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Abstract
Menopause results in estrogen hormone deficiency which causes changes in brain morphology and cognitive impairments. 
The risk of breast and ovarian cancer increases with estrogen therapy. Thus, finding a substitute treatment option for women 
in menopause is necessary. In the current study, the impact of chronic sericin treatment (200 mg/kg/day for 6 weeks, gav-
age) on memory process, oxidative stress markers, synaptic neurotransmission, and acetylcholinesterase (AChE) activity 
in the hippocampus (HIP) of ovariectomized (OVX) mice was examined and compared to the effects of 17β-estradiol (Es; 
20 µg/kg, s.c.). The results demonstrated that sericin and Es administration improved spatial and recognition memory of the 
OVX animals in the both Lashley III maze and novel object recognition tests. Moreover, sericin-treated OVX mice showed 
decreased ROS levels, increased endogenous antioxidant defense capacity, and decreased AChE activity in the HIP. Addi-
tionally, sericin and Es therapy up-regulated pre-and-post-synaptic protein markers and increased BDNF, CREB, and protein 
kinase A (PKA) protein expressions in the HIP of OVX mice. Overall, the activation of the PKA-CREB-BDNF signaling 
pathway by sericin can provide protection against OVX-induced cognitive dysfunction, making it a potential alternative for 
managing cognitive deficits in postmenopausal women.
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Introduction

Natural menopause refers to the permanent cessation of 
ovulatory function, which is characterized by 12 consecu-
tive months of no menstruation [1, 2]. In addition to natural 
menopause, premature menopause may also happen through 
medical intervention such as bilateral ovariectomy or ovar-
ian failure due to ovarian cancer, all of which result in the 
depletion of estrogens in circulation [3].

Besides the traditionally accepted roles of ovarian 
hormones in regulating reproduction, estrogens, namely 
17β-estradiol (Es), are implicated in the regulation of 
brain functions such as neural activity, cognitive function, 
and behavior. Estrogens promote the growth and survival 
of memory-related cholinergic neurons, improve synaptic 
plasticity and cognitive function, and protect against oxida-
tive stress, neuroinflammation, apoptosis, amyloid-beta (Aβ) 
aggregation, and hyperphosphorylation of tau protein [4–7]. 
Therefore, estrogen depletion, during natural menopause or 
ovariectomy, is closely associated with neurodegeneration 
and deteriorated cognitive performance [8, 9].

Moreover, menopause is linked to decreased activity of 
antioxidant enzymes, such as superoxide dismutase (SOD) 
and glutathione peroxidase (GPx), and increased production 
of free radical or pro-oxidants, resulting in neural loss in the 
brain regions, particularly in the hippocampus (HIP) [10, 11]. 
The evidence suggests that lower cholinergic neurotransmis-
sion and acetylcholine levels in the HIP are connected to 
memory loss after menopause or ovariectomy [12, 13], due 
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to an increase in the activity of the brain enzyme acetylcho-
linesterase (AChE), which breaks down acetylcholine [14, 15].

The transcriptional factor cAMP-response element bind-
ing protein (CREB) is one of the cornerstones of synaptic 
plasticity and subsequent potentiation in long-term memory 
[16, 17]. Activating CREB via Ser133 phosphorylation and 
subsequent cAMP- and Ca2+/calmodulin-dependent kinase 
activation leads to the transcription of crucial proteins 
involved in neural plasticity, notably brain-derived neuro-
trophic factor (BDNF). BDNF is a potent modulator of neu-
ronal functions of the HIP affecting learning and memory, 
synaptic plasticity, and neurogenesis [18]. Based on clinical 
and preclinical studies, the suppression of the CREB/BDNF 
pathway is associated with decreased memory and learning 
ability following surgical or natural menopause [19, 20]. 
Although treatment with Es reverses the negative impact of 
estrogen deficiency on memory function by boosting BDNF 
levels [21, 22], in chronic use it increases the risk of endo-
metriosis and breast cancer in postmenopausal women [23]. 
Given this, scientists are currently searching for alternative 
treatments for estrogen in postmenopausal women that can 
negate its negative effects while retaining its benefits.

Silk is a kind of natural proteinous fiber that is woven into 
a cocoon by the silkworm (Bombyx mori) [24]. The major 
silk protein constituents of silk cocoons are fibroin (80%) 
and sericin (20%), which attach to each other by disulfide 
bonds at the center [25, 26]. Numerous biological activities 
of sericin, including antimicrobial, anti-inflammatory, anti-
oxidant, anti-apoptotic, anti-cancer, anti-aging, and wound 
healing effects, have extended its application in regenera-
tive medicine and neuroscience studies [24, 26–28]. Besides, 
several studies showed that sericin administration enhanced 
learning and memory in the experimental models by sup-
pressing oxidative stress and inflammatory responses, and 
inhibiting AChE activity in the brain [26, 29, 30].

The aim of this study was to evaluate the effect of chronic 
sericin administration on spatial and recognition memories, 
oxidative stress status, PKA-CREB-BDNF signaling path-
way, synaptic proteins, and AChE activity in the HIP of an 
OVX model in adult mice. We used estradiol as a positive 
control because of its established protective effects against 
menopause-related cognitive impairment. The objective 
was to compare the effects of sericin with those of estradiol, 
separately, to determine if sericin exhibits similar protective 
properties.

Materials and Methods

Animals

Forty adult female C57BL mice (8–10-weeks old and 
weighing 30–32 g) were obtained from the animal house 

of Tabriz University of Medical Sciences (Tabriz, Iran). 
Standard cages were used to socially house the animals 
(5 mice/cage) under controlled conditions with a constant 
temperature of 25 ± 1 °C, 50 ± 5% humidity, and a 12:12 h 
light–dark cycle. The animals had ad libitum access to food 
pellets and tap water. The guidelines of the National Insti-
tutes of Health (NIH; Publication No. 85-23, revised 1985) 
were strictly followed during all experimental procedures, 
and the Ethics Committee of Tabriz University of Medi-
cal Sciences approved the procedures (IR.TBZMED.VCR.
REC.1398.217).

Study Design

Animals were randomly allocated in 4 groups (n = 10 
in each), including control, ovariectomized + normal 
saline (OVX + NS), OVX + Estradiol (OVX + Es), and 
OVX + sericin (OVX + Ser) groups. Ovariectomy sur-
gery was performed on all groups except the control 
group, which underwent sham surgery. Animals in the 
control and OVX groups were treated with 10  ml/kg 
normal saline (NS) for 6 weeks. The OVX + Es group 
received Es (20 µg/kg/day, s.c.) [31] and the OVX + Ser 
group received sericin (200 mg/kg/day, p.o; Xi’an Liphar 
Biotech Co, Ltd) for six weeks. All treatments specified 
for each group were started a day after the surgery and 
continued for 6 weeks. Subcutaneous administration of 
ES allows for a gradual and sustained absorption of the 
drug into the bloodstream. Besides, the subcutaneous 
route allows for higher drug bioavailability by avoiding 
liver metabolism [32, 33]. In addition, it is important 
to note that evidence supports a higher risk of venous 
thromboembolism with oral estrogen therapy than trans-
dermal estrogen therapy. This is because oral estrogen is 
processed in the liver, resulting in harmful hemostatic 
effects [34]. The oral administration of sericin was cho-
sen to simulate its natural consumption and assess its oral 
delivery potential. The dose and route of administration 
were chosen based on our prior studies, indicating that 
gavage of sericin at 200 mg/kg dose enhanced memory 
in experimental models [35, 36].

Ovariectomy Surgery

The animals were anesthetized with isoflurane (5% for 
induction and 2% for maintenance) in oxygen. Two incisions 
were made on both side flanks, and the ovaries, oviduct, 
and upper part of the fallopian tubes were excised. Finally, 
the skin incisions were sutured. The control group (sham 
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surgery) received an identical surgical procedure, but the 
ovaries and their adjuncts were not extracted.

Behavioral Tests

Lashley III Maze

To assess spatial learning and memory, the Lashley III 
maze was used. The apparatus consists of a start box, 
maze arms, and a target box, all made of white Plexi-
glas®. The top part of the maze is made of transpar-
ent Plexiglas to observe animal movements and prevent 
escape. The mice were deprived of food for 12 h before 
the test. At the beginning of the test, the animal was 
placed in the starting box for 10 s, then the door was 
removed and the animal was allowed to enter the maze 
arms for 6 min. As the animal moves inside the maze 
arms, the number of errors until the animal found the 
correct path and the time to reach the target box were 
recorded. When the animal reached the target box at the 
end of the maze, the experiment was terminated. Mice 
were trained daily for 5 consecutive days, and all experi-
mental procedures were recorded and analyzed using the 
Noldus EthoVision™ video monitoring software (Nol-
dus, The Netherlands). The number of errors and latency 
to reach the goal box were calculated.

Novel Object Recognition (NOR) Test

In order to evaluate HIP-dependent episodic-like mem-
ory, the NOR test was performed. The test has three 
phases, including habituation, training, and retention. 
In the habituation phase, each animal was placed inside 
the chamber (33 × 33 × 33 cm) for 10 min and allowed 
to move freely. The next day, in the training phase, two 
similar objects were placed in the chamber, and the ani-
mals were separately placed in the arena to explore both 
objects for 5 min. One hour following the exposure to 
the familiar objects, the retention phase was performed. 
This step was similar to the previous stage, except that 
in the testing chamber there was a familiar object and 
one novel object. All sessions were video recorded, and 
the total time spent sniffing or exploring each object was 
measured. The discrimination index (DI), a criterion for 
evaluation of episodic-like memory, was calculated for 
each group as follows: DI = (N-F)/(N + F), where N is the 
exploration time of the novel object and F is the explora-
tion time of the familiar object.

Sampling

The mice were anesthetized with high-dose ketamine 
(100 mg/kg) and xylazine (10 mg/kg) a day after the behav-
ioral tests, then sacrificed by decapitation, and their brains 
were removed. The HIP was then separated on the cold plate 
and stored at −70 °C for.

Biochemical Analysis

ROS Level Assessment

The first step to assess mitochondrial ROS production in 
the HIP tissues was to homogenize them in lysis buffer 
and then centrifuge at 12,000 g for 10 min at 4 °C. A 
bicinchoninic acid (BCA) protein assay kit (Sigma-
Aldrich, Germany) was utilized to calculate protein con-
centration in the acquired supernatant. The supernatant 
was mixed with a dichlorodihydro-fluorescein diacetate 
(DCFDA) probe and kept in a dark place for 30 min at 
37 °C. The fluorescence intensity of the solution was 
measured using a fluorescence microplate reader (BioTek 
Instruments, USA) with an excitation wavelength of 
485 nm and an emission wavelength of 530 nm. The ROS 
level was normalized to the sample proteins and reported 
as fluorescence intensity per mg protein.

Measurement of Oxidative Stress Markers

After homogenizing the hippocampal samples in 1.15% KCl 
solution, the homogenates were centrifuged at 1000 rpm for 
10 min at 4 °C, and enzyme activity of SOD and GPx, as 
well as total antioxidant capacity (TAC) were measured in 
the supernatant.

The activity of GPx and SOD were assessed spectropho-
tometrically using a RANSEL kit (Randox Crumlin, UK) 
at 340 nm and a RANSOD kit (Randox Laboratories Ltd,

Crumlin, United Kingdom) at 505 nm, respectively. The 
obtained results were expressed as U/mg of protein. TAC 
was assessed by measuring their ability to reduce ferric ions 
(Fe3+) to ferrous ions (Fe2+). A blue color is produced by 
Fe2 + -2,4,6-Tri(2-pyridyl)-s-triazine with absorbance at 
593 nm. The findings were expressed as nmol/l.

Measurement of AChE Activity

The hippocampal AChE activity was detected by a colori-
metric kit (Elabscience Biotechnology; China) according to 
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the instructions of the manufacturer, and the absorbance was 
read at 412 nm and reported as U/mg protein.

Protein Quantification

Protein levels of CREB, BDNF, PKA, growth-associated 
protein-43 (GAP-43), synaptophysin (SYP), and post-
synaptic density-95 (PSD-95) were assessed using West-
ern blotting technique, as previously described [36]. The 
membranes were incubated overnight with rabbit primary 
antibodies ((all purchased from Santa Cruz Biotechnol-
ogy, USA, except Anti-BDNF antibody (Abcam, UK)) in 
1:500 concentrations against BDNF (ab108319), CREB (sc-
377154) PKA (sc-136231), GAP43 (sc-17790), PSD-95 (sc-
32290), and SYP (sc-17750). Afterward, the membrane was 
washed three times with PBS and incubated with horserad-
ish peroxidase-conjugated (HRP) anti-rabbit IgG second-
ary antibody (sc-2004, 1:500) for 2 h at room temperature. 
Finally, the membranes were soaked for 1 min in enhanced 
chemiluminescence (ECL) prime Western blotting detection 
solution (Amersham, United Kingdom) and exposed to auto-
radiography film (Kodak, USA) in order to visualize protein 
bands. The intensity of the captured signals was computed 
by Image J 1.62 software (NIH, USA) and normalized to the 
β-actin protein as the internal control.

Statistical Analysis

All data were reported as mean ± S.E.M, and statistical 
comparisons between different groups were carried out by 
one-way or two-way ANOVA followed by post-hoc Tuk-
ey’s test using Graph Pad Prism 6.01 software (Graph Pad 
Software Inc., La Jolla, CA, USA). Moreover, an unpaired 
two-tailed Student’s t-test was performed to compare the 
exploration time of each object in each group in the NOR 
test. A p-value < 0.05 was considered statistically significant.

Results

Sericin Amends Object Recognition Memory in OVX 
Mice

No significant differences in locomotor activity were 
observed among the groups during the habituation session 
(Data are not shown; p > 0.05). During the training phase, 
there was no significant difference in the exploration time of 
object A1 and A2, indicating no object preference (Fig. 1A, 
p > 0.05). During the retention session (Fig. 1B, p < 0.001), 
all groups with the exception of the OVX group, spent more 
time exploring the novel object than the familiar object. 
Moreover, the results of one-way ANOVA of DI showed 

a significant difference among the experimental groups (F 
(3, 36) = 6.344, p = 0.0014). The intergroup analysis showed 
a significant reduction in DI in the OVX animals treated 
with NS compared to the control mice (p < 0.01). Of note, 
treatments with Es (p < 0.05) and Ser (p < 0.01) led to a sig-
nificant increase in DI in the OVX animals (Fig. 1C).

Sericin Ameliorates Spatial Memory Deficits in OVX 
Mice

According to the results of two-way ANOVA repeated meas-
ures using treatments and days as factors, we found a significant 
main effect of treatments (F (3, 170) = 63.65, p < 0.0001) and a 
significant main effect of days (F (4, 170) = 14.84, p < 0.0001), 
but no significant main effect of treatments × days interaction 
(F (12, 170) = 0.3092, p = 0.9871) for exploration time, and sig-
nificant main effects of treatments (F (3, 180) = 36.52, p < 0.0001) 
and days (F (4, 180) = 21.47, p < 0.0001), but no main effect of 
treatments × days interaction (F (12, 180) = 0.6087, p = 0.8331) 
for number of errors in the Lashley III maze. Post-hoc analy-
sis showed that ovariectomy markedly increased latency time 
(Fig. 2A) and the number of errors (Fig. 2B) to find the target 
box compared to the control mice during training days. How-
ever, Es therapy significantly decreased latency time during 
5 days of training, and diminished the number of errors on days 
3–5 compared to the NS-treated OVX animals. The OVX ani-
mals treated with sericin found the goal box faster and made 
fewer errors than the NS group on days 1–5.

Sericin Attenuates ROS Generation and Enhanced 
Antioxidant Capacity in OVX Mice

The results of one-way ANOVA indicated significant effects 
of the treatments on ROS levels (F (3, 20) = 45.08, p < 0.001), 
activities of SOD (F (3, 20) = 22.83, p < 0.001) and GPx (F 
(3, 20) = 22.18, p < 0.001), and TAC levels (F (3, 20) = 33.44, 
p < 0.001). Figure 3 shows that induction of OVX con-
siderably increased hippocampal ROS levels (p < 0.001, 
Fig. 3A), while it decreased the enzymatic activities of SOD 
(p < 0.001, Fig. 3B) and GPx (p < 0.001, Fig. 3C), and TAC 
levels (p < 0.001, Fig. 3D) compared to the control group. 
Nevertheless, Es treatment significantly diminished ROS 
levels (p < 0.001) and increased enzyme activities of SOD 
(p < 0.01) and GPx (p < 0.01), and TAC levels (p < 0.05). 
In comparison to the OVX group, administration of sericin 
resulted in decreased ROS levels and increased SOD and 
GPx activities and TAC levels (p < 0.001 for all).

Sericin Attenuated AChE Activity in the HIP of OVX 
Mice

Based on the One-way ANOVA results (F (3, 20) = 8.585, 
p = 0.0007), there were significant differences in AChE 



1097Neurochemical Research (2024) 49:1093–1104	

Fig. 1   The effect of Es and sericin on recognition memory in the 
OVX mice. (A) Exploration time of two familiar objects and (B) 
Exploration time of familiar or novel object in the retention phase of 
the NOR test. Unpaired Student’s t-test, ***p < 0.001. (C) Discrimi-
nation index calculated as follows: (novel–familiar)/(novel + famil-

iar), in the NOR test. One-way ANOVA, *p < 0. 05, **p < 0. 01, and 
***p < 0.001 vs. control group. #p < 0.05, ##p < 0.01 and vs. OVX + NS 
group. Values are presented as the means ± SEM (n = 10). OVX, 
ovariectomized; NS, normal saline; Ser, sericin; Es, estradiol; NOR, 
novel object recognition

Fig. 2   The effect of Es and sericin treatments on spatial memory 
in the OVX mice. (A) latency time and (B) the number of errors to 
reach the target box in the Lashley III maze task. Values are presented 
as the means ± SEM (n = 10). Two-way ANOVA repeated measure, 

*p < 0. 05, **p < 0. 01, and ***p < 0.001 vs. control group. #p < 0.05, 
##p < 0.01 and ###p < 0.001 vs. OVX + NS group. OVX, ovariecto-
mized; NS, normal saline; Ser, sericin; ES, estradiol
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activity among the study groups. A marked increase in 
AChE activity was observed in OVX + NS group (p < 0.001) 
compared to the control animals. On the contrary, both Es 
(p < 0.05) and sericin (p < 0.01) treatments led to a sig-
nificant decline in AChE activity as compared to the OVX 
group treated with NS (Fig. 4).

Sericin Improves Synaptic Protein Markers 
in the HIP of OVX Mice

Statistical examination using one-way ANOVA under-
lined significant differences in protein expressions of 
SYP (F (3, 8) = 10.33, p = 0.0040), GAP-43 (F (3, 8) = 14.68, 

Fig. 3   The effect of Es and sericin on hippocampal (A) intracellular 
ROS levels, (B) superoxide dismutase activity (SOD), (C) glutathione 
peroxidase activity (GPx), and (D) total antioxidant capacity (TAC) 
in the OVX animals. One-way ANOVA, followed by Tukey’s post-

hoc test. Values are presented as the means ± SEM (n = 10). *p < 0.05, 
**p < 0.01, and ***p < 0.001 vs. control group. #p < 0.05, ##p < 0.01 and 
###p < 0.001 vs. OVX + NS group. OVX, ovariectomized; NS, normal 
saline; Ser, sericin; Es, estradiol
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p = 0.0013), and PSD-95(F (3, 8) = 15.75, p = 0.0010) in 
the HIP among the groups. As Fig.  5 shows, a marked 
decline in protein levels of SYP (p < 0.01, Fig. 5A), GAP-
43 (p < 0.01, Fig. 5B), and PSD-95 (p < 0.001, Fig. 5C) 
was observed in the HIP of the NS group compared to the 
control group. However, Es significantly up-regulated hip-
pocampal SYP (p < 0.05), GAP-43 (p < 0.01), and PSD-95 
(p < 0.05) proteins in the OVX mice. Additionally, Sericin 
treatment increased protein levels of SYP (p < 0.05), GAP-
43 (p < 0.01), and PSD-95 (p < 0.01) compared to the NS-
treated OVX mice.

Sericin Stimulates the PKA‑CREB‑BDNF Signaling 
Pathway in the HIP of OVX Mice

We also found significant differences in hippocampal pro-
tein expression of PKA (F (3, 8) = 55.99, p < 0.0001), CREB 
(F (3, 8) = 12.43, p = 0.0022), and BDNF (F (4, 10) = 14.80, 
p = 0.0013) among the experimental groups. Post-hoc analy-
sis showed that OVX induced significant decrease in PKA 
(p < 0.001, Fig. 6A), CREB (p < 0.01, Fig. 6B), and BDNF 
(p < 0.01, Fig. 6C) levels compared to the control animals. 
Nevertheless, Es treatment up-regulated the expression of 
PKA (p < 0.001), CREB (p < 0.05), and BDNF (p < 0.01) 
in the HIP compared to the NS-treated OVX group. Addi-
tionally, sericin administration resulted in a notable rise in 
protein expressions of PKA (p < 0.001), CREB (p < 0.01), 
and BDNF (p < 0.05) in the HIP of the OVX animals.

Discussion

The study aimed to determine the effect of long-term sericin 
treatment in ameliorating learning and memory impairments 
caused by OVX and to identify the associated intracellu-
lar signaling pathway. Our results substantiated that sericin 
administration effectively: (1) improved spatial and rec-
ognition memories; (2) reduced ROS levels and restored 
endogenous antioxidant levels; (3) enhanced AChE activ-
ity; (4) activated PKA-CREB-BDNF signaling pathway; and 
(5) increased synaptic protein markers in the HIP of OVX 
animals.

Surgical menopause through bilateral ovariectomy can 
replicate human ovarian hormone loss, causing an acute 
decline in blood estrogens and androgens [37]. The higher 
brain functions like mood and cognition are profoundly 
affected by ovarian hormones. This is accomplished through 
modulation of synapse structure and function, and protec-
tion against oxidative damage and neuroinflammation [38]. 
Studies suggest that Alzheimer’s disease progression and 
cognitive decline are more likely to occur with menopause 
or ovariectomy-induced estrogen depletion [39–41], and 
hormone replacement therapy may help manage these con-
ditions [42]. In accordance with our findings, it has been 
reported that bilateral ovariectomy severely affects cognitive 
abilities, whereas Es therapy can recover spatial and recog-
nition memories [43, 44]. Likewise, mice in the OVX + Ser 
group exhibited better memory performance in the Lash-
ley III maze and the NOR tests. The ability of sericin for 
improvement of cognitive disabilities has been previously 
proven in different conditions, including sleep deprivation, 
aging as well as cerebral ischemia, indicating its pro-cogni-
tive potential [35].

Besides, estrogen depletion is accompanied by excessive 
production of free radicals and deterioration of the endog-
enous antioxidant defense system, resulting in neuronal 
loss [44–46]. In line with previous reports, we showed that 
ovariectomy perturbed redox homeostasis, manifested by an 
increase in hippocampal ROS levels and reduced TAC lev-
els and SOD and GPx activities. Conversely, treatment with 
sericin and Es restored redox balance in the OVX mice. In 
agreement with our results, free radical scavenging capac-
ity of sericin and Es has been established in animal models 
[30, 35, 36, 47–50]. Emerging evidence shows that oxida-
tive stress impairs synaptic transmission and plasticity by 
damaging strategic proteins involved in storing and release 
of neurotransmitter and synaptic signaling. Besides, oxi-
dative stress can decrease neurotrophic factors, which are 
essential for neuronal survival and growth, ultimately lead-
ing to cognitive decline [51, 52].

Neurotrophins like BDNF are the major regulator of neu-
rogenesis, synaptogenesis, neurotransmission, and synaptic 

Fig. 4   The effect of Es and Sericin on hippocampal activity of AChE 
in the OVX mice. Values are presented as the means ± SEM (n = 6). 
***p < 0. 001 vs. control group. #p < 0.05 and ##p < 0.01 vs. OVX + NS 
group. OVX, ovariectomized; NS, normal saline; Ser, sericin; ES, 
estradiol; AChE, Acetylcholinesterase
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plasticity. The activation of PKA-CREB-BDNF signaling 
promotes synaptic efficiency and shapes synaptic plastic-
ity by modulating levels of pre-and post-synaptic pro-
teins [53, 54]. Accordingly, suppression of this signaling 
pathway impairs memory formation and synaptic plastic-
ity in OVX animals [19, 20, 55–57], though Es treatment 
improves memory function by up-regulation of BDNF levels 
and potentiating synaptic plasticity [21, 22]. Similarly, we 
observed that OVX mice demonstrated prominent reductions 
of BDNF protein expression as a consequence of inhibi-
tion of the PKA-CREB pathway in the HIP. These results 
were coincident with the down-regulation of pre-synaptic 

proteins (SYP and GAP-43) and post-synaptic protein (PSD-
95) in the HIP of OVX mice. Conversely, the application of 
Es or sericin prevented OVX-induced changes in synaptic 
proteins, leading to improvement of learning and memory 
processes through the activation of the PKA-CREB-BDNF 
signaling pathway. According to several studies, sericin can 
regulate synapse plasticity by increasing the hippocampal 
protein content of BDNF and up-regulating synaptic pro-
teins, including PSD-95, SYP, and synapsin-1 [35, 58].

The brain may undergo structural changes such as neu-
ron shrinkage, shorter dendrites, and lower spine density 
due to surgical menopause and estrogen depletion, leading 

Fig. 5   The effect of ES and Sericin on the expression of (A) SYP, (B) 
GAP-43, (C), and PSD-95 proteins in the HIP of the OVX mice. (D) 
Representative blot images of synaptic proteins established by the 
immunoblotting. Values are presented as the means ± SEM (n = 3). 
One-way ANOVA, followed by Tukey’s post-hoc test. *p < 0.05, 

**p < 0. 01, and ***p < 0.001 vs. control group. #p < 0.05 and ##p < 0.01 
vs. OVX + NS group. OVX, ovariectomized; NS, normal saline; Ser, 
sericin; Es, estradiol; SYP, synaptophysin; GAP-43, growth-associ-
ated protein-43; PSD-95, post-synaptic density-95
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to neurotransmission dysregulation [59, 60]. Choliner-
gic deficiency, which is caused by a decrease in choline 
acetyltransferase activities and an abnormal increase in 
AChE activities in the brain, is one of the major causes 
of memory and cognitive deficits after menopause or 
ovariectomy [12–15]. Basically, compounds with AChE 
inhibitory effects improve cognitive dysfunctions via 
increasing synaptic transmission of acetylcholine and 
boosting of cerebral cholinergic network activity [61]. Our 
study validated earlier reports that ovariectomy leads to 
a significant increase in AChE activity in the HIP, which 

impairs memory performance. The exact mechanism of 
increased AChE activity under ovariectomy is complex 
and multifaceted, but evidence suggests a connection with 
estrogen deficiency. Cholinergic neurotransmission in the 
brain is enhanced by estrogen, leading to higher choline 
acetyltransferase activity, increased choline uptake, and 
enhanced acetylcholine release, which can reduce AChE 
activity [62, 63]. Moreover, the decline of estrogen dur-
ing ovariectomy can contribute to neuroinflammatory pro-
cesses and oxidative stress, which may affect cholinergic 
function and result in elevated AChE activity [64]. Thus, 
estrogen indirectly inhibits AChE activity in the brain by 

Fig. 6   The effect of Es and sericin on the hippocampal expression 
of (A) PKA, (B) CREB, and (C) BDNF proteins in OVX mice. (D) 
Representative blot images of the relevant proteins detected by immu-
noblotting method. Values are presented as the means ± SEM (n = 3). 
One-way ANOVA followed by Tukey’s post-hoc test. *p < 0.05, 

**p < 0.01, and ***p < 0.001 vs. control group. #p < 0.05, ##p < 0.01, 
###p < 0.001 vs. OVX + NS group. OVX, ovariectomized; NS, normal 
saline; Ser, sericin; Es, estradiol; BDNF, brain-derived neurotrophic 
factor; CREB, cAMP response element-binding protein; PKA, pro-
tein kinase A
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modulating cholinergic neurotransmission. Investigating 
the connection between ovariectomy and AChE activity 
may offer treatment possibilities for addressing menopau-
sal symptoms and enhancing cognitive function in post-
menopausal women. In our study, treatment of OVX mice 
with Es or sericin restored hippocampal AChE activity to 
the sham levels and enhanced memory function. Studies 
showed that estrogen therapy improved memory deficit 
in the OVX animals by augmentation of the cholinergic 
neurotransmission [15, 65]. Likewise, Peera et al. showed 
that sericin improved cognitive impairments in rat model 
of Alzheimer’s disease via inhibiting of AChE activity 
and increasing acetylcholine content [30]. Nevertheless, 
there has been no research on how sericin inhibits AChE 
activity. While mechanistic studies are lacking, a previous 
study found that sericin can counteract AChE activity in 
rat models of Alzheimer’s disease, suggesting it may be a 
cholinesterase inhibitor [26]. Hence, further mechanistic 
studies are needed to fully comprehend the specific phar-
macodynamic effects of sericin on AChE activity.

Limitations and Future Directions

The effectiveness of sericin as a therapeutic agent can be 
affected by its stability during oral administration. How-
ever, the stability of sericin during oral administration 
has not been studied. The presence of hydrogen bonds, 
hydrophobicity, and crystalline structure in silk sericin 
contribute to its stability compared to globular proteins 
[66]. Therefore, sericin may exhibit favorable stability 
characteristics during oral administration, contributing 
to its potential therapeutic benefits. However, conducting 
additional specific studies on sericin stability in the gastro-
intestinal environment and after oral administration would 
offer more concrete insights on this matter.

Moreover, we did not assess plasma estradiol levels in 
the treatment groups due to specific focus on the cogni-
tive impacts of sericin in OVX animals, aiming to investi-
gate alternative mechanisms beyond estrogen-like effects. 
Furthermore, the risk of endometriosis and breast cancer 
increases with prolonged estrogen usage in postmenopau-
sal women, and current treatment approaches for estro-
gen depletion side effects are insufficient. Scientists are 
currently exploring alternative treatments for estrogen in 
postmenopausal women that can counteract its negative 
effects while preserving its advantages. In order to tackle 
this constraint, forthcoming research should incorporate 
assessments of plasma or serum estradiol levels in all 
experimental groups and investigate how sericin adminis-
tration affects hormonal balance in OVX mice.

Conclusion

Sericin treatment has been found to protect against behav-
ioral and molecular changes caused by ovariectomy. This 
is achieved by enhancing synaptic protein markers, activat-
ing the PKA-CREB-BDNF signaling pathway, improving 
cholinergic neurotransmission, and restoring redox homeo-
stasis in the HIP. These results provide a foundation for 
further research into the potential of sericin as a thera-
peutic agent for cognitive disorders related to menopause.
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