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Abstract
“Neurodegenerative disorder” is an umbrella term for a group of fatal progressive neurological illnesses characterized by 
neuronal loss and inflammation. Interleukin-6 (IL-6), a pleiotropic cytokine, significantly affects the activities of nerve cells 
and plays a pivotal role in neuroinflammation. Furthermore, as high levels of IL-6 have been frequently observed in associa-
tion with several neurodegenerative disorders, it may potentially be used as a biomarker for the progression and prognosis of 
these diseases. This review summarizes the production and function of IL-6 as well as its downstream signaling pathways. 
Moreover, we make a comprehensive review on the roles of IL-6 in neurodegenerative disorders and its potential clinical 
application.
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Abbreviations
IL-6  Interleukin-6
AD  Alzheimer’s disease
PD  Parkinson’s disease
ALS  Amyotrophic lateral sclerosis
HD  Huntington’s disease
MS  Multiple sclerosis
CNS  Central nervous system
IL-1β  Interleukin-1 beta
IL-6R  IL-6 receptor
mIL-6R  Membrane-bound IL-6R
sIL-6R  Soluble IL-6R
gp130  Glycoprotein 130
JAK  Janus kinase
STAT   Signal transducer and activator of transcription
NSCs  Neural stem cells
CSF  Cerebrospinal fluid

Introduction

Inclusive of Alzheimer’s disease (AD), Parkinson’s disease 
(PD), amyotrophic lateral sclerosis (ALS), Huntington's dis-
ease (HD), and multiple sclerosis (MS), neurodegenerative 
disorders comprise a heterogeneous group of neurological 
disorders that induce progressive, irreversible loss of neu-
rons in the central nervous system (CNS) [1]. The brain 
damage induced by neurodegenerative disorders often leads 
to a series of dysregulated motor and nonmotor manifesta-
tions, culminating in death within years or decades. Fur-
thermore, as aging is a major risk factor for such disorders, 
older adults constitute the vast majority of patients with neu-
rodegenerative disorders [2]. As the global population ages, 
the prevalence of neurodegenerative diseases surges. Aside 
from straining medical resources and public finances, the 
rising incidence of neurodegenerative disease will severely 
diminish the quality of life of millions of patients and their 
caregivers.

Neuroinflammation (i.e., an inflammatory response 
within the CNS) contributes significantly to the pathogen-
esis of neurodegenerative disorders [1]. In response to neu-
ronal damage, the sustained activation of innate immune 
cells in the CNS produces excessive amounts of proinflam-
mation cytokines and induces chronic inflammation, which 
can compromise synaptic function, energy homeostasis, 
and protein aggregation, and exacerbate neurodegenera-
tion [3]. Though the close ties between neuroinflammation 
and neurodegeneration have been established, the specific 
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mechanisms underlying the complicated regulatory networks 
remain elusive and require further investigation.

As a well-characterized proinflammatory component in 
the CNS, interleukin-6 (IL-6) primarily exerts a negative 
influence on neurons and plays a pathogenic role in neuro-
degenerative disorders [4]. This review summarizes the lit-
erature on the role IL-6 plays in common neurodegenerative 
disorders and presents an overview of the drugs that either 
decrease the expression of IL-6 or block IL-6 signaling to 
halt or slow disease progression (Table 1).

IL‑6 Production and its Mode of Action

IL-6 is encoded by the IL-6 gene, which is mapped to chro-
mosome 7p21 in human [5]. Mature IL-6 is a single-chain 
glycoprotein with 184 amino acids that exhibits a typi-
cal structure with four long, well-arranged helices and an 
extra mini-helix [6]. IL-6 is synthesized and secreted by a 
variety of cell types, such as T cells, B cells, monocytes, 
fibroblasts, and endothelial cells. Adipocytes and skeletal 
muscle can also produce IL-6 under healthy conditions [7, 
8]. A large-scale meta-analysis involving a population of 
12,421 revealed that the average plasma IL-6 concentration 
in healthy individuals is quite low, ranging from 4.631 to 
5.740 pg/ml, and the lowest value was 0 pg/ml [9]. The basal 
IL-6 level was significantly higher in older adults than in 
younger people, demonstrating that the expression of IL-6 
is age-related. This finding was confirmed in studies of 
disease-free wild-type mice [9–11]. The age-dependency in 
IL-6 expression is consistent with the higher susceptibility 
of older adults to inflammatory diseases.

When confronted with stimuli such as lipopolysaccha-
rides, interleukin-1 beta (IL-1β), angiotensin III, kojic acid 
etc., the producing cells promptly synthesize redundant IL-6 
[12–16]. Moreover, the secretion of IL-6 increases dramati-
cally in progressive stages of inflammatory diseases and can-
cers. For instance, in pediatric sepsis patients infected with 
G-bacteria, the level of IL-6 could rise to 1000–1200 pg/ml 
[17]. Meanwhile, considerably higher IL-6 values have been 
observed in patients with prostate cancer [18].

The expression of IL-6 can be linked to genetic poly-
morphisms—especially those in promoter region, such 
as rs1800795 G/C and rs1800796 G/C. A study reported 
that the rs1800795 (C) allele produces more IL-6 than the 
(G) allele [19], while other studies showed the inconsist-
ent results [20, 21]. Concerning rs1800796, available evi-
dence suggests that IL-6 in individuals with rs1800796CC 
or rs1800796CG are higher than in those with GG geno-
types [22]. As the influence of polymorphisms on IL-6 may 
depend on demographic, ethnic, or racial factors, differ-
ences between samples and limitations on their sizes may 
account for the inconsistency in the literature, large-scale, 

multi-center, and multi-ethnic research is necessary to 
resolve the controversies.

IL-6 functions mainly through binding to IL-6 receptor 
(IL-6R), which appears in the forms of membrane-bound 
IL-6R (mIL-6R) and soluble IL-6R (sIL-6R). The former is 
an 80-kDa membrane-bound protein limitedly expressed on 
the surface of hepatocytes and leukocytes, while the latter is 
primarily generated by the unbinding of mIL-6R or result-
ing from the alternative splicing of mRNA [23, 24]. These 
receptors both show special high affinity for IL-6, however, 
subsequent signal transduction requires essential assistance 
of transducer glycoprotein 130 (gp130), which is a 130-kDa 
transmembrane protein, ubiquitously expressed on the sur-
face of almost every type of cells (except mature granulo-
cytes) and is responsible for transducing intracellular signals 
through homodimerization [25, 26]. Upon binding IL-6, a 
transmembrane hexameric complex encompassing 2 IL-6, 
2 IL-6R and 2 gp130 assembles and initiate downstream 
signalings [27]. There are two types of functional hexam-
ers: the IL-6/mIL-6R/gp130 complex is formed only on a 
few cells that express mIL-6R, while the IL-6/sIL-6R/gp130 
complex is formed on cells that lack mIL-6R. IL-6 engages 
with three distinct signaling pathways to regulate its biologi-
cal effects: classical signaling, trans-signaling, and cluster 
signaling. Ultimately inducing anti-inflammatory effects, 
classical IL-6 signaling occurs when complex IL-6/mIL-6R/
gp130 appears on the surface of selected cells. By contrast, 
trans-signaling results in pro-inflammatory potency. This 
pathway can be triggered when complex IL-6/sIL-6R/gp130 
is present: i.e., on most cells devoid of mIL-6R. Also known 
as trans-presentation progress, cluster signaling involves the 
presentation of the pre-formed IL-6–IL-6R complex from 
dendritic cells to T cells expressing gp130 in a trans manner, 
leading to subsequent gp130 dimerization in the receiving 
cells [28]. Regardless of the signaling pathway activated, 
the dimerization by gp130 constitutes a start switch capa-
ble of triggering intracellular signals, including the Janus 
kinase (JAK)/signal transducer and activator of transcription 
(STAT), phosphatidylinositol 3-kinase/Akt, and mitogen-
activated protein kinase pathways.

Normal Biological Functions of IL‑6 
in the Central Nervous System

IL-6 in the CNS is either synthesized and secreted by neu-
rons and glial cells or transported from the outside of the 
CNS (Fig. 1A) [29–34]. IL-6 levels in the CNS are low 
under normal physiological conditions but increase sharply 
under psychological stress, pathological conditions (e.g., 
AD, PD, and MS), or stimulation with tumor necrosis factor-
alpha [35–40].
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Effects of IL‑6 on Neurogenesis

IL-6 plays a significant role in mammalian neurogenesis, 
the process whereby neurons and glial cells mature from 
neural stem cells (NSCs) in specialized niches of the brain 
[41]. Neurogenesis is a multistage program consisting of 
proliferation, differentiation, migration, survival, and inte-
gration. Proliferation of NSCs is negatively affected by 
IL-6 [42–44], though the underlying mechanism remains 
unclear. IL‐6 is also a critical regulator of NSC differentia-
tion through inhibiting differentiation of NSCs into neurons 
while boosting their differentiation into glial cells via the 

JAK2/STAT3 signaling pathway in dose-dependent manner 
[43, 45]. In addition, NSCs preconditioned with IL-6 can be 
reprogrammed and assume new characteristics of tolerance 
to oxidative stress and angiogenesis induced by STAT3, thus 
reducing ischemic injury in stroke mice [46].

Effects of IL‑6 on Neurons

IL-6 interacts with neurons in a seemingly contradictory 
manner. On one hand, IL-6 can induce serious injury in 
cortical pyramidal neurons. Using oxygen consumption rate 
as an evaluation criterion, cortical neurons exposed to IL-6 

Fig. 1  Pathogenic role of IL-6 in neurodegenerative diseases. In the 
CNS, IL-6 promotes neuroinflammation and may thus promote the 
pathogenesis of neurodegenerative disorders. A There are two main 
sources of IL-6 in the CNS: mainly produced by T cells, B cells, 
and monocytes, circulating IL-6 can cross the blood–brain barrier 
and reach the CNS; otherwise, IL-6 is secreted by neurons and glial 
cells. B While IL-6 exerts both beneficial and detrimental effects in 
the CNS, its detrimental effects—especially its promotion of neuro-
inflammation—commonly dominate during illness. C IL-6 partici-
pates in the pathogenesis of prevalent neurodegenerative disorders, 

including AD, PD, ALS, HD, and MS. These diseases have different 
pathological features: e.g., ALS is characterized by the aggregation 
of TDP-43, while HD is principally associated with the mutation 
of HTT. Although the exact mechanism is unclear, the expression 
of IL-6 generally increases with the severity of these diseases. BBB 
blood–brain barrier, NSC neural stem cell, AD Alzheimer’s disease, 
Aβ amyloid-beta, NFTs neurofibrillary tangles, PD Parkinson’s dis-
ease, ALS amyotrophic lateral sclerosis, TDP-43 TAR DNA-binding 
protein 43, HD Huntington’s disease, HTT huntingtin protein, MS 
multiple sclerosis, CNS central nervous system
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had a saliently higher oxygen consumption rate relative to 
untreated neurons, indirectly implying impaired mitochon-
drial respiration in the exposed neurons [47]. On the other 
hand, IL-6 can act as a neuroprotective agent by preserving 
anterior horn neurons from irreversible virus-induced injury 
and enhancing the survival of sympathetic neurons [31, 48]. 
These data demonstrate that effects of IL-6 on neurons may 
depend on the distribution of brain regions and pathologi-
cal types.

Effects of IL‑6 on Glial Cells

Microglia are the dominant immune cells of the CNS. 
Exposing microglia to IL-6 potentiates their secretion of 
inflammatory cytokines, like IL-1β, IL-6 itself, and TNF-α, 
and promotes their proliferation and repopulation [49–51]. 
Increased concentrations of IL-1β can induce the produc-
tion of IL-6 in astrocytes, creating a positive feedback loop 
between astrocytes and microglia that may result in a hyper-
inflammatory state—especially in patients with neuroinflam-
matory diseases.

Besides activating the pro-inflammatory phenotype, IL-6 
plays a neuroprotective role in microglia. In acute IL-6 expo-
sure, microglia-like cells will upregulate chemokine secre-
tion and thus recruit additional immune cells to remove 
necrotic cellular debris at lesion sites [51]. Chronic IL-6 
exposure induces microglial proliferation and a desensitized 
phenotype [52, 53]. Hence, IL-6 not only promotes neu-
roinflammation and causes neurological impairment, but 
also repairs brain injury by stimulating the proliferation and 
regeneration of microglia.

In astrocytes, IL-6 also plays dual functions. It alleviates 
mitochondrial damage and suppressing astrocyte apoptosis, 
while it can also recruit T cells to the CNS by enhancing 
astrocytic CCL20 expression with the aid of sIL-6R and 
IL-17 [54–57]. More importantly, the conjunction of IL-6 
and sIL-6R can promote the expression of neurotrophins in 
astrocytes in a dose- and region-dependent manner [58]. The 
dual effect of IL-6 in microglia and astrocytes underscores 
its clinical potential in the treatment of neurodegenerative 
disorders.

Effects of IL‑6 on Synapse Formation

As key process in the development of the brain, synapse for-
mation is also regulated by IL-6 [59–61]. To determine the 
correlation between early prenatal inflammation and abnor-
mal neurodevelopment, female mice were injected with IL-6 
during pregnancy. The transient elevation of prenatal IL-6 
enhanced glutamatergic synaptogenesis and undermined 
hippocampal connectivity in the offspring [62]. An excessive 
number of excitatory contacts in the offspring will induce 
an E/I imbalance: a hallmark of neurodevelopmental defects 

that cause the development of neurodegenerative disorders 
in the long term.

Significantly, regardless of the capacity of IL-6 to posi-
tively or negatively regulate neural cells, its proinflammatory 
activities play a dominant role under pathological conditions 
by bolstering the inflammatory environment and inducing 
neuroinflammation (Fig. 1B).

The Role of IL‑6 in Neurodegenerative 
Disorders

With the growth of the geriatric population and the atten-
dant rise in the prevalence of neurodegenerative disorders, 
these diseases are attracting increasing attention from the 
global research community. The following section reviews 
the pathological features of several common neurodegenera-
tive disorders (Fig. 1C) and how IL-6 contributes to these 
diseases.

IL‑6 and Alzheimer’s Disease

AD is an age-related neurodegenerative disease character-
ized by progressive cognitive decline and memory impair-
ment. Furthermore, it is listed as one of the leading causes 
of death in the elderly population, particularly of those 
aged ≥ 65 years [63–65]. Based on a newly developed pre-
diction model, current number of patients with AD has 
reached 69 million—a greater figure than the previously esti-
mated 50 million [66], which will continue to increase with 
the aging population. In consequence, the global economic 
burden of treating patients with AD will become increas-
ingly heavier and exert an extraordinary influence on society 
and individuals [64].

Amyloid cascade, tau protein, neuroinflammation, metal 
ions, and oxidative stress have all been suggested to par-
ticipate in the pathogenesis of AD and a wealth of evidence 
has suggested that IL-6 is closely related to these processes. 
For example, AD is characterized by the appearance and 
proliferation of beta-amyloid and phosphorylated tau, and 
the formation of these abnormal proteins can trigger IL-6 
production [65, 67]. Elevated IL-6 has proved to promote 
not only the accumulation of amyloid beta plaques by acti-
vating BACE1 and NF-κB [68], but also the generation of 
neurofibrillary tangles by regulating the CDK5/p35 path-
way [69], thus contributing to a vicious circle that leads to 
exacerbating pathology. Additionally, IL-6 participates in 
the blood–brain barrier dysfunction, an early pathological 
hallmark characterized by barrier leakage [70]. By activat-
ing the NADPH oxidase pathway, IL-6 downregulate the 
expression of tight junction proteins in brain endothelial 
cells, leading to an increase of paracellular permeability. 
Furthermore, with stimulation of IL-6,  CD4+ T cells can 



839Neurochemical Research (2024) 49:834–846 

be induced to differentiate into Th17 cells, which contrib-
ute to beta-amyloid accumulation and neuronal damage 
through direct cytotoxic effects of IL-17A [71]. Although 
heterogeneity in study populations has inevitably yielded 
controversial findings, most of current literature supports the 
notion that the levels of IL-6 in the serum, CSF, and stool 
samples are significantly higher in patients with AD than in 
controls [67, 72–77]. Elevated IL-6 correlates inversely with 
hypothalamic/hippocampal volumes and Mini-Mental State 
Examination scores, and significantly increases the risk of 
cognitive decline in AD patients [67, 76, 78]. Based on the 
marked increase in IL-6 of the AD patients, some research-
ers have suggested that IL-6 may hold the potential to be 
a useful marker in AD [79–81]. Thereinto, a case–control 
study has evaluated the diagnostic significance of IL-6 in 
serum ([AUC] = 0.930), which demonstrated that IL-6 was 
a promising biomarker to distinguish AD patients from the 
normal controls [80]. However, further studies are required 
to find more relevant and stable biomarkers, and to confirm 
their exact clinical utility in a larger cohort of patients in 
the future.

Whether IL-6 gene polymorphism contributes to the risk 
of AD remains unclear. In a study of Chinese Han subjects, 
participants homozygous for the G allele of rs1800796 were 
found to have a lower risk of developing late-onset AD [82]. 
The findings of a Brazilian case–control study contested this 
conclusion [83]. The ethnic differences between the study 
populations and their limited sample sizes may account 
for the contradictory results. While the literature features 
a similar discrepancy concerning rs1800795, most reports 
agree that the C allele in CC homozygotes has a negative 
association with the risk of AD [19, 84, 85]. Hence, whether 
a genetic polymorphism of IL-6 regulates the risk of AD 
remains uncertain. Larger, more standardized investigations 
are needed to settle this question.

Accompanying the discovery regarding the deleterious 
role of IL-6 in AD, multiple IL-6 production inhibitors 
have been developed in recent years aim at lowering IL-6 
levels to alleviate neuroinflammation in AD [67]. Among 
them, sulforaphene, verbascoside, sterubin, and xanthoxylin 
hybrids have shown promising results for the treatment of 
AD [86–89]. Meanwhile, tocilizumab, a humanized anti-
body to IL-6 receptor, has thus far been shown to protect 
against cognitive deficits in AD models [90]. In addition, the 
neurodegeneration and cognitive impairment of AD mouse 
models has been almost completely abolished, when IL-6 
trans-signaling was blocked specifically (by crossing them 
with GFAP-sgp130Fc mice) [91]. The results indicate that 
blocking IL-6 production or signal transduction does indeed 
alleviate the burden of AD, suggesting that this may be a 
new potential therapeutic target at early stages of the disease.

While these agents or methods have shown achieved 
exciting results in cell cultures or animal models, much time 

and effort remain before they can undergo testing in clinical 
trials or be used in clinical application.

IL‑6 and Parkinson’s Disease

PD is the second most common neurodegenerative disease. 
While it is currently estimated to affect 7 million people 
worldwide, its prevalence is expected to double in the next 
30 years [92], as old age is the most important independent 
risk factor of this disease [93].

Aside from presenting with motor manifestations such as 
bradykinesia and resting tremor or rigidity, patients with PD 
also exhibit depression, anxiety, and cognitive decline. These 
symptoms may result from a selective loss of dopaminergic 
neurons and the formation of α-synuclein-containing Lewy 
bodies [94–99]. Though specific mechanism underlying the 
development of such symptoms remains unclear, there is 
a general consensus that neuroinflammation is involved in 
the pathogenesis of neurodegeneration consequent of PD 
[97, 100–102].

Among the inflammatory molecules, IL-6, which reflects 
the neuroinflammatory pathogenesis of the disease, has 
attracted considerable research interest [103–106]. On one 
hand, pathological α-synuclein induces the secretion of IL-6 
by microglia; on the other hand, overexpressed IL-6 can trig-
ger toxic neuronal iron accumulation by activating the cel-
lular iron sequestration response, leading to dopaminergic 
cell death and exacerbating neurodegeneration [107–109]. 
Besides, Th17 cells stimulated by IL-6 can induce dopamin-
ergic neuronal apoptosis via a direct contact or secretion of 
IL-17A [110, 111].

Similar to AD, the serum and CSF concentrations of IL-6 
are markedly higher in patients with PD than healthy con-
trols. This finding reinforces the clinical evidence that the 
onset of PD is accompanied by an enhanced inflammatory 
response [38, 112]. Furthermore, a positive correlation was 
identified between IL-6 level and disease severity whereas 
those with advanced motor or nonmotor symptoms and 
fatigue suffer even higher level of IL-6 [113–116]. Finally, 
elevated levels of IL-6 may be an independent predictor of 
increased mortality risk in PD patients [117], and statistical 
evidence from a Mendelian randomization study concluded 
that increased concentrations of IL-6 were associated with 
earlier onset of PD [118]. Given these evidence, abnormally 
high levels of IL-6 may be used as a potential biomarker 
for early diagnosis, progressive detection, and prognostic 
evaluation of PD.

IL-6 not only affects the initiation and progression of 
neurodegenerative processes in PD, but may also contrib-
ute to the treatment of the disorder. The treatment of PD 
mainly includes both pharmacologic and nonpharmacologic 
therapies. Levodopa remains the most commonly prescribed 
medication [95, 119]. With an improved understanding of 
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the pluripotent roles of IL-6 in the pathogenesis of PD, 
IL-6 inhibitors may become a promising treatment alterna-
tive. For instance, the neurotrophic and anti-inflammatory 
drug, echinacoside, has been demonstrated both in vivo and 
in vitro to protect dopaminergic neurons by inhibiting the 
IL-6/JAK2/STAT3 pathway in PD models [120]. Future 
investigations should thoroughly investigate the role of IL-6 
in the pathogenesis of PD to gain greater insight into its 
clinical potential in preventing and treating PD, as well as 
improving the affected patients’ quality of life.

IL‑6 and Amyotrophic Lateral Sclerosis

ALS is the third-most common adult-onset neurodegen-
erative disease. With a mean onset age of 60 years, ALS is 
mainly characterized by the cytoplasmic aggregation of TAR 
DNA-binding protein 43 and the progressive loss of motor 
neurons in the brain and spinal cord that eventually causes 
death within 2–5 years of onset [121, 122].

Accumulating evidence implicates involvement of IL-6 
associated neuroinflammation in ALS. Relatively high 
concentrations of IL-6 in serum, CSF, and astrocytes were 
observed in patients with ALS, indicating an increased 
inflammatory response [123–126]. Furthermore, an asso-
ciation between higher levels of IL-6 and shorter lifespans 
was observed in the transgenic SOD1G93A mouse model of 
ALS [127, 128]. One possible reason for this phenomenon 
is that IL-6 upregulates the activity of pro-inflammatory 
endothelial cells through the trans-signaling pathway, thus 
causing barrier damage and accelerating motor neuron death 
[129].

A deeper understanding of the IL-6-mediated inflam-
matory response and its role in ALS may inform the use 
of IL-6 as a diagnostic and prognostic biomarker, as well 
as provide clues for an endothelial-IL-6-targeting therapy 
in the future. Though any such therapy has yet to emerge, 
the development of other intervention strategies that target 
IL-6 is already underway. The first IL-6 receptor antagonist 
tocilizumab has been safely used to normalize inflammation 
in ALS patients [130–132]. Furthermore, demonstrating its 
potential as a neuroprotective agent, the tetanus toxin C-ter-
minal fragment helped to reduce the levels of IL-6 levels in 
SOD1G93A mice [133]. However, studies of anti-IL-6 drugs 
and their potential in treating ALS are limited in number and 
scope. Further research is needed to develop novel, more 
effective therapies.

IL‑6 and Huntington’s Disease

HD is an autosomal dominant neurodegenerative disorder 
caused by an aberrant CAG repeat expansion in the HTT 
gene that compromises cognition, motor ability, and behav-
ior [134, 135]. Though symptoms can manifest at any time 

during a patient’s life, they most commonly begin to present 
in middle age and remain until death.

Similar to other neurodegenerative diseases, patients with 
HD and animal models of the disorder exhibit increased 
plasma levels of IL-6 [136–139]. A combination of plasma 
IL-6, IL-10, and IL-5 has been shown to discriminate well 
between premanifest HD and controls (AUC = 0.81) [140]. 
Mutant huntingtin appears to cause the production of abnor-
mal monocytes, which release excess IL-6 by upregulating 
the NF-ĸB signaling pathway and contribute to neurotox-
icity [140, 141].Furthermore, IL-6 is detected in elevated 
concentrations in the saliva and CSF of patients with HD 
[137, 142]. Higher salivary levels of IL-6 were found to be 
correlated with higher Total Motor Scores [137], an indica-
tor of disease severity. Hence, salivary IL-6 features poten-
tial as a non-invasive biomarker for HD symptom severity. 
Moreover, in the BACHD murine model of HD, changes in 
the concentration of IL-6 varied between peripheral organs; 
higher levels were found in the kidney and heart, and lower 
concentrations in the spleen [143].

A growing number of supportive and symptomatic 
management strategies may improve the treatment of HD. 
Despite the precise molecular mechanisms underlying the 
elevated expression of IL-6 in patients with HD remain-
ing unknown, the most noteworthy of emerging treatment 
modalities are those that aim to reduce IL-6 levels. For 
example, cilostazol’s anti-inflammatory and neuroprotective 
properties may help to alleviate HD symptoms by acting on 
the IL-6/JAK2/STAT3 signaling pathways [144]. However, 
recent evidence also suggests that IL-6 deficiency exac-
erbates dysregulated behavioral phenotypes in HD model 
mice by affecting genes associated with synaptic function 
[145]. The inconsistency between these two findings may be 
explained by the neuroprotective effect of IL-6: i.e., lower-
ing concentrations IL-6 to excess may be harmful, but main-
taining IL-6 at a moderate level may improve outcomes for 
patients with HD. Future research should explore this sup-
position and determine the optimal level of IL-6 in patients 
with HD.

IL‑6 and Multiple Sclerosis

As chronic and incurable inflammatory demyelinating dis-
ease of the CNS, MS is the most common non-traumatic 
disabling ailment among young adults between the ages of 
20 and 40 years [146]. Despite the relatively early onset of 
MS, aging is the most relevant factor for its clinical conse-
quences and outcomes, as older patients are more likely to 
suffer permanent disability after developing MS [147, 148]. 
According to the data from the Multiple Sclerosis Inter-
national Federation’s third edition of the Atlas of MS, the 
prevalence of MS has risen from 2.2 million to 2.8 million 
since 2013 [149].
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Patients with MS exhibit elevated serum and CSF con-
centrations of IL-6. The levels of IL-6 are especially high 
in patients with abdominal obesity because abdominal fat 
accumulation contributes directly to the overproduction of 
proinflammatory cytokines [150, 151]. Similarly, increased 
level of IL-6 receptors on  CD4+ T cells were detected in 
MS patients [152]. Though the precise role of IL-6 signal-
ing in MS pathogenesis has not been fully understood, it is 
possible that IL-6 promotes the differentiation of  CD4+ T 
cells towards Th17 cells by binding with IL-6R, ultimately 
causing the demyelination of axons [153]. Alternatively, 
IL-6 may compromise synaptic plasticity directly, an innate 
method for the CNS to compensate for MS-induced damage, 
which in turn exacerbate disease progression [154]. Finally, 
the rs1818879 polymorphism of IL-6 may influence the sub-
clinical neuroinflammatory activities in MS [155]. These 
hypotheses could explain the positive correlation between 
IL-6 values and disease severity [156].

Conclusions and perspectives

This review proposes that IL-6, a core inflammatory 
cytokine, plays a major role in different neurodegenerative 
disorders. Currently, it is generally accepted that the expres-
sion of IL-6 in peripheral blood, CSF, or other body fluids is 
abnormally high in patients with neurodegenerative diseases. 
Furthermore, the degree of elevation tends to correlate posi-
tively with the severity of the disease.

Although the specific mechanisms in each of these dis-
eases vary, increased IL-6 induces neuroinflammation, 
which promotes abnormal protein aggregation, damages 
functioning neurons, impairs synaptic function, and ulti-
mately exacerbates neurodegeneration. Notably, Th17 cells, 
which differentiate from  CD4+ T cells in response to IL-6 
stimulation, have been reported to be associated with the 
pathogenesis of several neurodegenerative diseases, includ-
ing AD, PD and MS. Th17 cells and their cytokines can 
induce the aggregation of misfolded proteins and cause neu-
ronal death, through direct cytotoxic effects or the recruit-
ment of immune cells. Although the exact mechanisms of 
their function remain to be elucidated, existing data suggest 
that Th17 cells and Th17-related signaling pathways may be 
potentially effective therapeutic targets.

Currently, the clinical diagnosis of degenerative diseases 
is made mostly based on clinical symptoms, which may only 
appear in advanced stages of the disease, thus precluding 
therapeutic intervention in early stages. There is a need for 
seeking markers to reveal early pathogenic events, as well as 
monitor disease progression and treatment response. Indeed, 
one of the aims of this review is to analyze the potential of 
IL-6 as a biomarker for diagnosis, progression and prognosis 
in neurodegenerative diseases. Based on existing research, 

the diagnostic ability of IL-6 in AD and HD groups has 
been preliminarily demonstrated [80, 140]. Regrettably, due 
to the complexity of the nervous system and the ambigu-
ous pathogenesis of various degenerative diseases, convinc-
ing evidence of IL-6 being an effective biomarker in other 
neurodegenerative diseases is still insufficient. To further 
confirm the role of IL-6 in neurodegenerative disorders, 
more in-depth studies are needed.

At present, there are no treatments that can cure neuro-
degenerative disorders or reverse the physical and mental 
damage they induce. While some drugs approved by the 
Food and Drug Administration, such as levodopa, donepezil, 
riluzole, are used in clinical practice, they only relieve symp-
toms without improving the outcomes of the diseases [95, 
157, 158]. Due to the limited application and efficacy of 
these medicines, finding new therapeutic targets and devel-
oping effective treatment plans remains a priority in the dec-
ades to come, and IL-6 shows promise as a candidate for the 
focus of future investigations. Some novel inhibitors of IL-6 
have been shown to be useful in attenuating the development 
of neurodegenerative disorders in animal models and may 
proceed to human trials. Development of safe and effective 
anti-IL-6 therapy will benefit patients suffering from neuro-
degenerative disorders.
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