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Abstract
Parkinson’s disease is characterized by the progressive loss of dopaminergic neurons in the nigrostriatal pathway and oxida-
tive stress is one of the main mechanisms that lead to neuronal death in this disease. Previous studies have shown antioxidant 
activity from the leaves of Byrsonima sericea, a plant of the Malpighiaceae family. This study aimed to evaluate the cytopro-
tective activity of the B. sericea ethanolic extract (BSEE) against the cytotoxicity induced by 6-hydroxydopamine (6-OHDA) 
in PC12 cells, an in vitro model of parkinsonism. The identification of phenolic compounds in the extract by HPLC-DAD 
revealed the presence of geraniin, rutin, isoquercetin, kaempferol 3-O-β-rutinoside, and quercetin. The BSEE (75–300 µg/
mL) protected PC12 cells from toxicity induced by 6-OHDA (25 µg/mL), protected cell membrane integrity and showed 
antioxidant activity. BSEE was able to decrease nitrite levels, glutathione depletion, and protect cells from 6-OHDA-induced 
apoptosis. Thus, we suggest that the BSEE can be explored as a possible cytoprotective agent for Parkinson’s disease due to 
its high antioxidant capacity and anti-apoptotic action.
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Introduction

Parkinson’s disease (PD) is the second most common age-
related degenerative neurological disorder in humans [1] 
and affects more than 10 million people worldwide (Par-
kinson’s Disease Foudantion 2017). PD is identified by the 
progressive and irreversible loss of myelinated dopaminer-
gic neurons in the substantia nigra, leading to a significant 
reduction in striatal dopamine levels [2, 3]. Cytoplasmic 
inclusions such as α-synuclein are also observed [4–6], 
involving a dysfunction in multiple monoaminergic sys-
tems [7, 8]. Among the main factors that lead to cell death 
in PD are inflammation, apoptosis, oxidative stress and 
glutamatergic excitotoxicity that lead to the degeneration 
of dopaminergic cells [9–11]. However, the causes of neu-
ronal death that occur in PD are not yet fully understood.

6-Hydroxydopamine (6-OHDA) is a dopamine analogue 
and was the first model of Parkinson’s disease employed. 
6-OHDA is transported by the dopamine transporter 
(DAT) into the interior of dopaminergic neurons where 
it inhibits complex I and IV of the mitochondrial electron 
transport chain, leading to oxidative stress, glutamatergic 
excitotoxicity and inflammation, and selective death of 
dopaminergic neurons [12].

The Byrsonima genus is commonly used in folk medi-
cine in Brazil to treat skin infections, anti-diarrheal [13], 
snake bites and gastrointestinal dysfunction [14–18]. Byr-
sonima sericea DC. belongs to the family of Malpighi-
aceae (the same family as acerola), popularly known as 
“beach murici”, widely distributed in the Northeastern 
states of Brazil. The methanolic and ethanolic of Byr-
sonima species demonstrated the presence of glycoside 
flavonoids mainly derived from quercetin, quinic acid 
derivatives, gallic acid derivatives, galloylquinic acids and 
proanthocyanidins., catechin, galloylquercetin, Kaemp-
ferol-O-hexoside and the presence of these chemical com-
pounds may be associated with its increased antioxidant 
actions [19]. This study aimed to evaluate the cytoprotec-
tive effect of the ethanolic extract of the leaf of B. sericea 
(BSEE) in a PC12 cell model of parkinsonism caused by 
6-OHDA.

Materials and Methods

Plant Collection and Preparation of the Extract

Fresh leaves of B. sericea were collected in the Itaperi 
Campus of the State University of Ceará, Fortaleza, Ceará, 
Brazil, with the following geographical coordinates: 
− 3.7930862; − 38.5574677. The plant was identified by 

the botanist Dr. Afrânio G. Fernandes and a voucher speci-
men of the plant was deposited in the Herbarium Prisco 
Bezerra of Federal University of Ceará (#39451). Fresh 
leaves of B. sericea (1.24 kg) were macerated with 70% 
ethanol at room temperature for 7 days. The resulting etha-
nolic solution was filtered using a buchner funnel under 
vacuum and evaporated to dryness at 50 °C on a rotary 
evaporator to yield 153 g of crude ethanolic extract.

High‑Performance Liquid Chromatography 
(HPLC‑DAD) of Plant Extract

The analytical standards rutin, geranin, isoquercitrin, kaemp-
ferol 3-O-β-rutinoside and quercetin were purchased from 
Sigma Chemical Co. (St. Louis, MO, USA). The solvents 
used for extraction were of analytical grade (Vetec®), and 
in HPLC they were HPLC grade solvents (J.T. BAKER®) 
used. The water was purified with a system Milli-Q (UV 
Direct3). All samples (BSEE) and solutions prepared for 
HPLC analysis were filtered through a 0.45 μm nylon mem-
brane and 0.22 μm membrane filter (Millipore), respectively, 
before use.

High-performance liquid chromatography (HPLC-DAD) 
was performed with a Shimadzu Prominence Auto Sam-
pler (SIL-20 A) HPLC system (Shimadzu, Kyoto, Japan), 
equipped with Shimadzu LC-20AT plunger pumps con-
nected to a DGU 20A5 degasser with an integrator CBM 
20 A, SPD-M20A diode array detector, and LC 1.22 SP1 
software. Chromatographic analyzes were performed 
using a column of reversed-phase (Phenomenex®) Luna 
C18 (4.6 × 250 mm, 5 μm). Mobile phases C and D were 
of acetonitrile and Milli-Q water, acidified to pH 2.8 with 
phosphoric acid, correspondingly. The solvent gradient was 
used as follows: 0–12 min, one elution isocratic with C:D 
(20:80 v/v); 17–23 min, linear variation to C:D (40:60 v/v); 
25–4040 min, an isocratic elution with C:D (20:80 v/v). The 
flow rate was 1.0 mL/min, with an injection volume of 20 
L and wavelengths of 350 nm. Stock solutions of standard 
references were prepared in HPLC methanol at concentra-
tions of 0.00032–1.0 mg/mL for rutin; 0.000064-0.2 mg/
mL for quercetin; 0.008–1.0  mg/mL for isoquercitrin; 
0.032–0.5 mg/mL for geranin and 0.008–1.0 mg/mL for 
3-O-β-rutinoside of kaempferol. The sample was analyzed 
in three replicates.

PC12 Cell Culture

The PC12 cell line was obtained from the cell bank (APAB-
CAM, Rio de Janeiro, RJ, BRA). They were grown in plastic 
culture bottles (75 cm2, 250 mL volume) growing in HAM 
medium: F12 supplemented with 15% equine serum, 2.5% 
fetal bovine serum and 1% antibiotic (streptomycin and pen-
icillin). After 80% confluence, cells were trypsinized and 
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subsequently subcultured in 96-well multi-well plates at a 
concentration of 2.5 × 104 cells/well or in 24-well plates at 
a concentration of 1 × 10 5 cells/plates. After 24 h after plat-
ing, the experiments were performed.

Evaluation of 6‑OHDA Cytotoxicity‑ MTT Test

The (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium-
MTT test was used (MOSMANN, 1983). The BSEE was 
diluted in dimethyl sulfoxide (DMSO), not exceeding 0.01% 
and subsequently prepared at concentrations of 300, 150, 
100, 75 and 50 µg/mL. The 6-OHDA 25 µg/mL (concen-
tration that reduce cell viability in about 50%) was added 
15 min after BSEE, and the cells were incubated. After 24 h, 
100µL of the medium was used for the assessment of nitrite 
levels, and the remainder of the medium was removed. Then 
the cells were incubated for 3 h with a fresh medium (200µL) 
containing MTT (0.5 mg/mL in HAM F12 medium) in each 
well. After this period, the supernatant was discarded, and 
150 µL of dimethylsulfoxide (DMSO ≥ 99.7% - Sigma-
Aldrich) was added for cell lysis and formazan solubiliza-
tion, after which the plate was shaken for 15 min, and the 
absorbance was measured in a microplate reader at 540 nm. 
The inhibition of MTT reduction indicates decreased cell 
viability. The experiments were performed in triplicate and 
repeated on three different days.

Cell Viability Assay‑Lactate Dehydrogenase (LDH)

Cell membrane damage was evaluated by measuring the 
amount of cytoplasmic lactate dehydrogenase (LDH) 
released into the medium. LDH activity is determined 
according to the conversion of pyruvate to lactate, cata-
lyzed by LDH, in the presence of NADH. The decrease 
in absorbance at 340 nm due to the oxidation of NADH 
is proportional to the activity of LDH in the sample. After 
the incubation period with BSEE (75 µg/mL), 20 µL of the 
supernatant was collected to measure the amount of LDH. 
Enzyme analysis was performed in triplicate according to 
kit instructions (Liquiform LDH Kit).

Membrane Integrity by Flow Cytometry

The test is based on the ability of propidium iodide (PI), 
which is hydrophilic, to penetrate only cells whose mem-
brane is ruptured. After binding to DNA, PI emits high 
fluorescence when excited by the argon laser (488 nm). 
The cell with an integrated membrane, therefore, emits low 
fluorescence (Macklis and Madison 1990). PC12 cells were 
plated in 24-well plates and incubated with BSEE (75 µg/
mL). After the incubation period, the cells were trypsinized 
and 500 µl of HAM:F12 medium was added. Then, a 100 µL 
aliquot was taken and incubated with 100 µL of PI solution 

(diluted with PBS) in the absence of light. After 5 min, the 
samples were analyzed by flow cytometry (EasyCyte, Guava 
Technologies, USA) and information on the percentage of 
viable cells (integral membranes) was obtained using the 
red spectrum filter. The experiments were conducted in 
triplicate.

Determination of Nitrite Concentration

After the incubation period, the concentration of nitrite 
was determined according to the method of Green et al., 
[20], which is based on revealing the presence of nitrite in 
a sample (urine, plasma, tissue homogenate and cell super-
natant) by a reaction of diazotization that forms a pink 
color chromophore, with an absorbance peak of 560 nm. 
For this experiment 100 µL of the Griess reagent (1% sul-
fanilamide/0.1% N-(1-naphthyl)-ethylenediamine hydro-
chloride/1% H3PO4/distilled water, in the proportion of 
1:1:1:1) were added. to 100 µL of cell culture supernatant 
and incubated at room temperature for 10 min, after which 
time, the absorbance reading of the samples was performed. 
A standard curve was prepared with various concentrations 
of NaNO2 (ranging from 0.75 to 100 µM) under the same 
conditions. Blanks were prepared by adding 100 µL of the 
Griess reagent to 100 µL of the culture medium and the 
absorbance was measured in a microplate reader at 560 nm. 
Assays were performed in triplicate.

Determination of Reduced Glutathione (GSH) 
Concentration

The cells were plated (7 × 106 cells/well) and, after the incu-
bation period, they were transferred to eppendorfs and cen-
trifuged for 5 min at 400 g. After centrifugation the super-
natant was discarded, and the precipitate was resuspended 
in 400 µl of lysis buffer (0.2% Triton X-100). Subsequently, 
100 µL were removed for protein dosage, and 75 µL of 0.5 
µM perchloric acid were added to the 300 µL of the lysate 
and centrifuged for 5 min at 500 g. In a 96-well plate, 75 µL 
of the supernatant, 75 µL of phosphate-EDTA buffer and 
37.5 µL of 2 mM DTNB were added and the absorbance was 
measured in a microplate reader at 412 nm. The tests were 
carried out in triplicate.

Quantification of SOD by Western Blot

To prepare the lysate, the medium was removed from the 
bottle and the cells were washed with PBS. After washing, 
1ml of PBS was added, and the cells were scraped from the 
bottom of the bottle. Then, it was aspirated into an eppendorf 
and centrifuged for 3 min at 300 g at room temperature. 
After centrifugation, the supernatant was discarded, and 
50µL of buffer (0.1% SDS, 1% sodium deoxycalate, 10mM 
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Tris-HCL pH 7.5, 150mM NaCl, 2 µg/mL of aprotinin, 1 µg/
ml leupeptin µg/ml, 100 µg PMSF and 0.5 mM EDTA) with 
protease inhibitor was added and left on ice for 20 min. After 
20 min, the lysate was centrifuged for 15 min at 14,000 g at 
4 °C and the protein concentration of the supernatant was 
determined using the Lowry method. Samples were heated 
at 95 °C for 5 min (25 µg/per well) and separated by SDS-
PAGE (12%) and electrically transferred to PVDF mem-
brane (BioRad, Hercules, Ca, USA). The membrane was 
blocked with 5% skim milk in TBS, with 0.1% Tween 20 
at 4 °C, and incubated with appropriate primary antibody 
diluted in TBS-Tween (anti-SOD 1:100, Santa Cruz Bio-
technology, USA), anti-α-tubulin 1:4000 (Sigma ST Louis 
Missouri USA). After successive washings with TBS-Tween 
buffer the membranes were incubated with secondary anti-
bodies (1:2000 Sigma ST Louis Missouri, USA) conjugated 
to a suitable horseradish peroxidase enzyme for one hour. 
Revelation was performed using the ECL chemilumines-
cence kit (Clarity Western, Bio-Rad) for about 2 min and 
were analyzed and quantified by the ChemiDoc Imager (Bio 
Rad) and by the molecular software Image Studio lite 4.0 
(LI-COR, USA).

Determination of Apoptotic stage by PE Annexin‑ 
V and Amino‑Actinomycin (7‑AAD) labeling

PE Annexin V is used to quantitatively determine the per-
centage of cells within a population that are actively under-
going apoptosis. In apoptotic cells, membrane phospholipid 
phosphatidylserine (PS) is translocated from the inner leaflet 
of the plasma membrane to the outer leaflet, thereby expos-
ing PS to the external environment. Amino-Actinomycin 
(7-AAD) is a standard flow cytometry viability marker and 
is used to distinguish viable from non-viable cells. PC12 
cells were plated in 24-well plates and incubated with the 
drugs. After the incubation period, the cells were trypsinized 
and 500 µl of HAM:F12 medium was added and the cells 
were centrifuged at 1500 rpm and resuspended in 100 µl in 
the Annexin-V binding buffer present in the kit (Kit I BD 
Pharmingen) and 5 µl of PE Annexin V and 5 µl of 7-AAD 
were added and incubated for 15 min in the dark. After the 
incubation time, 400 µl of the buffer was added and the read-
ing was performed on the flow cytometer. Cells that label 
PE Annexin V positive and 7-AAD negative are undergoing 
apoptosis. Cells that stain positively for both PE Annexin V 
and 7-AAD are in the final stage of apoptosis, are undergo-
ing necrosis, or are already dead. Cells that stain negative for 
both PE Annexin V and 7-AAD are alive and do not undergo 
measurable apoptosis. Assays were performed in triplicate.

Statistical Analysis

Statistical analysis was performed using the Graph Pad 
Prism 6.0 program. To compare the means, an analysis of 
variance (ANOVA) was performed, followed by the Student-
Newman-Keuls test. Differences were considered statisti-
cally significant when p < 0.05. Values were expressed as 
Mean ± S.E.M.

Results

Analysis of the BSEE by High Performance Liquid 
Chromatography (HPLC‑DAD)

The high-performance liquid chromatography (HPLC) 
analysis was conducted on the active extract of BSEE to 
identify its primary components. The resulting chromato-
graphic profile of BSEE is presented in Fig. 1, which reveals 
the presence of five distinct peaks. These peaks correspond 
to the following molecules: Geraniin (peak 1, with a reten-
tion time of 3.91 min, 8.503 ± 0.082 mg/g), Rutin (peak 2, 
with a retention time of 6.12 min, 7.836 ± 0.133 mg/kg), 
Isoquercetin (peak 3, with a retention time of 7.53 min, 
9.080 ± 0.145  mg/g), Kaempferol 3-O-β-rutinosid, the 
majoritarian compound, (peak 4, with a retention time of 
9.90 min, 29.98 ± 0.542 mg/g), and Quercetin (peak 5, with 
a retention time of 22.35 min, 2.125 ± 0.0113 mg/g) (Fig. 2).

Effect of BSEE on Mitochondrial Viability of PC12 
Cells Exposed to 6‑OHDA

According to the results shown in Fig. 3, various concentra-
tions of BSEE (75, 100, 150, and 300 µg/mL) were effective 
in protecting PC12 cells from reduced viability caused by 
6-OHDA (25 µg/mL). Since, the concentration of 75 µg/mL 
provided significant cell protection, this concentration was 
used for the further testing.

Fig. 1   Analysis of the ethanolic extract of B. sericea (BSEE) by high 
performance liquid chromatography (HPLC-DAD)
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Effect of BSEE on Cell Viability in PC12 Exposed 
to 6‑OHDA

According to our experimental data, the cells treated with 
6-OHDA (25 µg/mL) showed a significant increase in LDH 
activity compared to the control cells (p < 0.05). However, 
we found that the administration of BSEE (75 µg/mL) had 
a remarkable protective effect against this harmful increase 
(p < 0.05). As depicted in Fig. 4, the use of BSEE effectively 
mitigated the negative effects of 6-OHDA treatment on cel-
lular function. This highlights the potential of BSEE as a 
protective agent in future treatments.

Effect of BSEE on Membrane Integrity of PC12 Cells 
Exposed to 6‑OHDA

The results show a significant decrease in the number of 
healthy cells after being exposed to 6-OHDA (p < 0.05). 
However, the group that received BSEE (75 µg/mL) had 
a positive effect on cell viability compared to the group 
exposed to 6-OHDA, resulting in a notable increase 
(p < 0.05), as shown in Fig. 5.
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Effect of BSEE on Oxidative Stress Parameters 
in PC12 Cells Exposed to 6‑OHDA

The nitrite levels were increased when PC12 cells were 
exposed to 6-OHDA compared to control cells (p < 0.05). 
The BSEE treatment protected against 6-OHDA-induced 
increase in nitrite levels (Fig. 6). Furthermore, 6-OHDA 
reduced GSH levels, and BSEE (75 µg/mL) protected cells 
from 6-OHDA-induced decrease in GSH levels (p < 0.05) 
(Fig. 6). No significant changes were found in SOD levels 
between groups (Fig. 6).

BSEE Protected PC12 Cells from 6‑OHDA‑induced 
Apoptosis

The exposure of PC-12 cells to 6-OHDA resulted in a sig-
nificant decrease in the percentage of viable cells and a 
significant increase in the percentage of cells undergoing 
total apoptosis (p < 0.05). However, the administration of 
BSEE (75 µg/mL) effectively protected PC-12 cells against 
6-OHDA-induced apoptosis (p < 0.05), as shown in Fig. 7.

Discussion

The pathophysiology of PD is complex, multifactorial and 
still not completely understood. However, it is well estab-
lished that oxidative stress plays a crucial role in the devel-
opment and evolution of PD. At the same time, the treat-
ment of PD is still quite limited [21–24]. In this study, it 
was demonstrated that BSEE can protect PC12 cells against 
6-OHDA-induced toxicity by decreasing oxidative stress and 
cell apoptosis.

The BSEE showed the presence of quercetin, isoquerce-
tin, rutin, geraniin and kaempferol 3-O-β-rutinoside, as the 
main secondary metabolites. Rodrigues et al. [18] previously 
identified these compounds in the ethanolic extract of leaves 
of B. sericea, and showed gastroprotective effects against 
ethanol-induced lesions, which was attributed to the strong 
antioxidant activity of the flavonoids present in the extract. 
Boscolo et al. [25] found that B. sericea demonstrated anti-
oxidant activity with low concentration (IC50 = 1 µg/mL), 
and Fraige et al. [19] showed that the methanolic extract 
of the leaf of B. sericea could scavenge the peroxyl radical 
(ROO–) (IC50 = 1.6 µg/mL). The flavonoids present in the 
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extract probably act in synergism, enhancing the antioxidant 
effects. Also, importantly, BSEE showed no cytotoxic effect 
at the highest concentration tested.

In vitro studies using PC12 cells for several models of 
neurodegenerative diseases have demonstrated the pro-
tective effects of the isolated quercetin (100–1000  µg/
mL) [26], isoquercetin (25–100 µg/mL) [27], kaempferol 
(40–80 µg/mL) [28], rutin (25 µg/mL) [29] and geraniin 
(0.1, 1, and 10 µmol/L) [30]. However, it should be noted 
that, in general, the concentrations at which the compounds 
alone exert protective effects are one-third or even higher 

than the concentration used in the present BSEE study. 
This data demonstrates that the use of the crude extract of 
BSEE becomes an interesting target of study, since a lower 
concentration is required, yet reducing the risk of cytotoxic 
effects for healthy cells. Another interesting point is that, 
in general, it is recommended to use natural products in 
unmodified form, such as concentrated herbal extracts. For 
example, green vegetables and fruits have been found to 
greatly reduce the risk of cancer, largely due to the action of 
a combination of polyphenols [31].

Interactions may occur between antioxidants in general 
and these interactions seem to be important for the biologi-
cal activity of these compounds. Synergy effects are also 
reported for mixtures of flavonoids, which are a significant 
increase of antioxidant activity with the combinations of 
kaempferol with myricetin, quercetin or quercetin-3-glu-
coside [32]. Taken together, these evidences confirm the 
importance of the synergistic effect of flavonoids in BSEE 
extract.

The PC12 cell have very similar characteristics to dopa-
minergic neurons, and when these cells are exposed to the 
neurotoxin 6-OHDA are used as an in vitro model of PD for 
screening of new drugs [33, 34]. In this study, 6-OHDA was 
able to reduce mitochondrial enzyme activity, release LDH, 
and decrease cell viability. The 6-OHDA is capable of induc-
ing oxidative changes in PC12 cells [35] as well as in in vivo 
[36] studies, similar to those found in dopaminergic neurons 
in PD. The BSEE protected PC12 cells from inhibition of 
mitochondrial dysfunction, membrane lysis and cell death. 
Several studies have also reported the ability of flavonoids, 
as found in the BSEE, to reduce the loss of dopaminergic 
neurons in models of neurodegenerative diseases, including 
PD [37–39].

Interestingly, quercetin, has already shown to have impor-
tant promising effects against PD models [40]. Wan et al., 

Fig. 6   Effect of B. sericea ethanolic extract (BSEE, 75  µg/mL) on 
nitrite concentration, reduced glutathione (GSH) levels and SOD 
expression of PC12 cells exposed to 6-OHDA (25 µg/mL). *p < 0.05 
compared to control cell, and #p < 0.05 compared to 6-OHDA 
exposed cells. C- Control, vehicle-treated cells
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[41] demonstrated that quercetin protect the contents and 
integrity of the mitochondria and reverse the increased reac-
tive oxygen species (ROS) release in PC12 cells treated with 
6-OHDA. The authors of the study also noted that quercetin 
enhances the neurochemical profile and reduces the parkin-
sonian disability score in PD rats with 6-OHDA lesions. 
Furthermore, previous research has indicated that querce-
tin activates the Nrf2 protein, thereby inhibiting ferroptosis 
[42].

As can be seen in this study, B. sericea ethanolic extracts 
which present the antioxidant compounds geraniin, rutin, 
isoquercetin, kaempferol-3-O-rutinoside and quercetin were 
able to protect PC12 cells from oxidative damage induced 
by 6-OHDA at very low concentrations compared to studies 
with these compounds isolated [43–45] showing that prob-
ably the synergism between antioxidant compounds is more 
effective in relation to isolated compounds. In the present 
study, the action of isolated flavonoid compounds was not 
evaluated, which would be important to prove their syner-
gistic effect on the BSEE extract. However, in view of the 
identification and quantification of flavonoid compounds in 
the BSEE extract, this synergistic effect must be considered.

The involvement of nitric oxide (NO) in the degenera-
tion of dopaminergic neurons in the nigrostriatal pathway is 
reported in the literature. Gouda and Cho [46], demonstrated 
an increase in the expression of neuronal nitric oxide syn-
thase (nNOS) and NF-κB in PC12 cells exposed to 6-OHDA. 
In this work, 6-OHDA increased the nitrite levels, however 
when cells were pre-treated with BSEE, nitrite levels were 
decreased. This action may have occurred due to a regulation 
in the expression of the genes that encode NOS, for exam-
ple, via NF-κB and/or its free radical scavenging activity, 
which culminated in the NO reduction [47]. The availability 
of antioxidant compounds containing free hydroxyl groups 
enables BSEE to donate electrons to RNS, and subsequently 
leading to the reduction of nitrite levels [48].

GSH reduction is observed in the brain of post mortem 
PD patient, so, considering that GSH is the main intracel-
lular antioxidant compound [49], the GSH reduction favors 
oxidative stress, mitochondrial dysfunction and consequently 
cell death [50, 51]. In this study 6-OHDA decreased GSH 
levels, possibly due to the increase ROS. When cells were 
pretreated with BSEE, GSH levels increased 2-fold. Cor-
roborating this data, it has already been demonstrated that 
quercetin is able to increase the levels of GSH in the brain of 
animals submitted to an experimental model of PD [52, 53].

Overproduction of ROS can trigger both the intrinsic 
mitochondrial pathway and the extrinsic death receptor path-
way of apoptosis [54, 55]. In our study was possible to verify 
that, at least in part, 6-OHDA-induced cell death occurred 
by apoptosis. The pretreatment with BSEE decreased the 
number of apoptotic cells. The BSEE cytoprotection may 
be associated with the presence of the phenolic compounds, 

which are capable of scavenging free radicals, as well as 
inducing the activation of anti-apoptotic proteins as Bcl-2 
and decrease pro-apoptotic protein as Bax [45, 55, 56]. 
BSEE cytoprotective effects can be explained by antioxidant 
mechanisms associated with the flavonoids present in the 
BSEE such as, the modulation of inducible nitric oxide syn-
thase (iNOS) and NADPH oxidase 2, ROS scavenging activ-
ity, modulation of the antioxidant enzymes. Another impor-
tant mechanism is the oxidation of flavonoids by ROS and 
reactive nitrogen species (RNS) which form electrophilic 
quinone that can activate the Nrf2 transcription [57, 58].

Conclusion

Through this study, it can be stated that the BSEE exert a 
cytoprotective action in the experimental cell model of PD, 
protecting cells from damage caused by oxidative stress, and 
apoptosis induced by 6-OHDA. The Byrsonia sericea extract 
has potential to be used as an adjuvant therapy in the treat-
ment of PD. However, the effectiveness of the extract and 
its active compounds should be investigated using in vivo 
models of PD in the future.
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