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Abstract
Narirutin (Nar) is a flavonoid that is abundantly present in citrus fruits and has attracted considerable attention because of its 
diverse pharmacological activities and low toxicity. Here, we evaluated the preventive effects of Nar in middle cerebral artery 
occlusion/reperfusion (MCAO/R)-injured mice and oxygen–glucose deprivation/reperfusion (OGD/R)-injured bEnd.3 cells. 
Pretreatment with Nar (150 mg/kg) for 7 days effectively reduced infarct volume, improved neurological deficits, and signifi-
cantly inhibited neuronal death in the hippocampus and cortex in MCAO/R-injured mice. Moreover, anti-apoptotic effects 
of Nar (50 µM) were observed in OGD/R-injured bEnd.3 cells. In addition, Nar pre-administration regulated blood-brain 
barrier function by increasing tight junction-related protein expression after MCAO/R and OGD/R injury. Nar also inhib-
ited NOD-like receptor protein 3 (NLRP3) inflammasome activation by reducing the expression of thioredoxin-interacting 
protein (TXNIP) in vivo and in vitro. Taken together, these results provide new evidence for the use of Nar in the prevention 
and treatment of ischemic stroke.
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Introduction

Stroke is considered a major fatal disease worldwide, with 
high incidence, mortality, disability, and recurrence rates 
[1]. Nearly 87% of stroke cases result from ischemic stroke. 
At present, there is a lack of effective treatments for ischemic 
stroke, mainly because of the complex molecular mecha-
nisms underlying this disease [2]. Ischemic stroke occurs 
when a sudden lack of blood flow, oxygen, or nutrients to 
the brain leads to rapid cell death. Rapid reperfusion is the 
standard treatment for cerebral ischemia; however, it usu-
ally causes inflammation, oxidative stress, and damage to 
the blood-brain barrier (BBB), resulting in severe neuronal 
damage and ischemic neuronal cell death [3, 4]. Therefore, 
prevention may be an effective strategy to protect against 
cerebral ischemia-reperfusion (I/R) injury [5].

Previous studies have shown that inflammation plays a 
key role in stroke pathology and has a significant impact on 
stroke prognosis [6, 7]. The increase in inflammatory cell 
infiltration mediated by inflammatory factors leads to the 
release of inflammatory mediators and reactive oxygen spe-
cies, which trigger an inflammatory cascade, causing neuro-
vascular, BBB, and neuronal injury [8]. Therefore, inhibition 
of the inflammatory response may be effective in controlling 
ischemic stroke. The NOD-like receptor protein 3 (NLRP3) 
inflammasome, a multimolecular complex comprising the 
NLRP3 receptor, an apoptosis-associated speck-like pro-
tein containing a CARD (ASC), and caspase-1, is currently 
considered an important molecular player for regulating the 
release of pro-inflammatory cytokines and mediating inflam-
matory damage after cerebral ischemia [9–11]. Many drugs 
and natural substances that inhibit NLRP3 inflammasome 
activation have been studied for the treatment of ischemic 
stroke. For example, NLRP3 inflammasome inhibitors, such 
as MCC950, CY-09, and the herbal component oridonin, 
have been shown to reduce infarct volume and improve neu-
rological deficits and BBB integrity by inhibiting inflamma-
tory cytokines, pyroptosis, and oxidative stress in ischemic 
regions after cerebral I/R injury [11–14]. Therefore, the 
NLRP3 inflammasome has been identified as a potential 
therapeutic target for ischemic stroke. In addition, recent 
studies have reported that thioredoxin-interacting protein 
(TXNIP), a redox-regulated protein, dissociates from the 
complex under oxidative stress conditions, such as stroke, 
and rapidly binds to and activates the NLRP3 inflammasome 
[15, 16]. Furthermore, TXNIP binding to NLRP3 is crucial 
for inflammasome activation, and inhibition of TXNIP could 

directly reduce the activation of the NLRP3 inflammasome. 
Also, the expression of TXNIP and the NLRP3 inflamma-
some exhibit the same trend in cerebral I/R injury [15, 17, 
18]. Therefore, inhibiting activation of the TXNIP/NLRP3 
pathway may be an important strategy for the prevention and 
treatment of cerebral I/R injury.

Narirutin (Nar) is a flavonoid that is abundantly present 
in citrus fruits, such as grapefruits, mandarins, and oranges 
[19]. Nar has been reported to exert multiple biological 
activities, including anti-inflammatory, antioxidant, anti-
obesity, anti-allergy, neuroprotective, anti-Alzheimer’s 
disease, and anti-tumor activities [20–24]. A recent study 
indicated that the Nar-rich fraction obtained from grapefruit 
peels can protect against cerebral I/R injury caused by tran-
sient bilateral common carotid artery occlusion (tBCCAO) 
in rats by reducing oxidative damage [25]. In addition, Ri 
et al. reported that the anti-inflammatory properties of Nar 
were mediated by the inhibition of NLRP3 inflammasome 
priming processes and NLRP3-ASC interactions in mac-
rophages, thereby suppressing the NLRP3 inflammasome 
[26]. However, it is unclear whether Nar plays a neuropro-
tective role in cerebral I/R injury by suppressing NLRP3 
inflammasome activation.

In the present study, an in vivo middle cerebral artery 
occlusion/reperfusion (MCAO/R) mouse model and an 
in vitro oxygen–glucose deprivation/reperfusion (OGD/R) 
cell model were established to determine the preventive 
effects of Nar on cerebral I/R injury and to explore the pos-
sible underlying molecular mechanisms, thus providing a 
basis for the development of new therapies to prevent cer-
ebral I/R injury.

Materials and Methods

Drugs and Antibodies

Nar was purchased from Shanghai Pure One Biotechnology 
(purity > 98%, Shanghai, China). The following antibodies 
were used: anti-Bax (14,796, Cell Signaling Technology, 
1:1000), anti-Caspase-3 (9664, Cell Signaling Technol-
ogy, 1:1000), anti-Bcl-2 (3498, Cell Signaling Technology, 
1:1000), anti-P-glycoprotein (ab170904, Abcam, 1:1000), 
anti-ZO-1 (21773-1-AP; Proteintech, 1:500), anti-occludin 
(13409-1-AP, Proteintech, 1:1000), anti-claudin3 (ab15102, 
Abcam, 1:1000), anti-TXNIP (ab188865, Abcam, 1:1000), 
anti-NLRP3 (15,101 S, Cell Signaling Technology, 1:1000), 
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anti-ASC (NBP1-78977, Novus Biologicals, 1:1000), anti-
Caspase-1 (24,232 S, Cell Signaling Technology, 1:1000), 
anti-IL-1β (16806-1-AP, Proteintech, 1:1000), anti-IL-18 
(ab207323, Abcam, 1:1000), and anti-β-actin (A5441, 
Sigma, 1:10000).

Animals and Treatment

Male C57BL/6 mice (6–8 week) were used in the study. All 
mice were maintained at a temperature of 25 ± 1 °C, a rela-
tive humidity of 50–60%, and under a 12:12 h light–dark 
cycle. Food and water were freely available to the mice, 
which were kept in random groups of six per cage. Before 
the experiments, all mice were fed a commercial chow diet 
and acclimated to the laboratory environment for at least 
1 week. All procedures were approved by the Ethics Com-
mittee for Animal Experimentation of the Fourth Military 
Medical University (approval no. KY20193145).

The mice were randomly divided into four groups: sham, 
sham + Nar (150 mg/kg), MCAO/R, and MCAO/R + Nar 
(150 mg/kg). Each group consisted of 16 mice. The dose of 
Nar was selected based on a previous study [25]. Nar was 
dissolved in 0.9% saline containing 1% dimethyl sulfoxide 
(DMSO) and administered daily via oral gavage for seven 
consecutive days before MCAO/R. The sham and MCAO/R 
groups were injected with an equal volume of 0.9% saline 
containing 1% DMSO at the same time.

In Vivo Experiments

MCAO/R Model

The MCAO model was established as described previously 
[27]. Briefly, anesthetized mice were exposed to right carotid 
bifurcation. A nylon monofilament (RWD Life Science, San 
Diego, CA, USA) was inserted into the common carotid 
artery and the anchored line was inserted into the internal 
carotid artery after the external carotid artery was cut open. 
Blood flow was monitored using a Laser Speckle Doppler 
flowmeter (RFLSI III; RWD Life Sciences). Cerebral blood 
flow was restored by removing the monofilament after 1.5 h 
of transient occlusion, which was monitored to guarantee 
blood reperfusion. A similar treatment was administered to 
the sham and sham + Nar groups but without a monofila-
ment. Brain samples were collected 24 h after reperfusion.

Neurobehavioral Evaluation

Neurobehavioral tests were conducted 24 h after reperfu-
sion using a modified neurological severity scoring (mNSS) 
system, according to a previous report [27]. The higher the 
mNSS score (0, normal; 18, maximal deficit), the more 
severe the neurological and behavioral disorders.

Assessment of Infarct Volume

Infarct volume was assessed using 2,3,5-triphenyltetra-
zolium chloride (TTC) staining as previously described 
[28]. Briefly, the mice were sacrificed, and the entire brain 
was rapidly removed and cooled for 30 min at − 20 °C. 
Starting from the frontal pole, coronal Sect. (2 mm) were 
dissected, immersed in 2% TTC for 30 min at 37 °C, and 
fixed with 4% paraformaldehyde for 24 h. After obtaining 
digital images of the brain slices, unstained areas (white 
areas) were defined as infarcts, and the sizes of the infarcts 
on both sides of each slice were measured using ImageJ 
software (NIH, Bethesda, MD, USA).

Hematoxylin and Eosin Staining

To evaluate pathological changes, hematoxylin and eosin 
(HE) staining was performed as previously reported [29]. 
The brains were perfused with 4% paraformaldehyde for 
4 h at 4 °C, then dehydrated in 20% and 30% sucrose solu-
tions for 24 h. Brain slices (5 μm) containing the hip-
pocampus and cortex were cut using a cryostat (Leica 
CM1800) and then immediately mounted on slides. Sec-
tions were stained with hematoxylin solution for 15 min, 
counterstained with eosin solution for 5 min, subjected 
to gradient alcohol dehydration, made transparent, and 
sealed. The sections were observed under a high-power 
bright-field microscope (Nikon Ni). Cells with clearly vis-
ible nucleoli were considered intact and the proportion of 
intact cells was recorded.

Nissl Staining

Morphological changes in ischemic penumbra cells after 
MCAO/R were observed using Nissl staining [27]. Brain 
slices were prepared as previously described [22]. Frozen 
sections were stained with 0.1% toluidine blue for 5 min, 
rinsed with phosphate-buffered saline (PBS), dehydrated in 
a graded alcohol series, and mounted with a neutral sealant. 
The number of Nissl-positive cells in the penumbra of each 
section was counted under a light microscope (FV-1000; 
Olympus, Tokyo, Japan).

TUNEL Staining

A fluorescent terminal deoxynucleotidyl transferase nick-
end labeling (TUNEL) kit was used to quantify cell death 
according to the manufacturer’s protocol (Roche Diagnostics 
Corporation, Indianapolis, IN, USA) [27]. The number of 
TUNEL-positive cells in the hippocampal CA1 region and 
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cortex were counted using light microscopy at ×400 magni-
fication (FV-1000; Olympus, Tokyo, Japan).

In Vitro Experiments

Cell Culture and Drug Treatment

Mouse brain microvascular vessel-derived endothelial 
(bEnd.3) cells were obtained from Sixin Biotechnology 
(Shanghai, China). Cells were cultured in Dulbecco’s mod-
ified Eagle’s medium (DMEM) (AF29498406, HyClone) 
supplemented with 10% fetal bovine serum (2206993CP, 
Gibco) and 1% penicillin–streptomycin mixture (20191028, 
Solarbio). The medium was changed every 2 days.

The cells were divided into four groups: control, con-
trol + Nar, OGD/R, and OGD/R + Nar. Cells in the control 
and control + Nar groups were cultured under normal condi-
tions. Nar was dissolved in DMSO and added to the cell cul-
ture medium at a final concentration of 0.1%. The effective 
concentration of Nar was determined by subjecting cells to a 
cell counting kit-8 (CCK-8) assay after exposure to various 
Nar concentrations (12.5, 25, 50, 100, or 200 µM). Nar was 
administered 4, 8, 12, and 24 h before OGD to determine the 
effective administration time.

OGD/R Model In Vitro

bEnd.3 cells were subjected to anoxia-glucose deprivation 
followed by glucose reoxygenation to simulate an in vitro 
ischemia/reperfusion environment [27]. Briefly, the cells 
were rinsed thrice with PBS, and glucose-free DMEM 
(2120596, GIBCO) was used to replace the normal medium. 
The cells were then transferred to a hypoxic chamber (95% 
N2/5% CO2, MIC-101, Billups-Rothenberg, USA) and incu-
bated for 1.5 h at 37 °C. The cells were then cultured for 
an additional 24 h of reperfusion under normal conditions.

Cell Viability Analysis

Cell viability was determined using a CCK-8 assay accord-
ing to the manufacturer’s instructions [27]. Briefly, 10 µl 
of CCK-8 reagent (BS350B, Biosharp, Hefei, China) was 
added to each well and cells were incubated at 37 °C for 
4 h. Absorbance was measured at 490 nm using a micro-
plate reader (Infinite M200 Pro, TECAN). Cell viability (%) 
= [OD (experiment) × OD (blank)]/[OD (control) × OD 
(blank)] ×100.

Lactate Dehydrogenase Release Assay

Cytotoxicity was quantitatively detected by measuring the 
lactate dehydrogenase (LDH) activity released by injured 
cells into the medium [30]. After treating the cells with 0.5% 

Triton X-100, the medium containing detached cells was 
collected and centrifuged. The supernatant was used for an 
LDH activity assay using an assay kit (Beyotime Biotechnol-
ogy) according to the manufacturer’s instructions.

Flow Cytometric Analysis

The annexin V/propidium iodide (PI) double staining pro-
cedure was used to assess apoptosis [27]. Briefly, 1 × 106 
cells were seeded into each well of a six-well plate. Cells 
were harvested and washed with 1× Annexin V-FITC bind-
ing buffer, then stained with Annexin V-FITC (5 µl) and 
PI (5 µl) at 25 °C in the dark for 15 min. Cell fluorescence 
was immediately analyzed using flow cytometry. Annexin 
V-FITC-positive and PI-positive cells were used to calculate 
apoptotic rates.

Measurement of Transendothelial Electrical Resistance

Transendothelial electrical resistance (TEER) was meas-
ured using a Millicell ERS cell resistor (Millipore, USA) 
to assess the integrity of the monolayer cell barrier [27]. 
Briefly, 2 × 105 cells were seeded into the upper chamber of 
a Transwell insertion chamber (3460; Corning, NY, USA) 
in 0.5 ml DMEM (1.5 ml of the same medium was added to 
the lower chamber to inhibit pressure gradient formation). 
The TEER value (Ω cm2) was measured by subtracting the 
resistance of a blank Transwell chamber without cells and 
standardized by the area of the culture insert.

FITC‑Dextran Assay

A FITC-dextran assay was used to investigate cell perme-
ability, as previously reported [27]. After OGD and reox-
ygenation for 24 h, the medium was removed, and fresh 
medium containing 1% FITC-dextran (MW 1000, MCE) was 
added to the cells for 30 min. Then, 100 µl medium from the 
lower chamber was obtained, and the fluorescence intensity 
was measured using a microplate reader (Infinite M200 Pro, 
TECAN) at the excitation and emission wavelengths of 490 
and 520 nm, respectively. The relative cell permeability was 
calculated by normalizing to the control group.

Western Blot Analysis

Western blot analysis was performed as previously 
described [31]. Ischemic penumbra tissue and cells were 
homogenized in ice-cold RIPA lysis buffer containing 
phosphatase and protease inhibitors. Protein concentration 
was determined using a bicinchoninic acid protein assay. 
Proteins were analyzed using sodium dodecyl sulfate-poly-
acrylamide gel electrophoresis and electrotransferred onto 
polyvinylidene fluoride membranes (Invitrogen, Carlsbad, 
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CA, USA). The membranes were then incubated with 
primary antibodies overnight at 4 °C. Subsequently, the 
membranes were washed thrice with TBST and incubated 
with horseradish peroxidase-conjugated secondary anti-
bodies (anti-rabbit or anti-mouse IgG, 1:10000). Protein 
bands were quantified using ImageJ (NIH, Bethesda, MD, 
USA). For data analysis, band intensities were normal-
ized to actin and expressed as percentages of the relative 
intensities.

Statistical Analysis

Data analysis was performed using Prism 8 software 
(GraphPad Software, San Diego, CA, USA). Data are 
expressed as the mean ± SEM for at least three independ-
ent experiments. Multigroup analysis were performed 
using one-way analysis of variance (ANOVA). p < 0.05 
was considered statistically significant.

Results

Nar Decreases Infarct Volume and Improves 
Neurological Deficits in MCAO/R Injured Mice

To determine the protective effects of Nar against MCAO/R 
injury, we performed TTC staining and neurological 
evaluations. The results indicated that, compared to the 
sham group, MCAO/R injury caused a larger infarct vol-
ume (Fig. 1B, C) and a significant increase in neurologi-
cal deficits (Fig. 1D). Pretreatment with Nar (150 mg/kg) 
before MCAO/R injury significantly reduced infarct size 
(MCAO/R group vs. MCAO/R + Nar group: 36.25 ± 1.98% 
vs. 21.50 ± 1.54%) and improved neurological impairment 
(MCAO/R group vs. MCAO/R + Nar group: 9.75 ± 0.53 
vs. 5.25 ± 0.37). No obvious differences were observed 
between the Sham and Sham + Nar groups in the above tests. 
These results suggest that pretreatment with Nar protected 
MCAO/R mice from injury.

Fig. 1   Pretreatment with narirutin reduces MCAO-induced brain 
infarction and neurological deficits. A The chemical structure of 
narirutin (Nar). B Representative photographs of TTC staining 24 h 
after MCAO/R injury. C Statistical analysis of infarct volume. D 

Neurological deficit scores 24 h after MCAO/R injury. n = 8 mice per 
group; ∗∗p < 0.01 versus Sham group; ##p < 0.01 versus MCAO/R 
group, one-way ANOVA with Tukey’s multiple comparisons test
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Nar Reduces Neuronal Death After MCAO/R Injury

To examine the effect of Nar on neuronal death, HE and 
Nissl staining were performed to assess morphological 
changes in the hippocampus and cortex. In the Sham and 
Sham + Nar groups, the cell morphology and density were 
normal, and no cell death was observed in the hippocampal 
CA1 region (Fig. 2A–D). Similarly, there were no obvious 
changes in cell morphology or density in the cortex between 
the Sham and Sham + Nar groups (Fig. S1A–D), indicating 
that administration of Nar had no effect on normal cells. 
However, most MCAO/R-injured mice displayed a disor-
dered cell arrangement and neuronal death, and pretreatment 
with Nar significantly ameliorated these pathological abnor-
malities in the hippocampal CA1 region (Fig. 2A–D) and 
cortex (Fig. S1A–D). Consistent with these results, TUNEL 
staining revealed that the percentage of apoptotic cells in 
the hippocampal CA1 region was significantly higher in the 
MCAO/R group compared to the Sham group, but was obvi-
ously reduced after Nar pretreatment (Fig. 3A, B). Mean-
while, the same results were observed in the cortex, where 
the number of TUNEL-positive cells decreased remarkably 
in the MCAO/R + Nar group compared to the Sham group 
(Fig. S1E, F). In addition, compared with the Sham and 
Sham + Nar groups, the expression of the apoptosis-related 

proteins Caspase-3 and Bax in the infarct area of MCAO/R 
mice was elevated and that of Bcl-2 was decreased, while 
pretreatment with Nar effectively reversed these alterations 
(Fig. 3C–F). These findings further indicate that pre-admin-
istration of Nar can inhibit neuronal death after MCAO/R 
in mice.

Nar Inhibits OGD/R‑Induced Apoptosis of bEnd.3 
Cells

We further evaluated the protective effects of Nar against 
apoptosis in bEnd.3 cells. First, CCK-8 and LDH release 
assays were performed to determine the appropriate Nar 
concentration and time of administration. Normal cultured 
bEnd.3 cells were treated with different concentrations 
of Nar (12.5, 25, 50, 100, or 200 µM), and toxicity was 
evaluated using the CCK-8 assay. The results showed no 
significant changes in cell viability (Fig. 4A), indicating 
that Nar did not have a cytotoxic effect on bEnd.3 cells. 
Next, we explored the effective concentration of Nar and 
found that cell viability was significantly increased after 
co-incubation with 25, 50, 100, or 200 µM Nar compared 
to the untreated OGD/R group, while there was no sig-
nificant change in cell viability after exposure to 12.5 µM 
Nar (Fig. 4B). Therefore, we chose 50 µM as the effective 

Fig. 2   Pretreatment with narirutin improves morphological changes 
in the hippocampus of MCAO/R-injured mice. A, B HE staining 
showing morphological neuronal changes (A) and the number of 
intact cells (B) in the hippocampal CA1 region after MCAO/R injury. 
Scale bar = 50 μm. C, D Nissl staining showing morphological neu-

ronal changes (C) and the number of intact cells (D) in the hippocam-
pal CA1 region after MCAO/R injury. Scale bar = 50 μm. n = 6 slices 
from two mice per group; ∗∗p < 0.01 versus Sham group; ##p < 0.01 
versus MCAO/R group; ns  not significant, one-way ANOVA with 
Tukey’s multiple comparisons test
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concentration for subsequent experiments. Next, the cells 
were treated with Nar (50 µM) for 4, 8, 12, or 24 h before 
exposure to OGD/R to determine the appropriate admin-
istration time. Cell viability was dramatically reduced 
(Fig. 4C) and the release of LDH was significantly ele-
vated (Fig. 4D) in the OGD/R group compared to the con-
trol group, and pre-administration of Nar reversed these 
changes at 8, 12, and 24 h. Finally, we exposed bEnd.3 
cells to Nar for 8 h with 50 µM for further analysis of the 
anti-apoptotic effects. Flow cytometric analysis revealed 
that pretreatment with Nar significantly decreased the 
apoptotic index of bEnd.3 cells (Fig. 5A, B) compared 
to that in the OGD/R group. Moreover, the elevated Cas-
pase-3 and Bax expression and reduced Bcl-2 expression 
observed in OGD/R cells were reversed by Nar adminis-
tration (Fig. 5C–F). Taken together, these results show 
that pre-administration of Nar prevents neuronal apoptosis 
after OGD/R in vitro.

Nar Improves BBB Permeability After MCAO/R Injury 
In Vivo and OGD/R Injury In Vitro

After cerebral I/R injury, secondary brain injury due to BBB 
disruption is the main cause of death [32]. Thus, BBB repair 
may be an effective strategy for treating cerebral I/R injury. 
Tight junctions (TJs) are critical structural components of 
the BBB; hence, we investigated whether pretreatment with 
Nar could protect the damaged BBB after MCAO/R by 
measuring the expression of TJ-related proteins. Compared 
to the Sham and Sham + Nar groups, the expression of P-gly-
coprotein (P-gp), ZO-1, occludin, and claudin3 was remark-
ably decreased in the MCAO/R group, and pretreatment with 
Nar effectively reversed these changes (Fig. 6A–E). In addi-
tion, we further confirmed the effect of Nar on BBB perme-
ability by performing a FITC-dextran leakage test (Fig. 7A) 
and TEER measurements (Fig. 7B) in bEnd.3 cells after 
OGD/R. The results showed that the administration of Nar 

Fig. 3   Narirutin inhibits neuronal death in the hippocampus of 
MCAO/R-injured mice. A, B TUNEL staining showing the survival 
of neurons (A) and the number of TUNEL-positive cells (B) in the 
hippocampal CA1 region after MCAO/R injury. Scale bar = 50 μm. 
n = 6 slices from two mice per group. C–F Western blotting analy-

sis of apoptosis-related proteins Caspase-3 (D), Bax (E), and Bcl-2 
(F) in the infarct brain tissue. n = 6 mice per group; ∗∗p < 0.01 versus 
Sham group; ##p < 0.01 versus MCAO/R group; ns  not significant, 
one-way ANOVA with Tukey’s multiple comparisons test
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reversed the OGD/R-induced low FITC-dextran penetration 
and high TEER values. Moreover, the decreased expression 
of P-gp, ZO-1, occludin, and claudin3 in the OGD/R group 
was significantly increased by Nar treatment (Fig. 7C–G). 
These data suggest that pretreatment with Nar can regu-
late BBB permeability and maintain BBB integrity after 
MCAO/R in vivo and OGD/R in vitro.

Nar Inhibits TXNIP/NLRP3 Pathway Activation 
Following MCAO/R and OGD/R

To assess whether Nar regulates the TXNIP/NLRP3 pathway 
in MCAO/R- and OGD/R-induced injury, we analyzed the 
expression levels of relevant pathway molecules using west-
ern blotting. The results demonstrated that pretreatment with 
Nar effectively inhibited the expression of TXNIP, NLRP3, 
ASC, Caspase-1, IL-1β, and IL-18 in MCAO/R-injured 

mice, and no significant difference was observed between 
the Sham and Sham + Nar groups (Fig. 8). Similar results 
were observed in bEnd.3 cells (Fig. S2). The expression of 
these proteins increased significantly after OGD/R and was 
effectively blocked by Nar exposure. Therefore, these results 
suggest that Nar inhibits the activation of the TXNIP/NLRP3 
signaling pathway after MCAO/R and OGD/R injuries.

Discussion

Previous studies have demonstrated that pretreatment with 
a Nar-rich fraction (150 and 300 mg/kg) for 7 days reduced 
tBCCAO-induced cerebral I/R injury in rats through its free 
radical-scavenging capacity and ability to ameliorate oxida-
tive damage [25]. In the present study, we further demon-
strated that pretreatment with Nar (150 mg/kg) significantly 

Fig. 4   Pretreatment with narirutin increases the viability of bEnd.3 
cells following OGD/R injury and reduces LDH release. A Normal 
bEnd.3 cells were cultured with different concentrations of nariru-
tin (12.5, 25, 50, 100, or 200 µM), and cell viability was assessed 
using a CCK-8 assay. B CCK-8 assay showing the effect of nariru-
tin treatment (12.5, 25, 50, 100, or 200 µM) for 24  h before expo-
sure to OGD/R injury on the viability of bEnd.3 cells. C Cells were 

treated with narirutin (50 µM) for 4, 8, 12, or 24 h before exposure to 
OGD/R injury. D LDH release assay showing the effect of narirutin 
treatment (50 µM) for 4, 8, 12, or 24  h before exposure to OGD/R 
injury on cytotoxicity of bEnd.3 cells. n = 6; ∗∗p < 0.01 versus Con-
trol group; #p < 0.05, ##p < 0.01 versus OGD/R group, one-way 
ANOVA with Tukey’s multiple comparisons test
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reduced infarct size, neurological deficits, histopathologi-
cal damage, and neuronal death in MCAO/R-injured mice, 
and these effects may be related to the regulation of BBB 
damage and the inhibition of TXNIP/NLRP3 activation. The 
results of in vitro experiments showed that co-incubation 

with Nar (25, 50, 100, and 200 µM) increased viability in 
OGD/R-injured bEnd.3 cells. Moreover, pre-administration 
with 50 µM Nar for 8 h effectively reduced neuronal apopto-
sis and endothelial barrier leakage, up-regulated the expres-
sion of TJ-related proteins, and regulated the TXNIP/NLRP3 

Fig. 5   Narirutin inhibits OGD/R-induced apoptosis of bEnd.3 cells. 
A Flow cytometric analysis of apoptosis in bEnd.3 cells 24  h after 
OGD/R injury. B Statistical analysis of the percentage of apoptotic 
cells. C–F Western blotting analysis of apoptosis-related proteins 

Caspase-3 (D), Bax (E), and Bcl-2 (F) in bEnd.3 cells 24  h after 
OGD/R injury. n = 6; ∗∗p < 0.01 versus Control group; ##p < 0.01 
versus OGD/R group; ns not significant, one-way ANOVA with Tuk-
ey’s multiple comparisons test
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inflammasome. Together, these data suggest that Nar may 
be considered an effective potential candidate drug for the 
prevention of ischemic stroke.

Increasing evidence indicates that BBB dysfunction is a 
critical pathological mechanism in ischemic stroke [33, 34]. 
The BBB is primarily composed of endothelial cells, peri-
cytes, neurons, astrocytes, and basement membranes [35]. 
The key components of the BBB are the brain microvascu-
lar endothelial cells, which are linked through interactions 
between TJ proteins to form a physical “barrier” essential 
for maintaining BBB integrity [35]. Among the TJ com-
ponents, P-gp, ZO-1, occluding, and claudin3 are the most 
important proteins [36]. Previous studies by our laboratory 
and others have indicated that BBB permeability and integ-
rity are impaired after MCAO/R and OGD/R injuries [27, 
37]. Our findings in the present study are consistent with 
previous reports, as we found that P-gp, ZO-1, occludin, 
and claudin3 were decreased in MCAO/R-injured mice. 
Similar results were observed in OGD/R-injured bEnd.3 

cells, with exhibited reduced TJ-related proteins expres-
sion, low FITC-dextran penetration, and high TEER values. 
Notably, our findings suggest that pre-administration of Nar 
can restore BBB permeability and integrity after MCAO/R 
injury in vivo and OGD/R injury in vitro, indicating that 
regulation of BBB function may be an important mecha-
nistic component underlying the protective effects of Nar, 
contributing to the observed reduction in cell death.

Inflammation plays a key role in the pathology of 
ischemic stroke, and previous studies have shown that it 
is a major cause of BBB breakdown [38–40]. Therefore, 
targeting neuroinflammation may be a promising therapeu-
tic strategy for treating ischemic stroke. As the most well-
characterized inflammasome, the NLRP3 inflammasome 
is closely associated with the inflammatory response and 
plays an important role in the development of ischemic 
stroke [10, 11]. The NLRP3 inflammasome promotes the 
formation of active caspase-1, which leads to the release 
of inflammatory cytokines IL-1β and IL-18. In addition, 

Fig. 6   Narirutin upregulates the expression of TJ-related proteins 
after MCAO/R injury. A Representative western blot bands of TJ-
related proteins. B–E Quantitative analysis of the expression lev-
els of P-gp (B), ZO-1 (C), Occludin (D), and Claudin3 (E) in the 

infarct brain tissue. n = 6 mice per group; ∗∗p < 0.01 versus Sham 
group; ##p < 0.01 versus MCAO/R group; ns not significant, one-way 
ANOVA with Tukey’s multiple comparisons test
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studies have shown that the upregulation of NLRP3 is an 
early event occurring within the first 24 h of cerebral I/R 
injury, corresponding to the hyperacute and acute phases 
of human stroke [11, 41]. Yang et al. found that NLRP3 
deficiency reduced brain damage in mice after ischemic 
stroke by reducing cerebral infarction and BBB damage 
[42]. Therefore, blocking the NLRP3 inflammasome is an 
important therapeutic strategy in ischemic stroke. TXNIP 
is an inhibitor and modulator of endogenous thioredoxin, 
which rapidly binds to and activates the NLRP3 inflam-
masome, and TXNIP inhibition directly reduces NLRP3 
inflammasome activity [15]. Recent studies have shown 
that TXNIP expression is upregulated after cerebral I/R 
injury, similar to the trend observed for NLRP3 expres-
sion [18, 37]. Thus, regulation of the TXNIP/NLRP3 path-
way may be beneficial for the prevention and treatment of 
ischemic stroke. Indeed, in this study, increased expression 
of TXNIP, NLRP3, ASC, Caspase-1, IL-1β, and IL-18 was 
observed in both injury models, and pretreatment with Nar 

effectively inhibited the expression of these proteins. This 
is consistent with the findings of Ri et al., who reported 
that Nar inhibits NLRP3-ASC interactions in LPS/ATP-
stimulated bone marrow-derived macrophages, thereby 
suppressing NLRP3 inflammasome assembly and reduc-
ing the release of proinflammatory factors [26]. Taken 
together, these findings suggest that the reduction in BBB 
destruction and cell death by Nar may be associated with 
inhibition of TXNIP/NLRP3 pathway activation.

In summary, the present study demonstrated that pretreat-
ment with Nar can significantly prevent MCAO/R injury in 
mice and OGD/R injury in bEnd.3 cells. Our findings also 
extend those of previous studies, suggesting that the neuro-
protective effect of Nar is not only related to the inhibition 
of oxidative stress but also to the inhibition of the TXNIP/
NLRP3 signaling pathway and involves the reduction of 
BBB breakdown and cell death. Further studies are needed 
to assess whether other signaling pathways are also involved 
in the protective effects of Nar against cerebral I/R injury. 

Fig. 7   Narirutin improves BBB permeability and increases the 
expression of TJ-related proteins after OGD/R injury. A FITC-dex-
tran leakage test in OGD/R-injured bEnd.3 cells after pretreatment 
with narirutin (50 µM) for 8  h. B TEER values of a monolayer of 
OGD/R-injured bEnd.3 cells after pretreatment with narirutin (50 

µM) for 8  h. C–G Western blotting analysis of TJ-related proteins 
P-gp (D), ZO-1 (E), Occludin (F), and Claudin3 (G) in the differ-
ent groups. n = 6; ∗∗p < 0.01 versus Control group; ##p < 0.01 versus 
OGD/R group; ns not significant, one-way ANOVA with Tukey’s 
multiple comparisons test
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In short, Nar can be considered a promising compound for 
further development in the prevention and treatment of 
ischemic stroke.
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