mediated bone resorption. The inhibition 
of stimulated osteoclast formation by OPG can lead to an 
increase in the volume of ectopic bone [62]. The insertion 
of metallic particles targeting osteoclasts to stimulate bone 
resorption around ectopic bone may represent a novel thera-
peutic strategy for HO [63].

In the context of HO formation following the neurologi-
cal injury, a multitude of endocrine hormones and paracrine 

mechanisms are intricately involved in the regulation of bone 
metabolism. HO induced by spinal cord injury is more com-
mon in patients with hyperparathyroidism [64]. Parathyroid 
hormone (PTH) can stimulate the formation of trabecular 
bone and participate in bone remodeling, enhancing osteo-
blast activity and promoting the production of ALP [65, 66]. 
Parathyroid hormone-related protein (PTHrP) is essential for 
the production of trabecular bone mass and cortical bone 
[67]. PTHrP, originating from osteocytes, is transported 
through the network of lacunar-canalicular. It influences 
nearby osteoblasts via the PTHR1/cAMP signaling pathway 
to stimulate bone formation and regulate the expression of 
genes related to matrix mineralization [68]. PTHrP enhances 
the production of ephrinB2 and ephrinB2 signaling regulates 
osteoblast differentiation and the expression of osteoblast 
genes through a paracrine mechanism within the osteoblast 
lineage [69]. A reduction in osteocalcin (OCN) can enhance 
bone formation in mice model [70]. Lower levels of oste-
ocalcin may play a significant role in the development of 
HO in patients with nerve injuries [71]. Insulin can inhibit 
BMP2-induced HO in muscle by suppressing the expression 
of Osterix [46]. Leptin is involved in functional recovery fol-
lowing the neural injury [72]. Leptin participates in the for-
mation of HO by promoting the mineralization of the extra-
cellular matrix and regulating osteoblast function [73]. The 
expression of SOX9 is reduced and results in the suppression 
of trauma-induced HO within the leptin-deficient diabetic 
mice [74]. Fibroblast growth factor receptor 3 (FGFR3) is 
closely associated with the signaling pathways formation 
and cartilage development involved in HO [75, 76]. FGFR3 
is highly expressed in chondrocytes and osteoblasts and the 
FGFR3 signaling pathway influences the formation of tra-
becular bone through a paracrine mechanism [77].

Neural Factors Regulate Bone Formation

Neurotrophic factors, including NGF, BDNF, and NT, play 
crucial roles in maintaining the functionality of the neu-
ral system and promoting neuronal survival and maturation 
[78–81]. In response to inflammatory stimuli, mast cells 
and macrophages coordinate the production of these neuro-
trophic factors [82–84]. Notably, the majority of bone-form-
ing cells show localization of NGF. Additionally, BDNF is 
present in osteoblast-like cells, and NT-3 is identified in both 
osteoblast-like cells and hypertrophic chondrocytes within 
the fracture callus [15].

These neurotrophins activate the p75NTR and TrKs 
thereby promoting bone formation [83, 85]. Studies have 
revealed that p75NTR aids in the differentiation of ectomes-
enchymal stem cells into osteoblasts [12]. After bone injury, 
there is a significant upregulation of p75NTR expression. 
This receptor not only influences bone repair but is also vital 



1631Neurochemical Research (2024) 49:1628–1642	

for stromal cell migration and subsequent bone regenera-
tion [86]. Activation of p75NTR enhances the proliferation 
of MSCs, boosts neurological recovery, and activates glial 
cells [13].

In fracture models, NGF stimulates osteoblast maturation, 
increases innervation, and speeds up bone repair. Moreo-
ver, local administration of NGF accelerates callus matu-
ration [87]. NGF-responsive TrkA-expressing nerves have 
been linked to enhanced cartilage antigen expression and 
increased TGF-β signaling at injury sites, leading to HO. 
NGF and TrkA are expressed within the process of endo-
chondral fracture repair, and local injection of recombinant 
human β-NGF (β-NGF) within the cartilage promotes the 
expression of genes associated with endochondral ossifica-
tion, such as Ihh and Alpl [88]. Consequently, inhibiting 
NGF signaling could prevent HO [89]. NGF distribution is 
notably dense at the subchondral bone or articular cartilage 
interface, with both p75NTR and TrkA being expressed in 
bone and articular cartilage [44]. Relatedly, MSC treatment 
has been shown to reduce apoptosis of oligodendrocytes 
caused by p75NTR [90].

Skeletal neurons release NGF, which promotes bone 
growth by stimulating the proliferation and differentiation 
of BMSCs [91]. After rib fractures in male rats, applying 
NGF to the fracture site significantly increased bone tis-
sue, leading to a higher cartilage proportion [92]. Post bone 
injury, there is a significant rise in nerve fibers in bone tis-
sue. Dendrites shift within the periosteum, and there is an 
increase in NGF and TrkA expression [93–95].

In mice, the NGF and TrkA signaling pathways in sensory 
nerves enhance bone formation in response to mechanical 
stresses [96]. This signaling pathway also stimulates the 
mineralization process in human chondrocytes [97]. One 
study found that following skull injury, macrophage-derived 
NGF levels rose, promoting sensory axon growth and skull 
regeneration. However, inhibiting TrkA activity delayed 
nerve growth and skull repair [98]. TrkA improves the sur-
vival and regenerative abilities of BMSCs by amplifying the 
Erk/Bcl-2 pathway [99]. There is also evidence suggesting 
that NGF inhibition can reduce bone destruction caused by 
tumors [100]. Interestingly, NGF has been found to activate 
the NF-κB signaling pathway by binding to p75NTR [101]. 
The role of NF-κB in bone metabolism and bone formation 
is well documented [102–104] and its activation is a key 
mechanism in the development of HO [105]. Inhibition of 
the NF-κB signaling pathway can suppress the function and 
differentiation of osteoclasts, effectively ameliorating bone 
loss in OVX mice model [104]. NF-κB signaling pathway is 
involved in the regulation of growth plate cartilage forma-
tion and osteoblasts, there is an increase in osteoblast differ-
entiation and BMP-2 activation when the NF-κB signaling 
pathway is blocked.

NGF may alleviate neuropathic pain by inhibiting 
TAK1, subsequently suppressing the downstream MAPK 
and NF-κB signaling pathways. However, it remains uncer-
tain whether this pathway influences HO [106]. In addition, 
astrocytes can activate the NF-κB pathway, and both TGF-
β1 and β-NGF have been noted to upregulate this pathway 
[107, 108]. BDNF has been shown to promote osteogenesis 
and HO in BMSCs via the Erk/Runx2 pathway while also 
enhancing neurogenesis [8, 37]. BDNF stimulates the pro-
liferation and differentiation of mesenchymal stem cells into 
osteoblasts [109, 110]. Furthermore, BDNF exhibits a high 
affinity for TrkB [15] and promotes neuronal cell survival 
through its interaction with TrkB [111].

BDNF and TrkB are present at different stages of bone 
formation [112]. The BDNF/TrkB signaling activates Akt 
stimulating the expression of ALP and BMP-2 [113]. TrkB 
is abundantly expressed in osteoblasts [94]. BDNF can sup-
press the differentiation of RAW264.7 cells into osteoclasts, 
and TrkB inhibition further hampers osteoblast proliferation 
[114]. K252a, BDNF receptor Trk inhibitor, significantly 
inhibits the formation of peripheral blood mononuclear cells 
induced osteoclasts stimulated by BDNF [115]. Through 
the TrkB-Erk1/2 signaling pathway, BDNF modulates the 
balance of RANKL/OPG expression in osteoblasts. BDNF 
depletion markedly reinstates RANKL/OPG homeostasis, 
curbing osteolytic bone destruction [116]. The molecule 
7,8-dihydroxyflavone, a BDNF and TrkB agonist mimic, can 
inhibit BDNF/TrkB signaling, thereby thwarting RANKL-
induced osteoclastogenesis and preventing bone loss [112].

Glial cell line-derived neurotrophic factor (GDNF) ele-
vates Nr4a1 expression in BMSCs and activates the PI3K/
Akt signaling pathway, enhancing the proliferation and oste-
ogenic differentiation of BMSCs after promoting the pres-
ence of activated astrocytes and GDNF in the hippocampus 
[117]. This factor also fosters the migration and osteogenic 
differentiation of MSCs94. The neurological system has an 
abundance of RET receptors. GDNF synthesis in neurons, 
in tandem with RET receptors, activates the MAPK, Erk, 
and Akt pathways—all pivotal in bone formation [118–121].

NT-3 augments the expression of Sox9 and Runx2 by 
activating the endothelial‐mesenchymal transition. TrkC-
specific inhibitors can alleviate NT-3-induced HO formation 
[52, 122]. Activated macrophages regulate NT-3 secretion, 
which, in turn, hastens HO through the Erk signaling path-
way [123]. NGF-β, GDNF, and NT-3 can drive the differen-
tiation of BMSCs into neurons [124, 125].

In summary, neurotrophic factors can signal through both 
the Trks and the p75NTR [15]. In addition to promoting 
survival and differentiation, neurotrophic factors also func-
tion through interactions with other receptors and ion chan-
nels. Neurotrophic factors can selectively bind with specific 
Trks. Trks function by regulating the Erk and PI3K signaling 
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pathways. On the other hand, p75NTR can activate NF-κB 
and Jun N-terminal kinase (JNK).

Furthermore, BMP-2 has been revealed to enhance the 
interaction between peripheral nerves and bone, ensuring 
bone health in synergy with neurotrophin [14]. Engineered 
sensory nerves releasing NGF significantly stimulate the 
osteogenic differentiation of BMSCs via the NGF-TrkA 
pathway. Simultaneously, NGF may also foster bone heal-
ing through BMP-2 [126]. BDNF can boost BMP-2 gene 
synthesis, presenting therapeutic possibilities for treating 
periodontal defects [127, 128]. BDNF also promotes the 
expression of ALP, type I collagen as well as OCN, which 
play a significant role in bone formation [127]. NT-3 has 
been found to considerably raise BMP-2 and TGF-β levels, 
thereby hastening bone formation following tibial fractures 
in rats [128].

Glutamate, the primary neurotransmitter within the 
central nervous system, experiences an increase in release 
following neural injury [129]. The glutamate receptor 
N-methyl-D-aspartate receptor (NMDAR) which is associ-
ated with signal transduction in the central nervous system, 
is highly expressed in osteoblasts and osteoclasts [130]. 
Intense staining of NMDAR has been observed on osteo-
blasts and osteoclasts in human osteophyte tissues. Inhibition 
of NMDAR can suppress bone resorption and the activation 
of the NF-κB signaling pathway [131]. NMDAR inhibitors 
have been shown to suppress the expression of bone forma-
tion markers such as OCN, type I collagen, as well as ALP 
[132]. Furthermore, the activation of NMDAR can promote 
the production of bone remodeling markers mediated by 
parathyroid hormone [133]. Sympathetic Nervous System 
modulates bone remodeling through the signaling of beta-2 
adrenergic receptor (B2AR) located on osteoblasts [134]. 
A specific inhibition and deficiency of B2AR in osteoblasts 
results in a reduction of bone resorption and an increase 
within the bone density [135, 136].

TGF‑β and HO

TGF-β is integral for tissue homeostasis, directing various 
cellular activities, including proliferation, differentiation, 
apoptosis, and migration [137–139]. It orchestrates a vast 
range of biological processes, activating both non-Smad and 
Smad pathways, with the intricate involvement of upstream 
and downstream signaling molecules [140, 141]. Addition-
ally, TGF-β is crucial in modulating HO and bone organo-
genesis [142].

Traumatized human tissue samples show pronounced 
increases in markers associated with bone growth. Notably, 
TGF-β expression, a marker for tissue fibrosis, escalates in 
injured tissues, subsequently leading to HO [143]. During 
bone remodeling, TGF-β regulates the recruitment of MSCs, 

ensuring bone homeostasis [144]. It also fosters the early 
differentiation of osteogenic progenitor cells and stimulates 
chondrocyte proliferation [145]. The resorption activity of 
osteoclasts can also activate TGF-β thereby inducing the 
progression of HO in patients with ankylosing spondylitis 
[146].

Neurologically, TGF-β expression intensifies in areas of 
nerve injury, helping to mitigate neuroinflammation [147, 
148]. The TGF-β family has a seminal role throughout neu-
rodevelopment, with profound clinical relevance to both 
injured and pathological nervous systems [149, 150]. Ele-
vated expression of TGF-β1 and TGF-β has been noted in 
humans with posttraumatic spinal cord injuries [151–153]. 
Similarly, TGF-β is markedly expressed at injury sites after 
peripheral nerve damage [154, 155]. When introduced after 
chronic nerve injuries, TGF-β bolsters axonal regeneration 
[156]. Post spinal cord injuries in rats manifest as a sig-
nificant upsurge in Ephrin type-B receptor 2 expression, 
accompanied by enhanced TGF-β1 secretion from activated 
astrocytes [157]. Mouse glial cells also exhibit increased 
TGF-β expression following trauma [158, 159]. Notably, the 
circular RNA Plek has been observed to amplify TGF-β1 
after spinal cord injuries [160].

On a molecular level, TGF-β activates intracellular Smad 
signaling, a pathway influenced by a diverse set of factors 
and routes. Moreover, TGF-β collaborates with various path-
ways, such as MAPK, Wnt, Notch, and Akt/mTOR, all of 
which are pivotal for bone metabolism [161, 162]. WNT/β-
catenin, acting as a mediator of the TGF-β/BMP signaling 
pathway, can regulate the differentiation of progenitor cells 
into osteoblasts and inhibit the apoptosis of osteoblast [161]. 
Smad serves as a platform for integrating MAPK/RTK sig-
nals with the TGF-β/BMP pathway. Ser203, Thr178 and 
Ser207 residues in the Smad3 linker region serve as phos-
phorylation sites for Erk1/2. TGF-β activating kinase and 
TAK binding protein activate MAPK through BMPR [163]. 
The MAPKs/TAK1 signaling pathway plays a role in the 
differentiation of MSCs and bone formation [161]. BMP2 
can regulate MAPKs and activate the PI3K pathway [164]. 
The Notch pathway is active in the early stages of osteoblast 
differentiation, and disruption of Notch signaling genes leads 
to reduced osteogenesis and bone mass [165]. The subchon-
dral bone microenvironment undergoes changes due to high 
levels of active TGF-β protein, leading to an accumulation 
of osteoprogenitor cells and an influx of new blood ves-
sels [166, 167]. Additionally, mutations in the TGF-β1 gene 
locus in Camurati–Engelmann disease have been associated 
with long bone diaphysis hyperostosis and sclerosis, while 
TGF-β signaling anomalies can result in aneurysmal osteo-
arthritis syndrome [137].

Osteoclasts have been shown to resorb TGF-β in bone 
marrow, inducing HO [146]. Matrine can inhibit HO by 
obstructing the migration and osteogenic differentiation 
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of MSCs induced by TGF-β in mice [168]. Additionally, 
MSCs can secrete TGF-β, modulating synaptic transmission 
and neuronal excitability in dorsal root ganglia [169]. When 
activated, TGF-β stimulates the formation of cortical bone 
[170, 171] emphasizing its pivotal role in managing HO and 
aberrant formation of subchondral bone [172, 173].

Therapeutic strategies for HO may be based on the sup-
pression of the TGF-β signaling pathway [171, 174] which 
has been implicated as a crucial stimulator of human car-
tilage production [175]. TGF-β exerts a divergent effect on 
MSCs, inhibiting their osteogenic differentiation [176] while 
mitigating neural damage when administered in mice [177].

NGF significantly enhances the production of TGF-β1 
and the expression of P75NTR, known for its pronounced 
stimulatory effect on the amniotic membrane [178, 179]. 
Moreover, the mRNA level of NGF in chondrocytes is 
upregulated by TGF-β via the ALK5-Smad2/3 signaling 
pathway [180, 181]. The role of TGF-β is highlighted dur-
ing osteoarthritis progression, recruiting MSCs to stimu-
late bone formation within the subchondral bone marrow 
[167]. It also fosters axonal regeneration after nerve injuries, 
increasing the mRNA concentration of TGF-β1 within the 
distal nerve stump and enhancing NGF mRNA levels in rats 
and mice [155, 182–185].

The TGF-β signaling pathway, modulated by sensory 
nerves, facilitates cranial suture closure upon NGF binding 
to TrkA and serves as an autocrine factor on cells via TGF-β 
receptor (TβR) activation, stimulating the release of NGF 
[186, 187]. The absence of NGF and the inhibition of its 
receptor TrkA both suppress chondrocyte differentiation and 
the progression of HO [10]. Cellular domains rich in NGF 
promote the development of TrkA + sensory nerve fibers and 
the interruption of TrkA signal transduction inhibits the frac-
ture healing [188]. Blocking NGF helps to alleviate bone 
destruction in mice model of bone tumors [100]. Inhibition 
of TGF-β1-induced Smad2/3 pathway activation decreases 
NGF expression [189]. Marine compounds have been iden-
tified to prevent HO by inhibiting the migration and osteo-
genic differentiation of MSCs via the TGF-β/Smad2/3 path-
way [168]. TGF-β also promotes the expression of NGF in 
chondrocytes via the Smad2/3 signaling pathway [180]. 
TGF-β activates two Smad signals leading to an increase in 
the levels of NGF within the pancreatic stellate cells [190]. 
TGF-β1 can enhance the survival of Dorsal Root Ganglia 
(DRGs) mediated by NGF [185].

TGF-β signaling protects damaged neurons during the 
early stages of TBI through Smad3 activation and is essen-
tial for cell motility, enhancing serum expression and secre-
tion levels of TGF-β1 [191, 192]. This cytokine enhances the 
expression of GDNF via TβR, protecting spinal sympathetic 
neurons from apoptosis [193–196]. TGF-β exerts a potent 
trophic effect on midbrain dopaminergic neurons, and the 
signal transduction of classical neurotrophic factors may be 

influenced by TGF-β [196]. The combination of TGF-β with 
NT-3 and NT-4 promotes the survival of more neurons and 
the neurotrophic function of GDNF requires the involvement 
of TGF-β. It is ubiquitously distributed in mature mouse 
bone marrow and is expressed extensively within cartilage 
[195].

Research shows the prevalent presence of TGF-β signal-
ing pathways within sensory nerves [197] and in astrocytes, 
it not only enhances protein expression but also modulates 
its own signaling pathway [198, 199]. Systemic injection 
of a TGF-β neutralizing antibody attenuates HO in BMP-
induced spontaneous HO models in mice [24]. With intact 
BMP receptors, MSCs serve as BMP target cells in bone, 
with BMP being an effective inducer of osteoblast differen-
tiation in vitro [22]. The TGF-β signaling pathway in astro-
cytes can inhibit inflammation and alleviate neuronal injury 
within the central nervous system [200] (Fig. 1).

Other Factors Inducing HO

Inflammation serves as a pivotal inducer of HO. Neuroin-
flammatory cascade is activated following the neural injury 
[201]. This process leads to the migration of chondro-osse-
ous progenitor cells. TBI triggers a series of complex inflam-
matory responses activating the NF-KB, JNK and TAK1 
signaling pathway, which is closely related to bone metabo-
lism [202, 203]. Sensory neurons release neuroinflamma-
tory molecules leading to the recruitment of hypertrophic 
cells [3]. The involvement of inflammatory responses, 
mediated by macrophages and mast cells, is observed in the 
development of HO subsequent to nerve injury [204, 205]. 
Macrophages are integral in promoting HO, facilitating the 
inflammatory response, and expressing cytokines such as 
TGF-β1, BMP, and Substance P (SP), which encourage 
the differentiation of MSCs [206]. There is a recognized 
association between HO, abnormal chondroprogenitor dif-
ferentiation, and TGF-β1-producing monocytes or mac-
rophages [207, 208]. However, TNF-α secreted by M1 
macrophages has been implicated in the bone erosion asso-
ciated with rheumatoid arthritis [209]. In the mouse model 
of HO induced by BMP or injury, the depletion of mono-
cytes can promote the differentiation of endothelial cells 
into endochondral formation, ultimately leading to HO and 
an increase in bone density [207]. In addition, BMP-2 also 
plays a directly role in sensory neurons inducing neurogenic 
inflammation and resulting in the activation of osteoblasts 
[3]. TGF-β1 are closely associated with HO and abnormal 
differentiation of cartilage progenitor cells after musculo-
skeletal trauma [208].

Oncostatin M, produced by activated macrophages, 
stimulates osteogenic differentiation and mineralization 
of myocytes in individuals with spinal cord or brain dam-
age, contributing to HO development [206, 210]. Following 
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nerve injury, an upregulation of SP is observed, which is 
released by diverse cell types in the nervous system, includ-
ing macrophages, neurons, and dendritic cells [211]. This 
molecule interacts with neurokinin receptors, playing a role 
in the differentiation of chondrocytes and osteoblasts.

The established interplay between inflammation and oxi-
dative stress under various pathological conditions is a criti-
cal aspect of disease progression. During the formation of 

HO, there is a notable dysregulation in the redox process. 
Macrophages exhibit antioxidant properties through nuclear 
factor E2–related factor 2 (Nrf2) aiding in the formation of 
chondrocytes [212]. Inhibition of Nrf2 can significantly alle-
viate HO. Nrf2 positive chondrocytes can prevent hypoxia, 
thereby facilitating the development of HO [213]. NGF/
TrkA promotes the vitality of BMSCs under hypoxic con-
ditions through the activation of the Nrf2 pathway [214]. 

Fig. 1   Role of neuromodulation in HO after nerve injury. Blood lev-
els of BMPs and TGF-β rise in response to damage to brain or nerve 
fibers, and these molecules directly influence intracellular signaling 
pathways to contribute to HO. Mast cells, macrophages and astro-
cytes are activated and accompanied by the release of neurotrophic 

factors following nerve injury. These neurotrophic factors in conjunc-
tion with BMPs and TGF-β combine with its corresponding receptor 
respectively and activate the signaling pathways to promote the pro-
gression of HO
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A prolonged inflammatory response ensues characterized 
by the production of reactive oxygen species (ROS) and 
upregulation of Nrf2 expression following SCI [215]. This 
heightened inflammatory response induced by the injury 
can promote HO. CH6-MF NPs loaded with BMP2 siRNA 
can effectively scavenge ROS and actively deliver siRNA to 
MSCs and osteoblasts which effectively inhibits osteogenic 
differentiation under inflammatory conditions in vitro [216]. 
The Hedgehog signaling pathway regulates the antioxidant 
pathway affecting the generation of ROS in tendon-derived 
stem cells, thereby promoting trauma-induced tendinopa-
thy [217]. Photo-crosslinked nanoparticles responds to the 
acidic and ROS in the inflammatory microenvironment to 
suppress HO [218].

Furthermore, the posttraumatic hypoxic microenviron-
ment increases the availability of hypoxia-inducible factor-1 
(HIF-1α). The subsequent upregulation of HIF-1α regulates 
the gene expression of BMPs and neuropilin-1, impacting 
mechanisms of HO, such as bone resorption and osteogen-
esis [219, 220]. Moreover, neuroinflammation following 
nerve injury induces the release of calcitonin gene-related 
protein, influencing bone metabolism by promoting chondro-
genic differentiation of fibro/adipogenic progenitors [221].

In this detailed nexus of interactions, each molecule and 
cell type play a critical and interconnected role in the devel-
opment of HO post-nerve injury, illustrating the complexity 
of the physiological responses that are involved.

Conclusion

HO is a complex pathological condition with numerous 
associated risk factors. While it is rooted in the pathologi-
cal differentiation of pluripotent stem cells, it also shares 
similarities with typical physiological processes. However, 
our grasp of the cellular origin, etiology, and underlying 
mechanisms of HO is still not comprehensive. After nerve 
injury, neurotrophic factors have been shown to play a role 
in the development of HO, acting through various signaling 
pathways and in conjunction with local inflammation and 
immune responses. At present, there are no established treat-
ments specifically for HO. Nonetheless, there is potential 
that future preventive and therapeutic strategies could utilize 
innate neuromodulatory mechanisms.
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