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Abstract

Mitochondrial dysfunction and oxidative stress are critical to neurodegeneration in Parkinson’s disease (PD). Mitochondrial
dysfunction in PD entails inhibition of the mitochondrial complex I (CI) in the dopaminergic neurons of substantia nigra.
The events contributing to CI inhibition and downstream pathways are not completely elucidated. We conducted proteomic
analysis in a dopaminergic neuronal cell line exposed individually to neurotoxic CI inhibitors: rotenone (Rot), paraquat
(Pq) and 1-methyl-4-phenylpyridinium (MPP™). Mass spectrometry (MS) revealed the involvement of biological processes
including cell death pathways, structural changes and metabolic processes among others, most of which were common across
all models. The proteomic changes induced by Pq were significantly higher than those induced by Rot and MPP*. Altered
metabolic processes included downregulated mitochondrial proteins such as CI subunits. MS of CI isolated from the models
revealed oxidative post-translational modifications with Tryptophan (Trp) oxidation as the predominant modification. Further,
62 peptides in 22 subunits of CI revealed Trp oxidation with 16 subunits common across toxins. NDUFV1 subunit had the
greatest number of oxidized Trp and Rot model displayed the highest number of Trp oxidation events compared to the other
models. Molecular dynamics simulation (MDS) of NDUFV1 revealed that oxidized Trp 433 altered the local conformation
thereby changing the distance between the Fe-S clusters, Fe-S 301(N1a) to Fe-S 502 (N3) and Fe-S 802 (N4) to Fe-S 801
(NS), potentially affecting the efficiency of electron transfer. The events triggered by the neurotoxins represent CI damage,
mitochondrial dysfunction and neurodegeneration in PD.
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disease (PD). Research evidences from human postmortem
brain samples have revealed that mitochondrial damage in
the substantia nigra region of PD patients mainly includes
inhibition of mitochondrial complex I (CI) [1-3].
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structure—function relationship of CI [6]. PTMs are known
to regulate protein structure and the associated biochemical
pathways. PTMs could either be non-oxidative PTMs such
as phosphorylation, acetylation, methylation or oxidative
PTMs such as Tryptophan (Trp) and Cysteine (Cys) oxida-
tion, Tyrosine (Tyr) nitration among others. Many PTMs that
affect the function of mitochondrial proteins have been noted
[6]. The CI subunits are also known to undergo PTMs during
normal physiological condition and diseases. Studies on CI
in different paradigms have extensively reported oxidative
and non-oxidative PTMs [6, 7].

Epidemiological studies have indicated that exposure
to toxic chemicals such as pesticides, herbicides and other
neurotoxins could potentially induce acute PD or parkinson-
ism in humans [8]. Most of these neurotoxins such as rote-
none (Rot), paraquat (Pq) and 1-methyl-4-phenylpyridinium
(MPP?*) induced neurodegeneration via mitochondrial dys-
function and selective inhibition of CI [8]. Although these
neurotoxic models have been used to study PD pathogen-
esis, certain questions remain unanswered. Firstly, whether
the downstream pathways following exposure to these three
toxins are comparable is not explored. Secondly, whether
exposure to these three toxins can cause CI inhibition via
oxidative damage of different subunits of the complex and
whether these are common across the three models are
largely unknown.

To address these lacunae, we have in this study compared
the downstream pathways that are elicited following expo-
sure to these three toxins in dopaminergic cell lines by car-
rying out a comprehensive proteomic analysis. We have also
isolated CI from these three toxic models and compared the
PTMs that could potentially characterize the inhibition of
the complex. Finally, molecular dynamic simulation (MDS)
approach was employed to understand the structural changes
induced by selected oxidative PTMs in the critical subunits
of the complex.

Materials and Methods

All the chemicals and solvents were of analytical grade.
Routine and bulk chemicals were obtained from Sisco
Research Laboratories (SRL) Pvt. Ltd. (Mumbai, Maha-
rashtra, India). Fine chemicals such as Rot, Pq, MPP*,
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bro-
mide (MTT), Dichlorodihydrofluorescein diacetate (DCF-
DA), 5,5'-dithio-bis-(2-nitrobenzoic acid) (DTNB), Glu-
tathione reductase and Anti-dinitrophenyl (DNP) antibody
were obtained from Merck-Sigma (St. Louis, MO, USA).
Cell culture consumables such as RPMI 1640, Trypsin
EDTA from Merck-Sigma, Fetal Bovine serum from PAN
Biotech (Aidenbach, Bavaria, Germany) and Antibiotic and
antimycotic solution from HIMEDIA (Einhausen, Germany)

were obtained. Primary antibodies (against VDACI, p-actin,
Biotin) and CI isolation/immunocapture kit were procured
from Abcam (Cambridge, UK) (Cat No. ab109711). Anti-
horseradish peroxidase conjugated secondary antibodies
(anti-rabbit and anti-goat) were obtained from Bangalore
Genei (Bangalore, Karnataka, India). Hydrazide biotin and
TMT labelling kit were purchased from Thermo fisher sci-
entific (Waltham, MA, USA). Sequencing grade modified
trypsin was obtained from Promega (Madison, WI, USA).
Mass spectrometry consumables such as sodium dodecyl
sulphate (SDS), triethyl ammonium bicarbonate (TEABC)
buffer, ammonium bicarbonate (ABC) buffer, iodoaceta-
mide, dithiothreitol (DTT), acetone, formic acid (FA), ace-
tonitrile (ACN) were obtained from Merck-Sigma.

Cell Culture

We have extensively used Rat dopaminergic IRB3AN27
(N27) neuronal cell line throughout this study [9]. The cell
line was obtained as a kind gift from Dr. Curt Freed, Uni-
versity of Colorado, USA. The cell line was cultured and
maintained as previously described [10]. N27 cells were
treated at different concentrations of Rot (0—2000 nM)
or Pq (0-2000 pM) for 24 h and Rot (0-2000 nM) or Pq
(0-200 pM) or MPP*(0-2000 uM) for 48 h, assessed for
cell viability using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphe-
nyltetrazolium bromide (MTT) assay [11] and LD,5 and
LDy, values were calculated at 48 h. (We have used LD,
and LDs, in all experiments except western blot experiments
for mitochondrial samples and CI assay).

Alternately, Lactate dehydrogenase (LDH) assay was
used to monitor cell viability [12] by measuring the activ-
ity in the culture supernatants of N27 cells treated with Rot
(250 nM and 500 nM, 48 h), Pq (50 pM and 100 pM, 48 h)
and MPP" (150 uM and 250 pM, 48 h). We have chosen dif-
ferent doses of each neurotoxins to measure LDH, because
N27 showed varied sensitivity to the toxins in the MTT
assay.

Measurement of Reactive Oxygen Species (ROS)

ROS generation in different neurotoxic models compared to
the respective controls was assayed using dihydrodichloro
fluorescein diacetate (H2 DCFH-DA) method as described
[13].

Total Glutathione (GSH + GSSG) Estimation

The control and neurotoxin treated cells were subjected to
total glutathione estimations by 5,5'-dithio-bis-2-nitroben-
zoic acid (DTNB) recycling method [10, 13], based on the
maximum reaction rate compared with GSSG standards
(0-250 ng). All estimations were conducted in triplicate,
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normalized per protein and expressed as percentage of
untreated control.

Isolation of Mitochondria

Mitochondria from control and neurotoxin treated cells were
isolated as described [10]. The crude mitochondrial fraction
was suspended in isolation buffer and stored as aliquots at
— 80 °C. Total protein in the mitochondrial preparation was
estimated by Bradford method [14].

Mitochondrial Complex | Assay

Cl enzyme activity was assayed in untreated and neurotoxin
treated cells as described [10]. The rotenone-sensitive spe-
cific activity was calculated and expressed as percentage of
untreated control.

Total Proteomics
Preparation of Cell Extracts

Control and treated N27 cells were sonicated in 1 X PBS
with 1 X protease inhibitor cocktail (Sigma-Aldrich) using a
probe sonicator for 10 s X 6 cycles (45% amplitude) on ice.
The sonicate was centrifuged (10,000 g for 10 min at 4 °C)
and the soluble extract corresponding to the supernatant was
subjected to protein estimation by Bradford method [14].
During standardization and pilot experiments, we noted that
other protocols had limitations including inconsistent protein
yield in different replicates and problems with the extent of
solubility. Hence this protocol was chosen for preparation
of soluble extracts for proteomics experiments. Consider-
ing this, the protein profile might not represent the global
proteome of the N27 dopaminergic cells.

Sample Preparation and TMT Labelling

Total cellular extracts (with equal protein as determined
in the previous section) from untreated control (Group
1), Rot treated (LD,s-Group 2 and LDsy,-Group 3), Pq
treated (LD,s-Group 4 and LDs,-Group 5) MPP* treated
(LD,5-Group 6 and LDs,-Group 7) were suspended in
2% SDS lysis buffer. The lysate was sonicated on ice
and heated at 90 °C for 5 min followed by centrifuga-
tion (12,000 rpm for 15 min). Equal amount of protein
(250 pg) from each sample was reduced using 5 mM of
DTT at 60 °C for 60 min, alkylated with 20 mM iodoaceta-
mide for 20 min at room temperature (RT) in dark, pre-
cipitated with chilled acetone at — 20 °C overnight and
centrifuged (12,000 rpm at 4 °C for 15 min). The pel-
lets were dissolved in 50 mM Triethyl ammonium bicar-
bonate (TEABC) buffer (pH 8.5) and then digested with
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sequencing grade modified trypsin (Promega) at 37 °C
for 16 h and dried in a vacuum concentrator. Digested
peptides were suspended in 100 pl 50 mM TEABC (pH
8.5) and labelled with TMT reagent as per the manufac-
turer’s protocol. The samples from different groups were
labelled as follows: 126 (control), 127N (Rot-LD,s), 128N
(Rot-LDs), 128C (Pq-LD,5) and 129N (Pq-LDs), 129C
(MPP*-LD,s) and 130N (MPP*-LDs,). The pooled sam-
ple was dried and fractionated into twelve fractions using
basic pH reversed-phase liquid chromatography (bRPLC)
as described [15]. Samples were reconstituted in 1 ml
bRPLC solvent A (10 mM TEABC, pH 9.5). Increasing
gradient of 7-100% solvent B (10 mM TEABC in 95%
acetonitrile, pH 9.5) was employed to fractionate peptides
using XBridge C,g, 5 pm, 250 X 4.6 mm column (Waters
corporation, Milford, MA) with a flow rate of 500 pl/min
for 120 min on an Agilent 1200 series HPLC system. The
eluting peptides were collected in a 96 well plate and con-
centrated into 12 fractions. Each fraction was concentrated
under vacuum and desalted using C,5 stage tip clean up
[7] followed by liquid chromatography-tandem mass spec-
trometry (LC-MS/MS).

LC-MS/MS

The peptides were analysed on an Orbitrap Fusion Tri-
brid mass spectrometer (Thermo Scientific, Bremen,
Germany) interfaced with Easy-nL.C 1000 nanoflow LC
system (Thermo Scientific, Bremen, Germany). Vacuum
dried peptide digests were reconstituted in 0.1% FA and
loaded onto a 2 cm long pre-column (75 pm X 2 cm; nano
Viper; C18; 3 um particle and 100 A pore size) (Thermo
scientific Acclaim PepMap 100) using solvent A [0.1%
formic acid (FA)] at a flow rate of 3 ul/min. Peptides were
then resolved on analytical column (2 um, 75 um X 50 cm,
100 A pore size) (Thermo scientific PepMap™ RSLC C18)
using a linear gradient of 5% to 30% of solvent B [0.1%
FA in 95% Acetonitrile (ACN)] over 100 min and flow rate
of 300 nl/min. The total run time was set to 120 min. The
MS was operated in a data-dependent acquisition mode.
A precursor survey full scan MS (from m/z 350-1600)
was acquired in the Orbitrap at a resolution of 120,000
at 200 m/z. The automatic gain control (AGC) target for
MS1 was set as 4 X 10° and ion filling time set as 50 ms.
The most intense ions with charge state >2 was isolated
and fragmented using higher-energy collision-trap disso-
ciation (HCD) fragmentation with 34% normalized colli-
sion energy and detected at a mass resolution of 50,000 at
200 m/z. The AGC target for MS/MS was set as 1 x 10°
and ion filling time set as 100 ms. Isolation width was
used as 1.6 m/z.
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Data Analysis

Mass spectrometry derived raw data were searched against
Rattus norvegicus database from UniProt (UP000002494-
May 30th, 2021) along with known MS contaminants using
SEQUEST search engine nodes on Proteome Discoverer
2.2 platform [7]. Trypsin was selected as the proteolytic
enzyme and two missed cleavages were allowed during the
search. Precursor and fragment ion mass tolerance were set
to 10 ppm and 0.05 Da respectively. Carbamidomethyla-
tion of cysteine, TMT labelling at peptide N-terminus and
lysine side chain were selected as static modification and
oxidation of methionine was set as a dynamic modification.
The data were filtered at 1% protein level false discovery
rate (FDR). The reporter ion quantifier node was used to
estimate relative quantitation of TMT channels from MS2
scans and normalization option was enabled. For any protein
to be considered as significantly dysregulated, fold change
above 1.5 as upregulated and below 0.6 as downregulated
and p-value < 0.05 were considered. Since the number of
differentially expressed proteins were very few, we per-
formed manual analysis, where we identified the functions
of each gene using Uniprot followed by literature survey and
categorization.

Complex I (Cl) Proteomics
Isolation of Cl

CI was isolated using immunocapture method from N27
mitochondria using a commercial kit (Abcam) as per the
manufacturer’s protocol. Briefly, mitochondria (1 mg) were
solubilized in ice-cold 1X PBS containing 1% N -dodecyl
p-D-maltoside (DDM) for 30 min on ice and centrifuged
(20,000 g for 30 min, 4 °C) [16]. The supernatant was incu-
bated with agarose beads irreversibly cross-linked to CI-
specific monoclonal antibody provided as part of the CI
immunocapture kit (Abcam) overnight at 4 °C on a rocker.
The beads were washed 5 times with 1 X PBS and the bound
complex was eluted with 0.1 M glycine-HCI buffer, pH 2.5
supplemented with 0.05% DDM. These eluates were pro-
cessed for in-solution tryptic digestion.

In-solution Tryptic Digestion

The eluates from CI immunocapture experiments were
reduced with 10 mM DTT at 60 °C for 60 min, followed
by alkylation with 20 mM Iodoacetamide (IAA) for 30 min
at RT in dark. Alkylated proteins were precipitated by
adding five volumes of chilled acetone and centrifuged at
12,000 rpm, 4 °C for 15 min. The pellets were dissolved in
40 mM ammonium bicarbonate (ABC) and then incubated
with sequencing grade trypsin (Promega) (at 1:20, enzyme:

protein) at 37 °C for 16 h. The reaction was stopped with
0.1% FA, purified on a C 4 column and the peptide mixture
was dried in a vacuum concentrator, followed by LC-MS/
MS analysis.

LC-MS/MS

The peptides were analysed on an Orbitrap Fusion Tribrid
mass spectrometer (Thermo Scientific, Bremen, Germany)
interfaced with Easy-nL.C 1000 nanoflow liquid chroma-
tography system (Thermo Scientific, Bremen, Germany).
Vacuum dried peptide digests were reconstituted in 0.1% FA
and loaded onto a 2 cm long pre-column 75 um X 2 cm, nano
Viper, Cg, 3 u particle and 100 A pore size (Thermo sci-
entific Acclaim PepMap 100) and analytical column 2 um,
75 pm x50 cm, 75 um X 50 cm, 100 A pore size (Thermo
scientific PepMap™ RSLC C18) using a linear gradient
of 5% to 30% of solvent B (0.1% FA in 95% ACN) over
100 min and flow rate of 300 nl/min. The total run time was
set to 120 min. The MS was operated in a data-dependent
acquisition mode. A precursor survey full scan MS (from
m/z 350-1600) was acquired in the Orbitrap at a resolution
of 120,000 at 200 m/z. The AGC target for MS1 was set
as 4 X 10° and ion filling time set 50 ms. The most intense
ions with charge state > 2 was isolated and fragmented using
HCD fragmentation with 34% normalized collision energy
and detected at a mass resolution of 30,000 at 200 m/z. The
AGC target for MS/MS was set as 1 X 10° and ion filling
time set 100 ms and isolation width was used at 1.6 m/z.

Data Analysis

The acquired MS/MS data were processed through Proteome
Discoverer platform (version 2.2 Thermo Scientific) using
SEQUEST search algorithm against Rattus norvegicus pro-
tein database from UNIPROT (UP000002494- May 30th
2021) containing protein entries along with common MS
contaminants. Trypsin allowing a maximum of two missed
cleavages were selected as the proteolytic enzyme and oxida-
tion of methionine and carbamidomethyl cysteine were set as
dynamic modifications. For MS data, monoisotopic peptide
mass tolerance was set to 10 ppm and MS/MS tolerance to
0.5 Da.

Based on the PTMs that were detected in the prelimi-
nary analysis without enrichment, the search parameters
for the SEQUEST search algorithm focused on oxidation
and dioxidation (W, C), trioxidation (C), cysteinylation (C),
acetylation (N-terminal of protein and K), nitration (Y),
methylation, Dimethylation and trimethylation (K, R), and
phosphorylation (S, T, Y) as dynamic modifications and
carbamidomethylation (C) as a static modification. While
searching for Cysteine PTMs, carbamidomethylation was set
as dynamic modification. The data were filtered at 1% level
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FDR at peptide spectrum matches (PSMs). The confirma-
tion of all PTMs was carried out based on manual analysis
of MS data.

Oxyblot

Protein carbonyls in the protein extracts of the neurotoxic
models were quantitated either by oxyblot method [17]
or Biotin hydrazide method [18]. In oxyblot, the total cell
extracts were derivatized by 2,4-dinitrophenylhydrazine
(DNPH) followed by dot blot using anti-DNP antibody. In
the biotin hydrazide method, total and mitochondrial extracts
were derivatized with biotin hydrazide followed by west-
ern blot with anti-biotin antibody. The western signal was
developed by enhanced chemiluminescence and visualized
in a gel documentation system (Biorad). The images were
quantified using Image J software [19] and normalized to
their respective loading controls [B-Actin (1:3000) for total
cellular protein and VDACT (1:3000) for mitochondrial pro-
tein] and expressed as percentage of untreated control.

Homology Modeling

The protein sequence of CI subunits was obtained from the
Uniprot database (www.uniprot.org). Homology modeling
was carried out to generate rat CI, using Discovery studio 3.5
with the mouse CI template (98% sequence identity between
rat and mouse CI subunits) available at Protein Data Bank
(PDB) with ID 6G2J. The protein model thus obtained was
subjected to energy minimization and processed by apply-
ing CHARMM force field [20]. The potential energy of the
structure was calculated using energy protocol available in
Accelrys Discovery Studio 3.5.

Molecular Dynamics Simulation (MDS)
Preparation of the System

Five mutually interacting peripheral arm subunits of CI
(NDUFV1, NDUFV2, NDUFV3, NDUFS1 and NDUFS4)
were considered as a sub-complex for structural analysis.
Among these, W433 in NDUFV 1 subunit was replaced with
oxindolylalanine (oxy-Trp or 2-OH Trp) to generate the oxi-
dized subunit. The unmodified and Trp433 oxidized sub-
complexes were subjected to MDS. The MDS solvent system
of the subcomplexes was built using Desmond 2019. The
Optimized Potentials for Liquid Simulations (OPLS) force
field was added to the system and simple extended point
charge (SPC) water system, along with a cubic box, was
used to model the solvent. 1.5 mM of NaCl ions were added
to neutralize the systems in the water-filled box. The MDS
was set up for 100 ns under normal NTP [constant number of
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particles (N), temperature 310 k (T) and pressure-1 bar (P)]
conditions. The system was relaxed prior to the simulation.

Analysis of Trajectories

After the simulation, the resultant 100 ns trajectories of the
subunits of the unmodified subcomplex were analysed for
protein backbone parameters such as Root Mean Square
Deviation (RMSD) and Ca for Root Mean Square Fluctua-
tion (RMSF). Further, all the subunits of the subcomplex
were assessed for Radius of Gyration (Rg) throughout the
duration of the simulation. The RMSD and Rg values were
calculated against the simulation time and expressed as the
deviation of radius of the selected group of atoms, respec-
tively, in A. The RMSF values of the Ca were calculated
over the range of residues of the subunits and expressed
as summation throughout the simulation for each residue
fluctuation and denoted in A. The distance between FMN
and iron—sulfur cluster Fe-S301, FMN and iron—sulfur clus-
ter Fe-S502, Fe-S301 and Fe-S502, Fe-S502 and Fe-S803,
Fe-S803 and Fe-S802, and Fe-S802 and iron-sulfur cluster
Fe-S801 were calculated for the unmodified and oxidized
form. The Desmond module was used for the calculation of
parameters. Maestro and PyMOL (www.pymol.org) were
used for the generation of high-resolution illustrations [7].

Statistical Analysis

Quantitative data represented by bar graphs were accu-
mulated from at least three independent experiments and
expressed as mean + SD. All analyses were performed
using Microsoft Excel. For data related to validation experi-
ments, analysis of variance (ANOVA) was performed and
p-value < 0.05 was considered as significant. For all the MS
based data, statistical analysis was carried out on Proteome
Discoverer 2.2, which has integrated database search and
statistical algorithms. Statistically corrected MS data was
then uploaded on to Perseus (1.6.15.0) (http://www.perse
us-framework.org) to generate a cluster based heatmap using
Euclidean distance method.

Results
Proteomic Analysis of the Neurotoxic Models of PD

Neurotoxic models using Rot, Pq and MPP* mimic PD
pathology via selective inhibition of CI and mitochondrial
dysfunction [21]. However, whether these three neurotoxins
induce similar degenerative pathways in dopaminergic neu-
rons and PTMs of CI are not compared.
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To address the first objective, we carried out compara-
tive proteomic analysis of Rot, Pq, and MPP* neuronal cell
models of PD at LD, (representing early events of neurode-
generation) and LD, (representing the neurotoxic phase) of
each toxin compared to untreated control. Characterization
of the three models revealed dose-dependent neurotoxic-
ity as shown by cell viability assay (Rot- 0-2000 nM with
LD,5=250 nM and LDs,=500 nM; Pq- 0-200 pM with
LD,s=>50 pM and LDs,= 100 pM; MPP*- 0-2000 pM with
LD,s=150 pM and LDs,=250 pM) (Supplementary fig-
ure S1A-C) consistent with previous reports [22]. Subse-
quent experiments at LD,5 and LDsj, (vs. controls) revealed
increased LDH activity (Supplementary figure S1D-E),
elevated ROS (Supplementary figure S2A—C), lowered total
glutathione (Supplementary figure S2D-F), increased pro-
tein carbonyls (Supplementary figure S3, S4 and S5) and
inhibition of CI activity (Supplementary figure S6) in all
the three models, consistent with previous results [11] and
corroborating PD-specific neurotoxic mechanisms. Although
these experiments were carried out both at 24 h and 48 h
timepoints, we noted that the 48 h data was more consistent
compared to the 24 h data in terms of cytotoxicity and other
parameters across the three toxins. Hence, 48 h treatment
regimen was followed throughout the study and used to cal-
culate LD,5 and LDs,.

Total proteomic analyses of the untreated control (Group
1) and three neurotoxic models at LD,5 and LD, (Groups 2
to 7) were carried out and compared across different groups
(Fig. 1A and B). We identified 6400 proteins across all the
groups, of which 1046 were mitochondrial and 5354 were
non-mitochondrial proteins. Identified proteins were fur-
ther categorized as dysregulated if they had a fold change
ratio> 1.5 and <0.6 and a p-value of <0.05. Using the
aforementioned criteria, 89 differentially expressed proteins
(DEPs) including 32 up-regulated and 57 down-regulated
proteins across all the three toxic models, were noted at LD,
and LDs,. We analyzed the proteomic data obtained at LD,
and LDs to obtain a comprehensive view of the molecular
mechanisms underlying the neurotoxicity in PD.

Toxin-wise analysis revealed 55 DEPs in the Rot model
(including 29 down-regulated and 26 up-regulated proteins),
52 DEPs in the Pq model (35 down-regulated and 17 up-
regulated proteins) and 45 DEPs in the MPP* model (31
down-regulated and 14 up-regulated proteins) (Table 1 and
Fig. 1C). Comparison of the proteomics data revealed that
many up-regulated (n=10) and down-regulated (n=14) pro-
teins were common across the three toxic models (Fig. 1D
and E; volcano plots are shown in Fig. 1F-K). Interestingly,
MPP* model revealed relatively fewer number of unique
DEPs compared to the other two models.

Functional classification of DEPs revealed the involve-
ment of biological processes mainly including cell death
pathways, nuclear processes, protein and lipid metabolism,

structural changes, immune responses, mitochondrial pro-
cess and others (Fig. 2 and Table 1), most of which were
common across the three models. Prominent pathways that
could potentially contribute to neurotoxicity included cell
death pathways, structural changes and metabolic altera-
tions. Cell death pathways were represented by autophagy
and cell cycle proteins. Among these, the protein Seques-
tosome (Sqstml), involved in autophagy was significantly
upregulated across all the toxins. On the other hand, the cell
cycle controlling protein asparagine synthetase [glutamine-
hydrolyzing] (Asns) and Prothymosin alpha (Ptma) that
negatively regulates apoptosis was significantly downregu-
lated (Table 1). Structural changes included upregulation of
cytoskeletal proteins (Vimentin and Caldesmon) and disrup-
tion of extracellular matrix. The toxic insult also elicited
stress response as indicated by the overexpression of chap-
erones such as Heat shock protein Hspb1 and Alpha Crystal-
line (B chain) (Cryab). Metabolic processes contributing to
neurotoxicity mainly included lowered antioxidant response
(as indicated by downregulation of SOD2) and downregula-
tion of mitochondrial proteins. Altered antioxidant response
could correspond to upregulated glutathione peroxidase (that
could probably contribute to elevated GSSG, an indicator of
oxidative stress) and thioredoxin domain containing protein
1 (Tmx1), that regulates redox dynamics.

Lowered expression of mitochondrial proteins included
downregulation of electron transport chain (ETC) and pyru-
vate dehydrogenase complex. Among the ETC proteins,
subunits of CI (including NDUFS6, NDUFA10, NDUFS1,
NDUFSS5) were downregulated. Other downregulated ETC
proteins included cytochrome C oxidase subunits. Other
metabolic proteins altered included succinate ligase [GDP-
forming] subunit beta, aldehyde dehydrogenase and dihy-
drolipoyl dehydrogenase, delta (3,5)-delta (2,4)-dienoyl-
CoA isomerase, medium-chain acyl-CoA ligase ACSF2
acyl-coenzyme A dehydrogenase and high affinity cationic
amino acid transporter 1 (Table 1). Overall, we propose that
neurotoxin-mediated CI inhibition triggers structural and
functional pathways leading to neurodegeneration in dopa-
minergic neurons.

Proteomic Analysis of PTMs in Cl of Neurotoxic
Models

Proteomics data revealed downregulation of CI subunits in
all three models. Since these neurotoxins targeted CI and
caused inhibition of enzyme activity (Supplementary figure
S6), we investigated whether the complex displayed PTMs
following neurotoxic insult. Towards this, CI was isolated
from untreated control and the three neurotoxic models by
immunoprecipitation method followed by proteomic analy-
sis (Fig. 3A). The subunit composition of the isolated com-
plex was characterized by MS. Accordingly, 43 out of the
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Fig.1 Total Proteomic analysis in neurotoxic PD models. A Sche-
matic representation of workflow of the Proteomics experiment.
Total proteins (soluble extract) from control, Rot LD, (R25), Rot
LDy, (R50), Pq LD,s (P25), Pq LDs, (P50), MPP* LD,s (M25) and
MPP* LDy, (M50) were subjected to tryptic digestion, followed by
TMT labeling, fractionation, MS and data analysis. B SDS-PAGE
profile of all the groups (C) Heat-map of differentially expressed pro-
teins in different groups. The scale bar indicating the fold change in
expression of individual proteins is also shown. Venn diagram shows

@ Springer

Mitochondrial proteins
(n=1046)

bRPLC chromatography

|

LC-MS/MS

l

Data analysis

6400 proteins identified

/N

Non-Mitochondrial proteins
(n=5354)

D up-regulated

Down-regulated

2%

the number of common and unique (D) up-regulated and (E) down-
regulated proteins in Rot-, Pq- and MPP*-treated cells. Volcano plots
of the differentially expressed proteins in all the experimental groups
are shown in F-K. Individual proteins (p<0.05) corresponding to
the down regulated (> 1.5 fold) and upregulated proteins (< 0.6 fold)
(compared to the respective controls) are indicated in green and red
respectively, while the proteins with unchanged expression are in
black
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Fig. 1 (continued)

possible 44 subunits were identified in Rot (both LD,5 and
LDs), Pq (LD,5 and LDs;) and MPP* (LDs)) and 42 subu-
nits in control and MPP* at LD, (Table 2).

The LC-MS/MS data from the control and toxic models
were mined for identification of 18 different PTMs (oxida-
tive and non-oxidative) across the subunits of CI (Table 3).
Data analysis revealed 66 PTMs in CI subunits, mainly
including oxidative modifications (Trp oxidation and Cys
oxidation) and limited non-oxidative modifications (Lys
acetylation and Arg methylation). The toxic models revealed
relatively higher number of PTMs compared to the untreated
control. Supernumerary subunits of CI were targeted for

PTMs to a greater extent compared to the core subunits, both
in control and toxic models. Trp oxidation accounted for
most of the oxidative PTMs (n=62) including oxyindoly-
lalanine (n=29) and N-formylkynurenine (n=33). On the
other hand, limited Cys oxidation (n=7) including trioxi-
dation (Cys to Cys-sulfonic acid; n=6) and cysteinylation
(n=1) was noted (Fig. 3B-D and Table 3). Representative
m/z spectra showing Trp oxidation and Cys trioxidation in
NDUFV1 are shown in Fig. 4.

Among the three toxins, Rot model showed higher num-
ber of PTMs followed by MPP" and Pq (Fig. 3E and Table 4)
with Trp oxidation being the most predominant PTM.
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Ribosome synthesis

Rotenone

Reduced Base Excision Repair

Fig.2 Schematic representation of cellular events in neurotoxic PD
models. Summary of the trend of different biological processes that
are altered at the total proteome level in different neurotoxic models

Analysis of the distribution of the PTMs across different
subunits of CI revealed that the peripheral arm had relatively
higher number of PTMs compared to the membrane arm.
Among the subunits, NDUFV1 showed the maximum num-
ber of PTMs followed by NDUFA9 and NDUFS1 (Fig. 3F
and Fig. 5 and Table 4). Table 5 lists the 15 PTMs from our
study that were previously identified by other groups.
Apart from the identification of PTMs, it is pertinent to
understand the effect of these on the structure—function rela-
tionship of CI. Towards this, we carried out structural analy-
sis of CI subunits and compared the local structural changes
between the unmodified and modified sub-complexes.

Molecular Modelling and MDS of Cl Subunits

Our MS data revealed that Trp oxidation is the most predom-
inant PTM in the neurotoxic models, potentially contributing
to the altered structure—function relationship of the complex.
Since the data were generated using a rat neuronal cell line
(N27), we chose to generate a 3D model of rat CI using
the available mouse complex structure (PDB ID: 6G2J) as

Cell death pathways
Autophagy
Cell cycle
Nuclear processes
Genome stability
DNA synthesis
mRNA transcription and export
Protein and Lipid metabolism
mRNA export decreased
Increased protein synthesis
Cholesterol accumulation
Citrate mediated lipogenesis
Increased glyconeogenesis
Insulin resistance
Structural changes
Increase cytoskeletal proteins
ECM disruption
Exosome formation
Mitochondrial process
Electron Transport Chain
Pyruvate Dehydrogenase Complex
Immune response
Increase Antioxidants
Increased Chaperones

Lactate production
Glutamate excitotoxicity

Metabolic process
Lowered gluconeogenesis
Serine synthesis
Others
Endosomal sorting
Synthesis of Deoxynucleotides
tRNA aminoacyl synthetase reduced

Whnt signaling decreased

(Rot, Pq and MPP™). Each circle represents each neurotoxin and the
common process for all 3 neurotoxins are listed in the middle

template, using standard methods [23]. The obtained pro-
tein model was energy minimized to determine the proper
molecular arrangement in space and considered an unmodi-
fied CI (Fig. 6A).

Next, we selected five peripheral arm subunits NDUFV1,
NDUFV2, NDUFV3, NDUFS1 and NDUFS4) that inter-
act with each other and harbor the critical sites including
the FMN binding site and Fe-S clusters. This sub-complex
was chosen for structural analysis by MDS experiment to
assess the effects of Trp oxidation (Fig. 6B i and ii). After
careful analysis of Trp oxidation events in these subunits,
Trp433 in NDUFV1 was chosen for further study. Since
this residue was proximal to the NADH, FMN and Fe-S site
and was oxidized (Trp to oxyindolylalanine) in the neuro-
toxic model, we chose to assess the structural perturbations
caused by this PTM. Accordingly, the sub-complex (with
five subunits) with Trp433 in NDUFV1 was replaced with
oxyindolylalanine (and all the other Trp residues across the
five subunits present in the unmodified state) was considered
as “modified” structure and compared with the unmodified
sub-complex.
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A
l Control, Rotenone, Paraquat. MPP+ |
| Isolation of mitochondria and i pture of CI I
l In-solution tryptic digestion |
[ Characterization of subunit composition by LC-MS/MS and Data analysis |
| Data mining of the LC-MS/MS data for PTMs in CI |
B
Types of PTMs W C K R u Core subunit Supernumerary subunits
Oxidation 29 - - - _25
~
Dioxidation 33 - - - £ 20
=
Trioxidation - 6 - - = s 1
Cysteinylation - 1 - - ‘g s
- =10 11
Acetylation - - 1 - ? 4
Dimethylation - - - 1 s 5 . .
<
Total 62 7 1 1 Z .
Control Rotenone Paraquat MPP+
D
Group Oxidation | Dioxidation | Trioxidation Dimethylation | Acetylation | Cysteinylation Total
Control 3 10 1 1 - - 15
Rotenone 27 32 5 1 1 66
Paraquat 11 19 1 1 - - 32
MPP+ 17 22 1 1 1 - 42
E
12 Complex I subunits Control ®Rotenone =MPP Paraquat

No. of modified peptides
=)

> $ > a3 > A S N » o >
N QQQ% é‘% o“% é‘% &% &4 é‘% é‘% &4

Q
R R

Core subunits

Fig.3 Immunocapture of mitochondrial Complex I (CI) and PTM
characterization. A Experimental workflow. Total mitochondria were
isolated from Control, Rot, Pq and MPP*. CI was immunocaptured
individually from each group and subjected to in-solution tryptic
digestion and LC-MS/MS followed by subunit characterization. The
MS data was mined to identify PTMs in different subunits of CI. B

MDS analysis (0-100 ns or 0-1000 frames) of the
unmodified and modified sub-complexes were carried out,
followed by the calculation of RMSD, RMSF and Rg for
all the subunits (Fig. 7). The RMSD values of the modified
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The table shows the types and number of PTMs at Trp (W), Cys (C),
Lys (K) and Arg (R) residues across different control and toxic mod-
els (C) Graph shows the number of core and supernumerary subunits
with PTMs. D The type and number of PTMs across control and toxic
models. E The number of modified peptides in CI in control and toxic
models. The subunits underlined in red are the core subunits of CI

subunits showed significant variation in subunits NDUFV1
and the interacting subunit NDUFS4. The backbone of the
modified NDUFV land NDUFS4 subunit displayed altered
RMSD from 160 (16 ns) and 60 (6 ns) frames respectively.
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Table 3 List of Post Translational Modifications (PTMs) searched in the CI MS data. The type of PTM, targeted residues, mass difference (Am)
and the reaction are shown

No PTMs Targeted Residues Am (monoiso- Reaction
topic)
Oxidative PTMs
1 Glutamic semialdehyde R —43.05 Arg to Glutamic semialdehyde
2 Oxidation W, C 15.99 Trp to Oxyindolylalanine, Cys to Cys-sulfenic acid
3 Dioxidation W, C 31.99 Trp to N-formylkynurenine, Cys to Cys-sulfinic acid
4 Trioxidation C 47.98 Cys to Cys-sulfonic acid
5 Cysteinylation C 119 Cystine disulfide
6 Hydroxykynurenine w 19.99 Trp to Hydroxykynurenine
7 Kynurenine w 3.99 Trp to Kynurenine
8 Oxolactone w 13.98 Trp to Oxolactone
Non-Oxidative PTMs
9 Acetylation N-terminus, K, C 42.04 N-Acetyl protein, Lys to Acetyl-lys
10 Palmitoylation N-terminus, K, C 238.23 N-Palmitoyl protein, Lys to N-Palmitoylated Lys, Cys to
S-Palmitoyl Cys
11 Glutathionylation C 305.07 Cys to S-Glutathionylated Cys
12 Nitrosylation C 28.99 Cys to S-nitrosylated cys
13 Phosphorylation S,T,Y 79.97 Ser to Phospho-ser, Thr to Phospho-thr, Tyr to Phospho-tyr
14 Nitration Y 44.99 Tyr to 3-Nitro tyr
15 Sulfation Y 79.96 Tyr to Sulfo tyr
16 Methylation K, R 14.02 Lys to Methyl lys, Arg to methyl arg
17 Dimethylation K, R 28.03 Lys to Dimethyl lys, Arg to Dimethyl arg
18 Trimethylation K,R 42.05 Lysine to Trimethyl lys, Arg to Trimethyl arg

However, the other interacting subunits of NDUFVI i.e.,
NDUFV2, NDUFV3 and NDUFS1 did not show signifi-
cant structural changes following the oxidation of Trp433
(Fig. 7A-E). RMSF data showed significantly increased
fluctuation in modified NDUFV1 and NDUFV3 whereas
modified NDUFV2 and NDUFS1 showed decreased fluc-
tuation compared to unmodified conditions (Fig. 7G). The
changes noted in the RMSF data indicate local structural
changes in individual subunits. However, the overall struc-
ture of the sub-complex was relatively unaltered as indicated
by Rg analysis (Fig. 7F).

Since most of the subunits showed local conformational
changes in selected regions, we investigated whether these
could impinge on the distances between consecutive Fe-S
clusters, thereby potentially altering the enzyme activity.
We noted that the distance between Fe-S 301 (N1a) to Fe-S
502 (N3) (in NDUFV1) and Fe-S 802 (N4) to Fe-S 801
(N5) (both in NDUFS1) were decreased by ~2 A (Fig. 8)
in the entire simulation, indicating that oxidation of W433
alters the local confirmation in NDUFV1 and the neighbour-
ing subunits indicating the long-distance conformational
changes induced by a single W oxidation.

The local conformational changes in these subunits were
further analysed by hydrogen bond analysis at the subunit
level and the residue level. The number of hydrogen bonds
between NDUFV1 and NDUFS1 and between NDUFV1

and NDUFS4 were significantly reduced in the modified
structure, compared to unmodified conditions (Fig. 9C and
D). However, the hydrogen bonding between NDUFV1 and
NDUFV2 and between NDUFV1 and NDUFV3 were rela-
tively unaltered throughout the simulation (Figs. 9A to D).
Structural analysis at the residue level revealed significant
increase in the distance between the sidechains of W433 and
the neighbouring residues G437 in the modified structure
(3.68 A at 100 ns) compared to the unmodified structure
(2.23 A at 100 ns) thereby leading to loss of hydrogen bond
between the two residues (Fig. 9I). Interestingly, the loss
of this hydrogen bond converted the helical structure into
a loop, thereby indicating alterations in the local secondary
structure.

Discussion

Many neurotoxic PD models have been characterized but
none of them recapitulate all the pathological features of the
disease [21]. Models employing neurotoxins have focused on
Cl inhibition-mediated mitochondrial damage as the primary
event of PD pathogenesis. Considering the varied response
of neurotoxins that targets CI, we tried to identify common
characteristics of neurodegeneration in PD using three neu-
rotoxins that inhibit CI. The characterization of these models
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Fig.4 Representative m/z spectra of Trp (W), Cys (C) PTMs in Com-
plex I subunits. m/z spectra of unmodified and modified peptides in
NDUFV1 subunit are shown. A-B, W oxidation spectra. A, m/z spec-
tra of a peptide (sequence shown with the susceptible Trp (W) shown
in red, lower case) showing unmodified Trp. B, m/z Spectra of the
same peptide with oxidized Trp (Trp to Oxyindolylalanine) with mass

will not only provide insights into CI damage and cell death
but also assist in developing novel therapeutics.

Proteomic Changes in the Neurotoxic Models of PD

Previous “omics” studies in PD patients and models have
identified degenerative pathways including mitochondrial
dysfunction, impaired energy production, oxidative stress,
proteasomal dysfunction, impaired cytoskeleton organiza-
tion, or elevated inflammation [24-27]. Many genetic mod-
els of PD have revealed mitochondrial dysfunction and oxi-
dative damage. Parkin-/- mice display altered expression of
glycolytic, mitochondrial (subunits of TCA, OXPHOS and
pyruvate dehydrogenase) and antioxidant proteins (perox-
iredoxins) [28, 29]. Previous studies including ours [11, 30]
linked mutant a-synuclein with impaired energy metabo-
lism, mitochondrial dysfunction and oxidative stress [30].
Similarly, PINK1 deficiency induces proteomic changes

@ Springer

increase of 16 Da (indicated as+ 16 Da). C-D, C oxidation spectra.
C, m/z spectra of the peptide (sequence shown with the susceptible
C shown in red, lower case) with unmodified C. D, m/z Spectra of
the peptide with C Trioxidation (Cys to Cys-sulfonic acid) with mass
increase of 48 Da (indicated as +48 Da)

linked to impaired glycolysis, mitochondrial respiration [31,
32] and oxidative stress [33].

Proteomics in the Rot model revealed altered expression
of proteins implicated in mitochondrial, endoplasmic retic-
ulum, autophagy, cytokinesis, cell cycle and cytoskeleton
functions [34, 35]. Our previous microarray study in the
MPP" model noted differential expression of mitochondrial,
synaptic and autophagy genes linked with apoptosis, neuro-
inflammation, neurotransmission and cytoskeleton organi-
zation [36, 37]. MPTP models have revealed alterations in
proteins of redox, mitochondrial [38] and protein deglycase
(DJ-1) function [39].

Although gene and protein expression data are available
for MPP* and Rot model, such studies in Pq model are lim-
ited. Further, comparative proteomic analysis across three
neurotoxic models (Rot, Pq and MPP") is not reported so
far. The current study noted 10 up-regulated and 14 down-
regulated proteins common across three neurotoxic models
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Table 4 List of PTMs identified in isolated CI. The accession num-
ber and symbol of the subunit, annotated peptide sequence [modified
residues in lower case (bold)], amino acid (AA) position in the pro-

tein, specific PTM and the sample are shown (Rot LD,;=R25, Rot
LD;,=R50, Pq LD,5=P25, Pq LDs,=P50, MPP" LD,;=M25 and
MPP* LD5,=M50)

Accession

Subunit

Annotated Sequence

AA position in the protein (PTM in
parenthesis)

Found in Sample

AOAO0G2KAA3 NDUFA3 DNGNMPDVPSHPQEPLGP- W22 (Dioxidation) R25
SLEwLK
Q63362 NDUFA5 mLQWKPWEPLVEEPPANQwK M1 (Oxidation); W19(Dioxidation) R25, P50
TTGLVGLAVcDTPHER C10(Trioxidation) R25
Q5BK63 NDUFA9 LFGLSPFEPWTTK W10(Oxidation) R25, P25
LFGLSPFEPWTTK W10(Dioxidation) Control, R25
LMGDLGQLIFLEwDAR W13 (Dioxidation) Control, R25, M25, P25, P50
cDIYDTmHLR C1(Trioxidation); M7(Oxidation) R25
FVYSwIGR W5(Dioxidation) R25, R50, P25
FVYSwIGR W5(Oxidation) R25, M25, P25, P50
LmGDLGQLIFLEwDAR M2(Oxidation); W13(Oxidation) R25, M25, P25, P50
wLSSEIEETKPAK W1(Oxidation) R25, M25, P25, P50
Q56150 NDUFA10 LQSwLYASR W4(Dioxidation) R25, R50, M25, P25, P50
LQSwLYASR W4(Oxidation) R25, M25
FILXAO NDUFA12 QEwVPPSTPYK W4(Oxidation) R25, M25
IQEwVPPSTPYK W4(Dioxidation) R50, M25
wLHcMTDDPPTTKPLTAR W1(Oxidation); M25, P25, P50
C4(Carbamidomethyl)
NTFWDVDGSMVPPEwHR W15(Dioxidation) P50
D3ZF13 NDUFAB1 LYDKIDPEK K4(Acetyl) M50
PODN35 NDUFB1 ELRPNEEVTwK W10(Dioxidation) R25, M25, M50, P25, P50
ELRPNEEVTwK W10(Oxidation) R25, R50, M25, M50
D37721 NDUFB6 FwNNFLR W2(Dioxidation) Control, R25, R50, M25, P25, P50
MwPLER W2(Dioxidation) R25, M25, P25
D3ZLT1 NDUFB7 DSFPNFVAcK C9(Trioxidation) R25
YLwDASVEPDPEK W3(Dioxidation) R25
B2RYS8 NDUFB8  VDTSPTPVSwDVmcR WI10(Dioxidation); M13(Oxidation); R25, M25
C14(Carbamidomethyl)
DPWYEwDHPDLR W6(Oxidation) R25
B2RYW3 NDUFB9 mESwDR M1 (Oxidation); W4(Dioxidation) Control, R25, R50, M50, P25, P50
HLESwcVHR W5(Oxidation); R25, R50, P50
C6(Carbamidomethyl)
D4A0TO NDUFB10 AYDLVVDwPVTLVR W8 (Dioxidation) Control, R25, R50, M25, M50
AYDLVVDwPVTLVR W8(Oxidation) R25, R50, M25, P50
D4A7L4 NDUFB11 NPDFHGYDSDPVVDVwNmR W16(Dioxidation); M18(Oxidation) ~ R25, P50
NPDFHGYDSDPVVDVwNmR W16(Oxidation); M18(Oxidation) R25
mQEwWAR M1(Oxidation); W4(Dioxidation) R50, M50, P25, P50
Q66HF1 NDUFS1  MHEDINEEwISDK WO9(Dioxidation) Control, R25, R50, P25, P50
MHEDINEEwISDK W9(Oxidation) R25, M25
GLLTYTSwWEDALSR W8(Dioxidation) R25, M25
GLLTYTSwWEDALSR W8(Oxidation) R25, R50
VASGAAAEwK WO9(Dioxidation) R25, R50, M50
AVTEGAQAVEEPSIc C15(Cysteinyl) R50
VASGAAAEwK WO9(Oxidation) R50, M50
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Table 4 (continued)

Accession Subunit Annotated Sequence AA position in the protein (PTM in ~ Found in Sample
parenthesis)
Q641Y2 NDUFS2  GSGIQwDLR W6(Dioxidation) Control, R25, R50, P25, P50
GSGIQwDLR W6(Oxidation) Control, R25, R50
KcDPHIGLLHrGTEK C2(Carbamidomethyl); Control, R25, R50, M50, P25, P50
R11(Dimethyl)
ETAHWKPPPWNDVDVLK W10(Oxidation) 25
D37G43 NDUFS3  FDLNSPwEAFPAYR W7(Oxidation) Control, R25
FDLNSPwWEAFPAYR W7(Dioxidation) R25, M25
Q5XIF3 NDUFS4 HGwSYDVEGR W3(Dioxidation) R25, R50
HGwSYDVEGR W3(Oxidation) R25, R50
SYGANFSwNKR W8(Dioxidation) R25, M25, P50
SYGANFSwNKR W8(Oxidation) R25, R50
D37CZ9 NDUFS6  ITAcDGGGGALGHPK C4(Trioxidation) Control, R50, M25, P25, P50
Q5RINO NDUFS7 LDDLINwAR W7 (Dioxidation) Control, R25, R50, M25, P25, P50
DDLINwWAR W7(Oxidation) R25, M25, P50
BOBNE6 NDUFS8  ILmwTELFR M3(Oxidation); W4(Dioxidation) Control, R25, M25
Q5XIH3 NDUFV1 EGVDwmNK W5(Dioxidation); M6(Oxidation) R25, P25, P50
GDARPAEIDSLWEISK W12(Dioxidation) R25, M25, P25, P50
GDARPAEIDSLWEISK W12(Oxidation) R25, M25, P50
GGTwFAGFGR W4 (Dioxidation) R25, R50, M25
GGTwFAGFGR W4(Oxidation) R25
GPDwWILGEmK W4 (Dioxidation); M9(Oxidation) R25, R50, M50
GPDwWILGEmK W4(Oxidation); M9(Oxidation) R25, R50, M50
LKPPFPADVGVFGcPTTVANVET- Cl4(Carbamidomethyl); R25, P50
VAVSPTIcR C31(Trioxidation)
QIEGHTIcALGDGAAWPVQGLIR  C8(Carbamidomethyl); R25, M25
W16(Dioxidation)
QIEGHTIcALGDGAAWPVQGLIR  C8(Carbamidomethyl); R25, R50, M25
W16(Oxidation)
YLVVNADEGEPGTcKDR Cl4(Trioxidation) R25
EGVDwMNK W5(Oxidation) R50, M50, P25
G3V644 NDUFV3  GPELEwK W6(Oxidation) Control, R25, M25
D2E6KO ND4 NFPSIMLLPLTWLSANK W13(Dioxidation) R25, M25, P25, P50
AOA096XKT9 ND5 LSLNLLDLIWLEK W10(Dioxidation) Control, R25, M25, P25, P50
LSLNLLDLIWLEK W10(Oxidation) R25, M25, P25, P50

(Fig. 1D and E), that were associated with cell death path-
ways, mitochondrial proteins, structural changes, calcium
and antioxidant function among others (Fig. 2). Mitochon-
drial proteins with altered expression included CI subunits
(NDUFA10-11, NDUFS1, NDUFS5-6), cytochrome C oxi-
dase subunits, other metabolic proteins (Table 1) and altered
cytoskeletal proteins (vimentin, caldesmon) (Table 1). Our
study also showed altered expression of aminoacyl tRNA
biosynthesis proteins (Table 1), highlighted in a previous
study [26].

Among the antioxidant proteins, Superoxide dismutase-2
(SOD2) ubiquitously expressed in the brain [39] showed
down-regulation (Table 1), which could contribute to

@ Springer

oxidative damage [39] and neurodegeneration as noted in

PD patients [40].

Structural changes induced by the toxins included altered

expression of cytoskeletal proteins altered such as vimen-
tin and the actin-binding Caldesmon (Fig. 2 and Table 1),
necessary for mitochondrial trafficking in neurons [41] as
noted in neurodegenerative diseases including PD [42].
Similarly, Caveolin-1, involved in endocytosis regulates
synaptic remodeling and transmission and neurotrophic
signaling [43—45], with a role in ageing was downregulated
in the three models in our study (Table 1). Loss of caveolin-1
enhanced oxidative stress and neurodegeneration as previ-
ously noted [46, 47].



Neurochemical Research (2023) 48:2360-2389 2379
Fig.5 Distribution PTMs in dif- —
ferent subunits of CI. Schematic / NDUFV3
representation of mammalian | NDUFV2 ’.
CI structure, showing the o0 ©
o XXX X
distribution of PTMs [mono-, oo ®0
. .. 0000000 NDUFA2
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Calcium binding proteins are necessary to maintain phys-
iological calcium levels and regulate excitotoxicity [48, 49].
The Ca*-binding protein S100A4, involved in modulating
various cellular functions [50], was overexpressed in all
three models (Fig. 2 and Tablel). The neuroprotective role
of S100A4 in PD has been demonstrated [51], although its
neurotoxic role is currently unknown.

The role of Dual specificity phosphatase (DUSPs) in pro-
tein phosphorylation dynamics is noted in CNS disease [52,
53] and their altered expression might play an essential role
in PD pathogenesis [54]. Our study showed overexpression
of DUSPs in all three models (fold change 1.69-2.81) with
implications for PD.

The overview of the proteomic data highlighted the simi-
larity among the downstream pathways in the three neuro-
toxic models. This could be due to the fact that the three
toxins target CI and potentially induce oxidative stress and
mitochondrial damage. We believe that since mitochondrial
dysfunction is connected to metabolic changes including

ETC and oxidative phosphorylation, altered calcium and
redox dynamics and could be linked to cell death path-
ways, they could form a cascade leading to neurodegenera-
tion. However, the chronology of these events is not clearly
understood since some pathways could work synergistically
to exacerbate the neurotoxic effect.

Structural Implications of Protein Oxidation in Cl

The optimal protein conformation of cellular proteins could
be influenced by PTMs. Oxidative PTMs alter the struc-
ture—function relationship of proteins and contribute to
ageing and neurodegeneration [55]. Oxidative and nitrative
modifications have been reported in human samples and
experimental models of neurodegenerative diseases such as
PD and Alzheimer’s disease (AD), which includes reversible
modifications such as cysteine oxidation [56, 57]. Daniel-
son et al. [58] reported quantification of reversible oxidation
of 34 distinct cysteine residues out of a total 130 present
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Table 5 List of CI PTMs identified in this study that were common to the previous studies. The subunit symbol, annotated peptide sequence
[modified residues in lower case], the amino acid (AA) position in the protein, specific PTM and reference are shown

No Subunit Annotated Sequence PTMs Reference

1 NDUFAS mLQWKPWEPLVEEPPANQwK M1 (Oxidation); W19(Dioxidation) [22]

2 NDUFAS TTGLVGLAVcDTPHER C10(Trioxidation) [22]

3 NDUFA9 LFGLSPFEPWTTK W10(Dioxidation) [22]

4 NDUFB7 DSFPNFVAcK C9(Trioxidation) [63]

5 NDUFV1 GDARPAEIDSLwWEISK W12(Dioxidation) [22]

6 NDUFV1 GPDwWILGEmK W4(Dioxidation); M9(Oxidation) [22]

7 NDUFV1 LKPPFPADVGVFGcPTTVANVET- C14(Carbamidomethyl); C31(Trioxidation) [58]

VAVSPTIcR

NDUFVI YLVVNADEGEPGTcKDR Cl14(Trioxidation) [58]
NDUFSI1 GLLTYTSwEDALSR Wa8(Dioxidation) [22]

10 NDUFS2 KcDPHIGLLHrGTEK C2(Carbamidomethyl); R11(Dimethyl) [82, 83]

11 NDUFS3 FDLNSPwEAFPAYR W7(Dioxidation) [22]

12 NDUFS4 SYGANFSwNKR W8(Dioxidation) [22]

13 NDUFS6 ITAcDGGGGALGHPK C4(Trioxidation) [58]

14 NDUFS7 LDDLINWAR W7(Dioxidation) [22]

15 NDUFS8 ILmwTELFR M3(Oxidation); W4(Dioxidation) [22]

in murine CI in a glutathione depletion model of PD with
structural implications for iron-sulfur clusters highlighting
the importance of their redox status in electron transport
function. Similarly, the link between redox proteome and
protein aggregation in AD pathogenesis has been estab-
lished [59]. Newman et al. [60] demonstrated a significant
increase in S-glutathionylated proteins in the AD human
brain samples via redox proteomic approach highlighting
the importance of reversible cysteine proteomic changes in
neurodegeneration.

Cl is a major target for protein oxidation-mediated inhibi-
tion of enzyme activity [6]. MS of CI subunits have iden-
tified PTMs including (1) glutathionylation of the 75 kDa
subunit (Cys>*! and Cys’*) [61], (2) oxidation of NDUFS1
(Cys??, Cys*®, and Cys>**), NDUFS2 (Cys**’), NDUFS7
(Cys*® and Cys®) [58] (3) oxidation of B17.2 (Trp®!) [62]
(4) dioxidation of tryptophan in NDUFV1, NDUFAS,
NDUFA9, NDUFS1, NDUFS2, NDUFS4, NDUFS7, and
NDUFSS8 [63] (5) nitration of B14 (Tyr'??), B15 (Tyr*,
Tyr, and Tyr’") [62] (6) phosphorylation of MWFE (Ser”>)
[64] (7) dimethylation of 49 kDa subunit (Arg®) [64] and
(8) hydroxylation of PSST subunit (Arg’") [64].

Several amino acids are vulnerable to oxidation with Cys
and Trp among the frequently oxidized amino acids. Trp
oxidation generates three species: oxindolylalanine (with
increased mass of + 16 Da over Trp), N-formylkynurenine
(+32 Da), and kynurenine (+4 Da). It should be noted that
Trp oxidation in a peptide is a specific event and is depend-
ent on the neighboring residues [65]. However, sample prep-
aration is critical to identify Trp oxidation since methods
using gel electrophoresis could generate false-positive Trp

@ Springer

oxidative PTMs [65]. This point is not applicable to the cur-
rent study since we have employed only in-solution methods.

Studies have reported Trp oxidation in mitochondrial
proteins under physiological conditions. Taylor et al. [63]
identified Trp oxidation in the CI subunits NDUFV1 and
NDUFAO9. Our previous studies reported Trp oxidation in
mitochondrial proteins in mouse models and human samples
of muscle pathologies [7]. MS analysis of CI in the current
study detected widespread Trp oxidation among CI subunits
(Fig. 3F and Table 5), with Rot model displaying relatively
higher number of oxidation events compared to the other
two models.

None of the studies till date have assessed the structural
effects of Trp oxidation on CI. Rat CI has 161 Trp residues
across all the subunits, among which 62 residues were oxi-
dized in all three neurotoxic models (Fig. 3C and Table 5).
The peripheral arm of CI showed higher number of oxidized
Trp compared to the membrane arm (Fig. 3F and Table 5),
with NDUFV1 displaying the maximum number of oxidized
Trp residues compared to other subunits. We noted that the
Trp residues which are susceptible to oxidation were located
either at the end of the secondary structure or in an open
loop and were either completely or partially exposed to the
solvent, and were surrounded by nonpolar amino acids [7].

CI structure facilitates electron transfer and proton
translocation [66]. Mutations in CI subunits are linked
with mitochondrial diseases [67]. Since, the subunit
organization is critical to generate a physiologically func-
tional CI [68], mutations and PTMs could alter the struc-
ture—function relationship [6, 55]. Structural alterations
in one subunit could induce structural changes in other
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Fig.6 Homology modeling of rat CI. A Homology modeling of Rat
CI built using mouse model (PDB: 6G2J) as a template. The structure
shows 44 subunits of the complex (each labelled with the constituent
helices shown in different colours), FMN co-factor (green) and Fe-S
clusters (yellow-orange). B Enlarged view of CI sub-complex consid-

subunits of the complex. For e.g., our previous MDS study
demonstrated that oxidation of Trp395 in UQCRCI1 subu-
nit of CIII caused structural changes in the other subunits,
thereby altering the flexibility of the complex, potentially
impairing the electron transfer [69]. Subtle structural
changes could have profound effect on protein function.
This is exemplified by the optimal distance between con-
secutive Fe-S clusters in CI, which is critical for its activ-
ity. Our previous MDS analysis in CI subunits NDUFV1,
NDUFS1 and NDUFV2 showed that phosphorylation

ered for the molecular dynamics study. The five subunits of the sub-
complex consisting of NDUFV1(blue), NDUFV2(green), NDUFV3
(yellow), NDUFS1 (pink) and NDUFS4 (red) are shown. The co-fac-
tor (FMN) and Fe-S clusters (yellow-orange) along with the Trp433
of NDUFV1 targeted for oxidation are shown

induced local structural alterations, thereby altering the
efficiency of electron transfer from FMN, ultimately affect-
ing the CI activity [70]. The optimal distance between
successive Fe-S in protein complexes is ~14 A[71].InCI,
the electron transfer from NADH to ubiquinone requires
the presence of at least seven Fe-S clusters (N1b, N2, N3,
N4, N5, N6a and N6b), that form a~95 A long chain of
redox centers [72]. Altered distance between consecutive
Fe-S clusters, either delays the electron transfer or causes
a short-circuit [73].
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Fig.7 Molecular dynamics simulation (MDS) of CI subcomplex.
RMSD of all 5 chains A NDUFVI1, B NDUFV2, C NDUFV3, D
NDUEFSI1 and E NDUFS4 is shown. The RMSD curves the unmodi-
fied and modified (Trp 433) chains are shown in different colours.
The Rg of all the five chains of the CI subcomplex is shown in (F).
G RMSF of all 5 Chains with modified Trp433 (dark yellow) and
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unmodified (light yellow), are shown. The RMSF of each subunit
is demarcated from the next by a solid line. The RMSF correspond-
ing to Trp433 is indicated. The significant increase and decrease in
RMSF (in A°) of the modified subcomplex is indicated by red and
blue arrows respectively



Neurochemical Research (2023) 48:2360-2389

2383

A
FMN to FeS 301 (N1a)
20
<
g1s
=
S
a
10 +
0 100 200 300 400 500 600 700 800 900 1000
Times (in Fraomes)
Unmodified ——Modified
B
FMN to FeS 502 (N3)
15
<
Q)
=10
3
2
0 100 200 300 400 500 600 700 800 900 1000
Times (in Frames)
Unmodified ——Modified
C
FeS 301 (N1a) to FeS 502 (N3)
30
225
8
520
2
15 + T T T T T T T T T ]
0 100 200 300 400 500 600 700 800 900 1000
Times (in Frames)
Unmodified ——Modified

Fig.8 Distance analysis between FMN and the first 5 consecutive
Fe-S clusters based on MDS data. Distance between A FMN to FeS
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(N3), D Fes 502 (N3) to FeS 803 (N1b), E FeS 803 (N1b) to FeS 802
(N4), F FeS 802 (N4) to FeS 801 (N5) in unmodified (light green),

Considering the technical limitation in carrying out MDS
on the entire CI, we generated an unmodified and modi-
fied sub-complex containing five peripheral arm subunits
that interact with FMN site and Fe-S clusters. MDS data
revealed that PTM at W433 altered the arrangement of Fe-S
clusters as indicated by the decreased distance between Fe-S
301 (N1a) to Fe-S 502 (N3) and increased distance between
Fe-S 802 (N4) to Fe-S 801 (N5) at 100 ns (Fig. 8C, F and
I). Other structural changes included decreased hydrogen
bonding between NDUFV1-NDUFS1 and NDUFV1-
NDUFS4 (Fig. 9C and D) and altered hydrogen bonding
between Trp433 and Gly437 (Fig. 9I). We are tempted to
speculate that local conformational changes could probably
contribute to altered structure—function relationship of the

D
FeS 502 (N3) to FeS 803 (N1b)
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and Trp433 modified (dark green) subcomplexes and are shown. The
distance (shown in A°) between FMN and first five consecutive Fe-S
clusters within the sub-complex in both unmodified and Trp433 mod-
ified conditions at G 0 ns, H 50 ns and I 100 ns are shown

complex. However, such studies have certain limitations.
Firstly, the study was not carried out on the entire complex.
Secondly, we have not considered all the PTMs across of
CI. Whether these structural changes are noted during the
disease progression in the human brain needs to be con-
sidered for clinical implications of PD. Further, assessment
of other oxidative mechanisms including protein carbonyla-
tion, cysteine oxidation could provide additional informa-
tion about the neurotoxic mechanisms at the protein level,
although we have not conducted any quantitative proteomics
in these models to ascertain the same. It is possible that
regulation of cysteine redox proteome on its own or follow-
ing Trp oxidation could have structural implications for CI
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Fig.8 (continued)

in particular and functional implications for mitochondrial
function in general.

Considering that oxidative stress and protein oxidation
have potential structural and functions effects on mitochon-
drial function including CI, antioxidants such as n-acetyl
cysteine have antioxidant and neuroprotective potential with
therapeutic implications for neurodegeneration and Parkin-
son’s disease. Our previous studies have demonstrated that
natural antioxidants such as curcumin and their derivatives
have neuroprotective effects against mitochondrial dysfunc-
tion, CI dysfunction and oxidative damage using in vitro and
in vivo models [10, 13, 74-76]. Similarly, soluble extract

from Bacopa monnieri has been tested for their antioxidant
and neuroprotective effects in neurotoxic models in vivo
[77-80] with implications for neurodegenerative diseases.

To our knowledge, this is one of the first studies that has
combined analysis of downstream pathways induced by the
CI specific toxins along with the assessment of the struc-
tural changes induced by the PTMs in these models. This
could provide insights not only into the function of CI but
also highlight the critical residues important for the catalytic
activity, that are targeted for oxidative PTMs in the neuro-
toxic models.
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Fig.9 Hydrogen bond analysis at subunit and residues level of the
subcomplex: The number of hydrogen bonds measured in unmodi-
fied (blue) and Trp433 modified (Green) CI subcomplex between A
NDUFVI1 and NDUFV2, B NDUFV1 And NDUFV3, C NDUFV1
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gen bonding measured at the residue level in the unmodified vs.
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ing residue G430 of NDUFV1 is shown in (E). The distance between
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