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Abstract
Parkinson's disease (PD) is a common age-related neurodegenerative disorder whose pathogenesis is not completely under-
stood. Mitochondrial dysfunction and increased oxidative stress have been considered as major causes and central events 
responsible for the progressive degeneration of dopaminergic (DA) neurons in PD. Therefore, investigating mitochondrial 
disorders plays a role in understanding the pathogenesis of PD and can be an important therapeutic target for this disease. This 
study discusses the effect of environmental, genetic and biological factors on mitochondrial dysfunction and also focuses on 
the mitochondrial molecular mechanisms underlying neurodegeneration, and its possible therapeutic targets in PD, includ-
ing reactive oxygen species generation, calcium overload, inflammasome activation, apoptosis, mitophagy, mitochondrial 
biogenesis, and mitochondrial dynamics. Other potential therapeutic strategies such as mitochondrial transfer/transplantation, 
targeting microRNAs, using stem cells, photobiomodulation, diet, and exercise were also discussed in this review, which may 
provide valuable insights into clinical aspects. A better understanding of the roles of mitochondria in the pathophysiology 
of PD may provide a rationale for designing novel therapeutic interventions in our fight against PD.

Keywords Parkinson’s disease · Mitochondrial dysfunction · Mitochondrial biogenesis · Mitochondrial dynamics · 
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Introduction

Parkinson’s disease (PD) is the second most prevalent, age-
related neurodegenerative disease, affecting 1 to 3% of indi-
viduals older than 65 years [1]. PD is pathologically charac-
terized by the extensive degeneration of dopaminergic (DA) 
neurons in the substantia nigra pars compacta (SNpc) and 
accumulation of alpha-synuclein (α-syn) amyloid, termed 
Lewy bodies (LBs), in surviving neurons [2]. The cardinal 
motor signs of PD include rest tremor, bradykinesia, rigid-
ity, and postural instability. In addition, a lot of non-motor 
features are also well recognized in PD patients, including 
anosmia, depression, hyposmia, dementia, and pain [3].

Although many studies have been performed on the 
pathogenesis of PD, the underlying causes of the selec-
tive loss of DA neurons or abnormal aggregation of α-syn 
have not yet been clarified [4]. Furthermore, available 
treatments for PD have symptomatic effects; there is no 
cure or disease-modifying therapy available to slow the 
progression of PD [5]. Thus, the biggest current challenge 
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is to achieve effective treatments based on an understanding 
of the underlying PD mechanisms [6].

More recent studies have shown that mitochondrial dys-
function has a prominent role in the development and dev-
astating consequences of central nervous system (CNS) dis-
eases, including ischemic stroke, Alzheimer’s disease (AD) 
and PD [7–9]. Mitochondria are dynamic organelles that are 
essential for various cellular functions, such as cell prolif-
eration and differentiation [10, 11], apoptosis [12], calcium 
homeostasis [13], energy production [14], and redox signal-
ing [15]. Mitochondria are the main site of reactive oxygen 
species (ROS) production in CNS injuries [16]. Defects in 
the function of enzymes involved in mitochondrial electron 
transport chain (ETC) lead to the excessive production of 
ROS, which can induce oxidative damage in the mitochon-
dria DNA (mtDNA), proteins, and lipids [17], and finally 
results in the mitochondrial dysfunction that implicates PD 
pathogenesis. Therefore, prevention of mitochondrial dys-
function is an effective strategy for future PD therapies [18]. 
In this review, we focus on the current knowledge regarding 
the role of mitochondrial dysfunction in the pathogenesis 
of PD, followed by discussing novel therapeutic strategies 
targeting mitochondrial dysfunction.

Pathophysiology of Parkinson’s Disease

PD is a multifactorial disease  caused by an interplay 
between various environmental and genetic factors, and 
manifested with a wide range of clinical symptoms [19]. 
However, aging has been identified as the biggest risk fac-
tor for initiation and progression of PD [20]. A study deter-
mined the combined effects of natural aging, genetic disor-
der, and environmental toxicity in pathogenesis of PD [21]. 
To date, a number of different genes and environmental fac-
tors have been recognized as risk factors for PD. Scientists 
have identified more than 20 genes that can cause PD when 
mutated or over-expressed, including Single-nucleotide pol-
ymorphism rs356219 in the α-syn (SNCA), Leucine-rich 
repeat kinase 2 (LRRK2), parkinsonism associated degly-
case (PARK7), PTEN-induced kinase 1 (PINK1), parkin 
RBR E3 ubiquitin protein ligase (PRKN), deglycase DJ1, 
and glucocerebrosidase gene 1 (GBA1) [22]. Furthermore, 
numerous systematic reviews and meta-analyses have identi-
fied that environmental factors, such as pesticide exposure, 
traumatic brain injury, anxiety, and depression are associ-
ated with onset and severity of PD [1, 23, 24].

These risk factors are associated with a number of cel-
lular and molecular mechanisms underlying PD initiation 
and progression, including oxidative stress, mitochondrial 
dysfunction, apoptosis, abnormal protein aggregation, exci-
totoxicity, and neuroinflammation, which ultimately leads 

to accumulation of misfolded α-syn and DA neuronal death; 
However, the main reason is still unknown [25, 26].

A better understanding of the molecular mechanisms 
implicated in PD pathogenesis may contribute to the devel-
opment of prospective therapies for this disease [27, 28]. 
Among various cellular factors, mitochondria can be consid-
ered as a main factor in PD pathogenesis due to their promi-
nent role in the main cellular functions [29, 30]. Therefore, 
mitochondrial dysfunction triggers a sequence of events 
through energy deficiency, oxidative stress, inflammatory 
and apoptotic cascades [9], which eventually leads to neu-
ronal damage in PD [31, 32].

Mitochondrial Dysfunction in Parkinson’s 
Disease

Mitochondria are double-membrane–bound organelles 
located in the eukaryotic cells and have their own genomic 
DNA, which is known as mtDNA. These organelles are 
often known as the “powerhouses” or “energy factories” of 
the cell due to its pivotal role in the generation of adeno-
sine triphosphate (ATP) through oxidative phosphoryla-
tion process coupled to the ETC [33]. Besides their promi-
nent role in cellular energy production, mitochondria also 
play a critical role in various metabolic processes, including 
production of amino acids, lipids and second messengers, 
regulation of intracellular calcium, autophagy, and many 
other functions [34, 35].

It therefore comes as no surprise that dysfunction of these 
vital organelles has been implicated in the pathophysiology 
of various diseases, including neurodegenerative disorders 
and ischemic stroke [9, 16, 36]. Overwhelming evidence 
indicates that disruption of mitochondrial function and 
integrity is a major causative factor in the progression of 
PD [37, 38]; because many lines of evidence suggest that 
risk factors involved in the pathogenesis of PD exert their 
effects by triggering mitochondrial dysfunction [39]. In a 
rotenone-induced PD mice model, a significant decrease in 
mitochondrial complex I activity was observed in the stria-
tum [21]. Mitochondrial dysfunction can be caused by multi-
ple PD-related risk factors including environmental, genetic, 
and biological factors [40]. Here, the effect of these factors 
on the pathogenesis and progression of PD through mito-
chondrial dysfunction are discussed (Fig. 1).

Environmental Factors and Mitochondrial 
Dysfunction in PD

Numerous meta-analyses and epidemiological studies have 
examined the role of environmental factors in the patho-
genesis of PD and demonstrated that long term exposure to 
environmental toxicants such as pesticides, air pollutants, 
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and heavy metals represents potential risk factors for PD 
[41–43].

The impact  of environmental toxins  in PD 
has  been  demonst ra ted  s ince  the   d iscover y 

of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in 
the early 1980s [44], which induces selective degeneration 
of DA neurons by inhibiting mitochondrial complex I, lead-
ing to PD symptoms, such as rigidity, tremor, bradykinesia, 
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Fig. 1  Schematic representation of various pathogenic mechanisms 
associated with mitochondrial dysfunction in Parkinson’s disease 
(PD). Mitochondrial dysfunction was increased after several environ-
mental, genetic, and biological factors of PD. Following PD, α-syn 
interact with the ETC increased the production of mitochondrial 
ROS, promoting mtDNA damage. Dysfunction in ETC decreased 
complex I activity, decreased ATP production, and decreased respira-
tory capacity. It was also induced MPTP opening, calcium diffusion, 
cytochrome C release, and mitochondrial swelling, which increased 
inflammatory responses by releasing succinate and mitochondrial 
DAMPs, and induced apoptosis. In the PD, mitochondrial fragmenta-
tion was increased by increasing Drp1-mediated fission, and interac-
tion with fusion proteins, such as MFN1/2 and OPA1. Mitochondrial 
dysfunction triggers NLRP3 inflammasome activation, leading to the 
caspase-1 activation, and maturation of IL-1β and IL-18. Mitochon-
drial dysfunction also causes abnormal mitophagy, which affects ROS 

formation. After mitochondrial dysfunction and absence of Parkin, 
PARIS was bound to the PGC1α gene promoter and suppresses its 
expression, which impaired mitochondrial biogenesis. ETC Electron 
transport chain; mtDNA mitochondrial DNA; DAMPs mitochon-
drial damage-associated molecular patterns; AP-1 activator protein-1; 
NLRP NOD (nucleotide-binding oligomerization domain)-like recep-
tor (NLR) Pyrin domain containing 3; ASC apoptosis-associated 
speck-like protein containing a caspase recruitment domain; ASIC 
acid-sensing ion channel; ATP adenosine triphosphate; ROS reactive 
oxygen species; RNS reactive nitrogen species; Δψm mitochondrial 
membrane potential; MPTP mitochondrial permeability transition 
pore; Drp dynamin-related proteins; Mfn1/2 mitofusins; Opa1 optic 
atrophy 1; PINK1 PTEN-induced putative kinase 1; LC3 microtu-
bule-associated protein 1A/1B light chain 3; IL interleukin; Pre pre-
cursor; PGC-1α PARIS Parkin-interacting substrate; peroxisome pro-
liferator-activated receptor gamma-co-activator 1-alpha
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and cognitive deficits [45]. MPTP is a protoxicant and lipid-
soluble compound that easily crosses the Blood–Brain Bar-
rier (BBB) [46]. Following systemic administration, MPTP 
crosses the BBB and is metabolized to its toxic metabolite 
1-methyl-4-phenylpyridinium ion  (MPP+), by astroglial 
monoamine oxidase B (MAO-B) [47].  MPP+ is specifically 
transported into the DA neurons through the plasma mem-
brane dopamine transporter (DAT), and then accumulates in 
mitochondria [48]. Within the mitochondria, accumulated 
 MPP+ inhibits complex I of the ETC, causing DA neuronal 
death by reducing ATP synthesis and increasing ROS gen-
eration [49].

Besides MPTP, several other environmental toxins like 
rotenone, fenazaquin, trichloroethylene, paraquat, tebunfen-
pyrad, and fenpyroximate were identified to induce lossing 
of the nigral dopaminergic neurons in vivo models, and 
implicates in mitochondrial dysfunction in PD pathogenesis 
[50–52]. Like MPTP, these neurotoxins also inhibit mito-
chondrial complex I [53], triggering mitochondrial dysfunc-
tion by inducing ROS production, impairing ATP synthesis, 
increasing membrane permeability, and decreasing mito-
chondrial motility, which ultimately leads to neuronal dam-
age in SN [54, 55]. Inhibition of complex I to a small degree 
has been shown to significantly increase ROS production 
[56], which in turn inhibits complex I [57], creating a vicious 
cycle leading to mitochondrial damage and neuronal death 
[16]. Altogether, these data suggest that environmental expo-
sures contribute to the pathogenesis of sporadic PD, and 
mitochondrial dysfunction seems to play a prominent role in 
these devastating effects of environmental toxicants.

Genetic Factors and Mitochondrial Dysfunction 
in PD

More than two decades ago, PD was considered to be 
a non-genetic sporadic origin disorder [58]. In 1997, the 
identification of mutations in SNCA gene (encoding αSyn) 
in families with autosomal dominant PD revealed the asso-
ciation between genetic factors and pathogenesis of PD 
[59]. Subsequent studies discovered mutations in several 
genes, such as PRKN [60], PINK1 [61], and LRRK2 [62], 
which were associated with autosomal dominant or auto-
somal recessive forms of PD [63]. Moreover, to investigate 
the influence of genetics on the occurrence of sporadic 
PD, Tanner et al. in a twin study indicated that monozygotic 
(identical) twins had higher concordance rates than dizy-
gotic (non-identical) twins in those with early-onset disease 
(onset before age 50), suggesting a genetic basis for early-
onset of PD [64]. About 5–10% of patients with PD fol-
low a classical Mendelian type of inheritance and a family 
history of PD is reported in 15 to 20% of patients [65, 66]. 
To date, more than 15 genes and more than 40 independ-
ent loci have been identified as risk factors for monogenic 

forms and sporadic forms of PD, respectively [67]. It has 
been demonstrated that both mtDNA and nuclear DNA 
(nuDNA) genomes are involved in pathogenesis of PD [68, 
69]. Since accurate function of different mitochondrial com-
plexes is achieved by mtDNA and nuDNA encoded peptides, 
its mutations trigger mitochondrial dysfunction and oxida-
tive stress [70].

mtDNA Defects and PD

Mitochondria are the only cellular organelles possess-
ing their own genomes, which encode and produce protein 
components of respiratory chain complexes [71]. Human 
mtDNA is a double-stranded circular DNA molecule with 
16,569 DNA base pairs that encodes 37 genes [72]. In addi-
tion, mtDNA has a higher mutation rate (about 77 times 
higher) than nuDNA [73], possibly due to less efficient repair 
of DNA damage, a high replication rate, and mitochondrial 
ROS [74]. Consequently, deleterious mutations in mtDNA 
have been shown to disrupt mitochondrial protein synthesis, 
leading to inadequate ATP production and increased free 
radicals [68]. A great deal of evidence supports the role 
of some mtDNA variations in the mitochondrial dysfunction 
and pathogenesis of PD [75]. Although no specific genetic 
mutation in mtDNA has been identified as a hallmark of PD, 
a significant increase in mtDNA deletions has been observed 
in substantia nigra DA neurons of PD patients [76], which 
is probably related to dysfunction of the mitochondrial res-
piratory chain (MRC) and increased oxidative stress [77]. It 
has been shown that in mice with deletion of mitochondrial 
transcription factor A (Tfam) gene, mitochondrial function 
in DA neurons of the substantia nigra was impaired, which 
induced PD-like symptoms [78]. Furthermore, an increased 
number and variety of mtDNA deletions/rearrangements in 
the substantia nigra of PD patients have been reported in 
comparison to aged controls and patients with other motor 
dysfunctions. Although these increased mtDNA deletions/
rearrangements was not limited to the substantia nigra 
and were also demonstrated in other brain regions of PD 
patients. These findings suggest a relatively specific associa-
tion between total mtDNA deletions/rearrangements and PD 
pathogenesis [77]. Studies have also shown that mutations in 
nuclear-encoded mitochondrial proteins involved in mtDNA 
synthesis, such as polymerase gamma (POLG), lead to the 
defects or deletion of mtDNA, which is ultimately associated 
with mitochondrial dysfunction and the pathogenesis of PD 
[79]. These results indicate the important role of primary 
and secondary mtDNA variations in PD [75].

Nuclear DNA Mutations and PD

A number of nuclear-encoded factors are known to 
be required for mtDNA replication, transcription, and 
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translation. Variation in at least one of these factors induces 
mitochondrial dysfunction by impairment of mitochondrial 
biogenesis, dynamics, trafficking, and mitophagy [80]. Many 
nuclear genes related to mitochondrial function have been 
identified, and their potential role in PD has been investi-
gated in previous studies [81].

For instance, PRKN (PARK2) gene, which makes the 
Parkin protein, is known to be the most frequent cause of 
autosomal recessive early-onset parkinsonism [82]. Parkin is 
a multifunctional E3 ubiquitin ligase, and plays an essential 
role in mitochondrial quality control (QC), mitochondrial 
homeostasis, and mitophagy [83]. Mitochondrial QC is a 
key process to maintain cellular homeostasis by coordinating 
various functions including mitochondrial dynamics, bio-
genesis, and mitophagy [84]. As a result, pathogenic muta-
tions in PARK2 gene inactivate Parkin, resulting in mito-
chondrial QC dysregulation, increased ROS, and neuronal 
damage [85]. Until now, over 200 different mutations have 
been reported throughout the PRKN gene, including inser-
tions, deletions, and point mutations [86, 87].

PINK1 is the second most frequent  gene associ-
ated with autosomal recessive early-onset PD, after PARK2 
[88]. PINK1 encodes a mitochondrial-localized serine/
threonine kinase and, together with Parkin, is involved in 
mitochondrial QC, as well as in mitochondrial dynamic 
and size [83, 89]. Genetic studies indicate that mutations in 
the PINK1 disrupt complex I of the mitochondrial ETC and 
increased abnormalities in mitochondrial morphology, lead-
ing to accumulation of damaged mitochondria and increased 
sensitivity to apoptotic stress [90].

PARK7 is another genetic cause of autosomal reces-
sive early-onset  forms of PD that encodes the protein 
DJ-1 [91]. DJ-1 is a multifunctional protein with protec-
tive effects on the nervous system that prevents oxidative 
stress-induced mitochondrial impairment and neuronal death 
[92]. The antioxidant property of DJ-1 is due to its binding 
with p47phox and inactivation of NADPH oxidase (Nox), 
which defects in its encoding gene increase NOX4 expres-
sion and ROS generation [93]. DJ-1 mutations account for 
about 1–2% of autosomal recessive PD, but represent the 
highest prevalence of non-motor symptoms (∼57%) in PD 
patients [94].

LRRK2 gene (or PARK8), which encodes  the pro-
tein Lrrk2, is the most frequent genetic cause of both familial 
and sporadic PD [95]. Although the precise mechanism of 
the LRRK2 in mitochondrial function is not fully under-
stood, studies have shown that overexpression and mutations 
in this gene affect the mitochondrial dynamics and mor-
phology, leading to a decline in mitochondrial membrane 
potential and ATP synthesis [96]. To date, more than 100 
different missense/nonsense mutations within LRRK2 gene 
have been reported [97], only a small percentage of them are 
pathogenic and associated with PD [98].

The SNCA gene, encoding αSyn, is the first identified 
gene associated with late-onset autosomal dominant PD 
[99]. α-syn is a presynaptic neuronal protein and the prin-
cipal component of Lewy bodies (LBs) and Lewy neurites 
(LNs) inclusions, which are pathological hallmarks of PD 
[100]. Overexpression of the SNCA gene causes the accu-
mulation of α-syn aggregates in the mitochondria, which 
leads to various impairments in mitochondrial function, 
including complex I deficiency, reduction of membrane 
potential, movement deficiency, and disturbances in  Ca2+ 
homeostasis [101, 102].

Epidemiological Factors and Mitochondrial 
Dysfunction in PD

The role of biological factors such as aging, sex, alcohol 
consumption, and smoking status in the initiation and pro-
gression of PD has been widely investigated in recent dec-
ades [103–105]. Aging is the greatest risk factor for the 
development and progression of neurodegenerative dis-
eases including PD [106]. The effect of the aging process 
on the pathogenesis of PD appears to be partially mediated 
by mitochondrial dysfunction [107]. With aging, mitochon-
dria become more vulnerable to environmental risk factors 
and the possibility of mitochondrial dysfunction is increased 
[108]. Studies have also indicated that the aging process is 
associated with a variety of mtDNA mutations, particularly 
deletions and point mutations [109, 110]. The results of 
these mutations are reduction of ATP production, increasing 
free radicals and oxidative stress, and ultimately disruption 
of mitochondrial structure and function [111].

Clinical and epidemiological studies have shown that the 
prevalence of PD is different between men and women. On 
average, the incidence of PD is significantly higher in men 
than in women, but the mortality rate is higher in women 
[112, 113]. The association between body weight and the 
risk of developing PD has also been investigated in meta-
analysis and epidemiological studies, which show that obe-
sity (defined as body mass index ≥ 23 kg/m2) is associated 
with a higher risk of PD [114, 115]. However, the effects 
of biological factors on mitochondrial function related to 
PD have not been investigated in detail and require further 
studies.

Consequences of Mitochondrial Dysfunction 
Following Parkinson’s Disease

Mitochondrial dysfunction was demonstrated to contrib-
ute to the pathogenesis of PD, which is caused by calcium 
accumulation, aberrant production of ROS, ATP depletion, 
increasing mitophagy, increasing mtDNA damage, defective 
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mitochondrial biogenesis/ dynamics, triggering apoptosis, 
and finally cell death (Fig. 1).

ATP Depletion and ROS Production

Complex I (NADH-quinone oxidoreductase) acts as an input 
point for the electrons of the mitochondrial matrix in the 
ETC by catalyzing NADH electron transfer in the ETC subu-
nits [116]. In PD patients and animal PD models, activities 
of complex I of the mitochondrial respiratory chain were 
significantly decreased [117]. Inhibition of mitochondrial 
complex I reduced ATP synthesis and increased ROS pro-
duction, leading to respiratory failure. Partial inhibition 
of complex I in the nerve terminals is adequate for in situ 
mitochondria to produce more ROS [29, 57]. Indeed, inhibi-
tion of complex I increased ROS production, which in turn 
inhibits complex I, and this vicious cycle in DA neurons 
results in overproduction of oxidative stress over time and 
ATP depletion, ultimately leading to neuronal loss in the 
nigrostriatal pathway [57].

Further evidence of mitochondrial dysfunction associated 
with oxidative stress and damage to dopamine cells comes 
from findings that mutations in genes of proteins like αSyn, 
parkin, PINK, or DJ-1are related to familial forms of PD 
[118–120].

Accumulation of α-syn in dopamine neurons was demon-
strated to decreased complex I activity and enhanced ROS 
production, and induction of neuronal loss [121]. α-syn 
inclusions were reported to increase mitochondrial oxi-
dative stress in dendrites of DA neurons [122]. Oxidative 
stress increased accumulation, uptake, and oligomerization 
of extracellular α-syn in oligodendrocytes [123], as well as 
posttranslational modifications in α-syn that increment dopa-
mine toxicity [124]. The activity of mitochondrial complex I 
is impaired in humans with parkin mutations [125]. In addi-
tion, PINK1 knockout (KO) in human and rodent dopamine 
neurons leads to ROS production and lessening of membrane 
potential [126].

With increased oxidative stress, DJ-1 expression is 
enhanced in reactive astrocytes [127], and excessive expres-
sion of DJ-1 is detected in reactive astrocytes in sporadic PD 
[128]. DJ-1 knockdown or KO in astrocytes impairs astro-
cyte-mediated neuroprotection against oxidative stress by 
deregulation of inflammatory responses and mitochondrial 
complex I damage (Fig. 2) [53, 129].

Calcium  (Ca2+) Overload

Mitochondrial dysfunction can induce excitotoxicity by 
decreasing both cellular ATP and  Ca2+ overload [130]. Inhi-
bition of complex I can interfere with energy/ATP genera-
tion, which causes partial neuronal depolarization, and is 
attributed to a decrease in  Na+/K+-ATPase activity [130]. 

Mitochondria can rapidly take up  Ca2+ from the cytosol 
through a  Ca2+ uniporter that depends on mitochondrial 
membrane potential (ΔΨm). The formation of ROS due 
to mitochondrial ETC failure impairs mitochondrial mem-
branes and disrupts the mechanism of absorption and stor-
age of  Ca2+, thus increasing intracellular  Ca2+ levels and 
intensifying the excitotoxicity [131]. Disturbed ΔΨm results 
in enhanced sensitivity to  Ca2+ overload. This indicates that 
mitochondrial-driven excitotoxicity is an important factor 
in PD [131].

Mitophagy Impairment

Recently, many studies have revealed complex molecular 
signaling governing the identification and selective elimina-
tion of damaged mitochondria from the cell via autophagy, 
which is a mitochondrial quality control process, and called 
mitophagy [132].

Mitochondrial dysfunction and mitophagy reduction have 
been suggested as major components in determining patho-
logical heterogeneity and selective susceptibility of certain 
brain regions in PD [133, 134]. Mutations of Parkin and 
PINK1, two important mitophagy proteins, lead to auto-
somal recessive early-onset PD (EOPD) [135]. F-box only 
protein 7 (FBXO7), as an adapter protein of the E3-ubiquitin 
ligase complex responsible for degradative and non-degra-
dative protein ubiquitination, has multifunctional mitochon-
dria actions and may affect mitophagy by interactions with 
PINK1 and Parkin [136–138]. Lastly, the sorting of the 13C 
(VPS13C) vacuolar protein, whose mutations have also 
been linked to autosomal recessive EOPD, is partially at the 
level of the outer mitochondrial membrane (OMM). Lack 
of VPS13C is related to decreased mitochondrial ΔΨm, 
metabolic effects, and changes in mitochondrial morphol-
ogy. Furthermore, VPS13C has been suggested to function 
with Parkin and PINK1 to regulate mitophagy [139, 140]

Other evidence for mitochondrial dysfunction related to 
quality control is mutations in αSyn, GBA1, and LRRK2 
which contribute to enhanced or impaired autophagy [141, 
142].

Cells with the mutation in LRRK2 show enhanced num-
bers of fragmented mitochondria [143] and decreased ΔΨm 
[144]. Additionally, fibroblasts in patients with LRRK2 
mutations have enhanced uptake of mitochondrial calcium 
[145]. Reduced ΔΨm and calcium dysregulation initiated 
clearance of injured mitochondria from the dendritic com-
partment in primary neurons, [145, 146]. Dynamin-related 
protein-1 (Drp1) phosphorylation by mutant LRRK2 also 
encourages fission and excessive autophagy. [147].

Mutations in DJ-1 (Park7) are a rare recessive form of 
familial PD [148]. Alteration of DJ-1 results in increased 
mitophagy levels through ROS and PINK1/Parkin [149, 
150]. It is difficult to know if the accumulation of DJ-1 of 
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mitochondria depends on PINK1/Parkin signaling [149] or 
functions in parallel [151] to regulate mitochondrial function 
during oxidative stress.

Sterol regulatory element-binding protein 1 (SREBP-
1), a regulator of lipogenesis, is a risk locus for PD [152, 
153]. A screen to detect genes that promote mitophagy in 
Drosophila S2 cells showed SREBP-1 to regulate mitophagy 
[154]. Cardiolipin is a mitochondrial-specific lipid resid-
ing in the inner mitochondrial membrane [155, 156] that is 
enhanced in pink1 mutant flies [153, 157]. Neurons express-
ing mutant α-syn show fragmented mitochondria as well as 
OMM-exposed cardiolipin, which initiates mitophagy [158]. 
α-syn is a major component of Lewy bodies that accumu-
late in mitochondrial membranes [119, 159]. Intriguingly, 
cardiolipin and dopamine facilitate the formation of Lewy 
body-like complexes containing α-syn and cytochrome c, 
which may serve to prevent the transmission of apoptotic 
signals from damaged neuritic mitochondria [160].

Dynamic Impairment

The unique energetic requirements of neurons need well-
orchestrated maintenance and distribution of mitochondria. 
Therefore, mitochondrial dynamical properties, including 
fusion (fusing with one another), fission (actively divide), 
biogenesis, trafficking (actively transported through axons 
and dendrites), and degradation, are vital for neurons [161]. 
The mitochondrial dynamics malfunction is associated with 
PD [162]. The unique features of neurons that degenerate in 
PD can predispose those neural populations to be sensitive 
to changes in mitochondrial dynamics. Accumulating evi-
dence of PD-associated toxins confirms that mitochondrial 
transport, fusion, and fission can be implicated in pathogen-
esis. [163]. Moreover, PD-related mutations affect genes that 
encode proteins that have specific functions in mitochondrial 
dynamics. Two proteins associated with familial forms of the 
disease, PINK1, and parkin, interact in a common route to 
regulate mitochondrial fusion/fission [164, 165]. Addition-
ally, parkin can play an important role in maintenance of 
mitochondrial homeostasis by targeting mitophagy [166]. 
Furthermore, mutations in LRRK2, DJ-1, and α-syn vacu-
olar protein sorting-related protein 35 (VPS35) demonstrate 
the relevance of mitochondrial malfunction as the main 
cause of neural death in PD [167–170].

Biogenesis Impairment

Mitochondrial biogenesis is an essential event involving 
the coordination of transcription, translation, import of 
nuclear-encoded components, as well as the expression of 
mitochondrial genes by which new mitochondria are pro-
duced from existing mitochondria [171, 172]. Parkin induces 
the proteasomal degradation of Parkin-interacting substrate 

(PARIS), which acts as a transcriptional repressor of per-
oxisome proliferator-activated receptor gamma-co-activator 
1-alpha (PGC-1α) [173]. PGC-1α stimulates mitochondrial 
biogenesis and it has been strongly involved in the patho-
genesis of idiopathic PD [174]. In the absence of Parkin, 
PARIS is bound to the PGC1α gene promoter and suppresses 
its expression [175]. PARIS is highly expressed in the SNpc 
[175], and provisional Parkin KO in rodents results in pro-
gressive degeneration of DA neurons that are conditional on 
the expression of PARIS [176, 177]. Furthermore, PARIS 
overexpression leads to reduction in expression of PGC1α 
and selective death of DA neurons in the SNpc [175, 178]. 
Overall, the loss of Parkin function suppresses mitochondrial 
biogenesis through an accumulation of PARIS [179].

NLRP3 Inflammasome Activation

Neuroinflammation, which appeared in the early stages of 
PD, gradually causes disease progression. Mitochondrial 
dysfunction and the increased activity of NLRP3 inflam-
masome complex plays an important role in induction and 
maintaining neuroinflammation [180]. Additionally, inflam-
matory factors associated with mitochondria can induce for-
mation of inflammasome complexes, which is responsible 
for activating, maturation, and releasing proinflammatory 
cytokines, including interleukin-1β/18 (IL-1β/18) [180, 
181]. Following mitochondrial damage, NLRP3 binds to 
a protein associated with apoptosis that contains a CARD 
(PYCARD/ASC) and forms inflammasomes in the brain. 
Inflammasomes serve as a substrate for caspase 1 to induce 
the maturation of IL-1β and IL-18 and induce neuronal 
pyroptosis, a type of cell death that possesses the poten-
tial for inflammation, to rupture microglia to further release 
IL-1β/18 [181]. Furthermore, chronic inflammation may be 
associated with the formation of α-syn oligomers, eventu-
ally resulting in DA neuronal death in PD. Overexpressing 
or decreasing the clearance of α-syn in neurons can lead 
to the formation of α-syn tetramers, which are secreted by 
exosomes. Exosomes containing α-syn are then identified 
by microglia and endocytosis, which activates the NLRP3 
inflammasome [182, 183]. Evidence has confirmed an asso-
ciation between Parkin and NLRP3 inflammasomes [184]. 
When mitochondrial damage occurs, PINK1 on the mito-
chondrial membrane will recruit and phosphorylate Parkin 
in an active state, which triggers mitochondrial ubiquitina-
tion [185]. Parkin dysfunction leads to the accumulation of 
damaged mitochondria and overexpression of ROS, which 
are an important factors in the activation of the NLRP3 
inflammation [186]. It was also shown that loss of parkin 
activity results in spontaneous neuronal NLRP3 inflamma-
some assembly in mouse and human DA neurons, which 
cause DA neuronal death [187]. Normally, parkin inhibits 
priming of the inflammasome by ubiquitinating and targeting 
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NLRP3 for proteasomal degradation, and losing of its activ-
ity participates to the assembly of an active NLRP3 inflam-
masome complex via mitochondrial-derived reactive oxygen 
species (mitoROS) generation [187].

The NLRP3 inflammasome pathway was also evidenced 
to be triggered by certain models of neurotoxin-induced PD, 
including 6-hydroxydopamine (6-OHDA), MPTP, lipopoly-
saccharides (LPS), and rotenone [184]. Because, these neu-
rotoxins inducing mitochondrial dysfunction, which may 
indirectly activates NLRP3 inflammasomes by increasing 
ROS production [188–190]. However, the underlying mech-
anism is not clear. The LPS is a classic NLRP3 trigger that 
can bind to the Toll-like receptor 4 (TLR4) and facilitate 
NLRP3 movement via the NF-kB pathway [184]. Overall, 
aggregation of αSyn, neurotoxins, disrupted mitophagy, and 
mitochondrial ROS are the main regulators of the activation 
of microglial NLRP3 inflammasome in the SN.

Triggering Apoptosis

Activation of the mitochondrial-dependent apoptosis path-
way may aid in SNpc DA neurodegeneration in PD. It con-
sists of a sequence of procedures including enhanced ROS 
generation, permeabilization of the outer mitochondrial 
membrane, releasing cytochrome c into the cytoplasm, 
and ATP depletion, as well as activation of caspase-9 and 
caspase 3 [191]. Mitochondrial outer membrane permea-
bilization (MOMP) shows the point-of-no-return in mito-
chondria-mediated apoptosis and is strongly regulated by 
B-cell lymphoma 2 (Bcl-2)family proteins, which are char-
acterized by one or more BCL-2 homology (BH) domains 
(i.e., BH1–4) and can be divided into three classes: anti-
apoptotic (e.g., Bcl-2 and Bcl-xL), pro-apoptotic (e.g., 
Bcl-2-associated X protein (BAX) and Bcl-2 homologues 
antagonist/killer (Bak)), and BH3-only proteins [191]. Bax 
and Bak proteins form a channel within the OMM and cause 
the permeabilization of OMM [192]. When this happens, 
mitochondrial-dependent apoptotic death is identified. Bcl 
2 proteins are able to bind with Bax/Bak, and decrease the 
OMM permeability caused by Bax/Bak [192]. Although the 
precise mechanism through which pro-apoptotic proteins, 
like Bax, induce MOMP is still a matter of debate, it requires 
that these proteins be translocated and inserted into the mito-
chondrial membranes. Hence, they may elicit the release 
of mitochondrial apoptogenic factors, like cytochrome c, 
through at least two different mechanisms described: The 
first relates to the opening of the mitochondrial permeability 
transition pore complex, and the second is dependent on 
the formation of channels directly through these proteins in 
the mitochondrial membranes [192, 193]. Cytochrome c is 
an intermembrane space protein that is particularly impor-
tant in caspase activation. When cytochrome c is released 
in the cytosol, it induces mitochondria-mediated apoptosis 

[191–193]. Cytochrome c binds to the caspase adaptor mol-
ecule Apaf-1, resulting in the formation of a multimeric 
Apaf-1/cytochrome c complex. Apaf1 recruits caspase-9, 
forming together a major collective complex, called apopto-
some. This recruitment happens through the exposure of the 
caspase activation and recruitment domains in Apaf-1 [191, 
194]. As a result, procaspase-9 is activated by proteolysis 
and then dissociated from this complex. Once activated, cas-
pase-9 activates executioner caspases-3, -6, and/or -7, which 
mediate proteolytic events that cause severe cell death [191, 
192, 194].α-syn has been shown to have a strong affinity for 
mitochondria. This may be due to its affinity for cardiolipin, 
which is found throughout the IMM [141, 195]. It has been 
shown that oligomerization and aggregation of α-syn cause 
deficits in complex I activities, leading to reduced ATP pro-
duction, IMM depolarization, and release of mitochondrial 
apoptogenic factors like cytochrome c into the cytosol. After 
its release into the cytoplasm, cytochrome c interacts with 
anti-apoptotic and pro-survival proteins and induces mito-
chondrial-mediated apoptosis [141].

Therapeutic Strategies for Mitochondrial 
Dysfunction

The role of mitochondrial dysfunction and mitochondrial 
oxidative stress in many neurological diseases is well 
known. Therefore, trying to find a way to improve the lost 
function of mitochondria could be an attractive therapeutic 
approach for such diseases. Many of these strategies are used 
to improve the function of mitochondria by increasing ATP 
production, reducing oxidative stress, modulating mitochon-
drial biogenesis and dynamics, decreasing mitochondrial-
related signaling pathways that induce inflammation and 
apoptotic cell death. Other potential therapeutic strategies 
such as mitochondrial transfer/transplantation, targeting 
microRNAs, using stem cells and photobiomodulation were 
also discussed here.

Recovering ATP Production

ATP level is one of the most important parameters indicat-
ing overall health in the cells, and ATP depletion appears to 
be the most common dying cellular phenotype [196]. Mito-
chondrial bioenergetics dysfunction may be reduced due to 
impaired energy substrate importation, energy substrate pro-
cessing (oxidative phosphorylation; OXPHOS), ADP (aden-
osine diphosphate) export/ATP (adenosine triphosphate) 
export, and mitochondrial fission/fusion alters [197]. Factors 
that increase mitochondrial mass and stimulates mitobio-
genesis (such as recombinant human TFAM, rhTFAM) or 
stimulate LRPPRC expression may improve bioenergy and 
reduce nerve damage. One promising treatment strategy for 
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PD is to maintain ATP levels by inhibiting ATP consumption 
or increasing ATP production, or both [197].

ATP maintenance via ATP regulators was demonstrated 
to mitigate pathological phenotypes in the mouse model 
of PD [196]. Resveratrol as a polyphenol antioxidant dem-
onstrated a protective effect in PD by decreasing oxidative 
stress and increase mitochondrial biogenesis, which was 
associated with increased complex I and citrate synthase 
activities, basal oxygen consumption, and mitochondrial 
ATP production [198, 199]. Enhancing  NAD+ was reported 
to salvage metabolism and exert neuroprotection in a PINK1 
model of PD. As we know, disruption of PINK1 affects mito-
chondrial bioenergy and affects cellular stores of metabolites 
required for mitochondrial function, including  NAD+ and 
ATP [200]. Mitochondrial transfer from Wharton's jelly-
derived mesenchymal stem cells to mitochondria-defective 
cells was reported to recapture impaired mitochondrial func-
tion by affecting oxidative phosphorylation and bioenergy 
[201].

Decreasing ROS Production

Increasing ROS production was well evidenced that induced 
autosomal PD [202]. The enhancement in ROS production 
is mainly due to an imbalance between mitophagy and mito-
chondrial biogenesis, and damaged mtDNA, and leads to 
ETC dysfunction [203]. Deletion of the NOD2 (Nucleotide-
binding oligomerization domain-containing protein 2) gene 
was demonstrated to reduce the Bax/Bcl-2 ratio, cytochrome 
C, caspase-3 activation, and ROS in 6-OHDA induced PD 
model [204]. Inhibition of Nox1 was demonstrated to reduce 
ROS production and oxidative stress in DA neurons [205, 
206]. Furthermore, inhibiting Nox2 decreased ROS produc-
tion, and demonstrated protective effects on SN in MPTP-
receiving mice the model [207, 208]. In addition, using 
Mito-Q (a mitochondria-targeted antioxidant) was reported 
to stabilize mitochondria in the presence of 6-OHDA by sup-
pressing ROS formation, and reducing mitochondrial frag-
mentation [209]. Using monoamine oxidase type B (MAO-
B) inhibitor reduced the pathogenesis of PD by decreasing 
the ROS production [210].

Increasing Mitophagy

Destruction of damaged mitochondria is begun through a 
selective autophagy pathway called mitophagy. Pharma-
cological enhancement of mitophagy and acceleration of 
damaged mitochondria removal were considered for the 
development of PD treatment. Mutation in the two key 
mitophagy genes, which code the PINK1 and Parkin pro-
teins, were reported as the most common causes of PD in 
people under 45 years of age [202, 211]. However, evidence 
for their role in mitophagy in vivo is still scarce, and findings 

in Drosophila provide evidence that Pink1 and parkin are 
not essential for bulk basal mitophagy, and mitolysosomes 
in flight muscles were not detected in Pink1 or parkin null 
flies. While, these flies exhibit locomotor defects and dopa-
minergic neuron loss [212]. Hence, in Drosophila, reports 
reveal that mitophagy increases with aging, and this age-
dependent rise is abrogated by PINK1 or parkin deficiency 
in Drosophila, and mitophagy occurs in muscle cells and 
dopaminergic neurons, even in the absence of exogenous 
mitochondrial toxins [213].

Mitophagy augmentation can be done by two pathways: 
PINK1-Parkin-related pathways and PINK1-Parkin-inde-
pendent pathways [202]. Modulating mitophagy pathways 
may be an avenue to treat a subset of early-onset PD that may 
additionally provide therapeutic opportunities in sporadic 
disease. The PINK1/Parkin mitophagy pathway, as well as 
alternative mitophagy pathways controlled by BNIP3L/Nix 
and FUNDC1, are emerging targets to enhance mitophagy to 
treat PD [214]. It was demonstrated that celastrol (as a plant-
derived triterpene) inhibits dopaminergic neuronal death of 
PD through activating mitophagy. Celastrol decreased nerve 
damage in the SN and striatum and increased mitophagy by 
enhancing PINK1 and DJ-1 in the striatum [215]. PINK1 
and DJ-1 can induce mitophagy and play a neuroprotective 
role in neurodegenerative disorders [215].

It has been made clear that PINK1 induces mitophagy 
even in the absence of Parkin, which shows the potential 
and significant effect of PINK1 on mitophagy and can be 
considered as a therapeutic pathway. To develop treatment, 
many studies have been performed today to find molecules 
that are effective in regulating mitophagy, and many of them 
have been identified [202].

Suppression or removal of OMA1 (IMM-embedded met-
alloprotease) was reported to restore PINK1 stabilization 
after mitochondrial membrane depolarization and increased 
mitophagy. OMA1 is activated by a wide range of stress 
stimuli, causing fragmentation and bioenergetic loss of 
mitochondria. This, in turn, prepares the cell to increase the 
stress response through mechanisms such as apoptosis and 
autophagy [202, 216]. Hence, deletion of the USP33 gene 
increased the formation of K63-related ubiquitin chains in 
Parkin and then accelerates mitophagy by stabilizing the 
Parkin, and increasing its transfer rate to depolarized mito-
chondria [217]. Inhibition or silencing of PPEF2 (protein 
phosphatase with EF-hand domain 2) and PTEN-L phos-
phatase were demonstrated to increase mitophagy. PPEF2 is 
a PINK1 phosphatase antagonist that dephosphorylates ubiq-
uitin and inhibits PINK1-mediated mitophagy [202, 218].

Improving Mitochondrial Dynamic

Mitochondria are highly dynamic organelles that are con-
trolled by fission and fusion proteins. Breaking off and 
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rejoining the mitochondrial network as well as their traf-
ficking is critical to maintaining the function of neurons, pri-
marily DA neurons, which have long axons with numerous 
synapses [219]. Spatially, relocating mitochondria provides 
metabolic energy for different regions of neurons from the 
dendrites to soma, axons, and synapses [220]. Most of the 
genetic, mitochondria-related PD proteins are involved in 
mitochondrial dynamics and the trafficking process [221]. 
The importance of the balance of mitochondrial dynamics 
and trafficking in DA neurons makes it a crucial therapeu-
tic target for PD. For instance, Rappold and coworkers, by 
inhibiting a mitochondrial fission protein named Drp1 were 
able to prevent neurotoxicity and cell death, and rescue 
the synaptic dysfunction in the MPTP-injured and Pink1-
knockout mouse PD models [222]. Moreover, this research 
team applied this therapeutic strategy in the hA53T-α-syn 
rat model of PD. They showed that mitochondrial division 
inhibitor (mdivi-1) which blocks Drp1 and subsequently 
mitochondrial fragmentation could effectively reduce α-syn-
induced neurodegeneration, α-syn aggregation, mitochon-
drial impairment, oxidative stress, and motor abnormalities 
in PD rats [223]. α-syn aggregation, one of the main patho-
logical hallmarks of PD, may occur due to mitochondrial 
dysfunction. Indeed, damaged mitochondria and reduced 
energy leads to microtubule disassembly and subsequent 
accumulation of α-syn protein. On the other hand, α-syn 
deposition impairs mitochondrial dynamics, and trafficking 
results in disordered distribution of organelles and accu-
mulation of autophagosomes in synapses [224]. As regards 
damaged mitochondria induce microtubule disassembly, and 
stabilization of microtubules may prevent the accumulation 
of α-syn protein. Esteves et al. showed that NAP (davunet-
ide) repairs microtubule network assembly and so improves 
microtubule-mediated mitochondrial trafficking [225]. More 
research is needed to determine the exact role of mislocation 
of mitochondria and intercellular mitochondrial transfer in 
PD etiology.

Improving Mitochondrial Biogenesis

Mitochondrial biogenesis is affected by environmental 
stresses such as exercise, calorie restriction, low tempera-
ture, oxidative stress, cell division, and renewal and differ-
entiation. Mitochondrial biogenesis is associated not only 
with changes in number but also in size and mass [226]. 
Decreased biogenesis and mitochondrial function are seen in 
many pathological conditions, including neurodegenerative 
disorders. Therefore, increasing mitochondrial biogenesis in 
neurons can be pursued as a therapeutic goal.

Several regulatory factors are involved in modulat-
ing mitochondrial function, including PGC-1α, PGC-1β, 
and PRC. PGC1α is known as the major regulator in the 
mitochondrial translation and transcription machine. 

PGC1α interacts strongly with NRFs [83, 227]. NRF-1 
and NRF-2 are important contributors to the sequence of 
events that lead to increased transcription of key mito-
chondrial enzymes and have been shown to interact with 
Tfam, which directs mtDNA transcription and replication. 
In addition to NRFs, PGC-1α also interacts with other 
transcription factors such as PPARs, thyroid hormone, 
glucocorticoids, estrogen, and ERRs [226].

A mutation in the parkin-encoding gene, PARK2, 
reduces the removal of damaged mitochondria in human 
DA neurons, which are involved in both familial and spo-
radic forms of Parkinson's disease (PD), by losing the 
ability to interact with PINK1 [228, 229]. Parkin muta-
tion increases PARIS expression and affects mitochondrial 
quality control by regulating PGC1α-TFEB signaling. 
Rapamycin regenerates PGC1α-TFEB signaling indepen-
dently of parkin activity and reduces mitochondrial dys-
function [230]. The combination of resveratrol and equol 
in the cell culture medium also increases NRF1 as well as 
TFAM by activating PGC1α /sirt1 and finally increases 
biogenesis [199, 231]

RNS60 is an electrokinetic modified saline that contains 
charge-stabilized nanobubbles but has no active drug sub-
stance. Administration of RNS60 both in culture and in vivo 
increases mitochondrial biogenesis by increasing PGC1α in 
neurons and other brain cells. PGC1α activates transcription 
factors responsible for mitochondrial biogenesis, including 
NRF-1, NRF-2, and PPARγ. RNS60 stimulates PGC1α via 
CREB activation by PI3K class IA [232]. Drug activation 
of dopamine D1 receptors also significantly improves mito-
chondrial biogenesis, ATP levels, and mitochondrial mem-
brane potential, and defends DAergic nigral neurons against 
neurotoxicity induced by 6-OHDA in adult mice [233].

Oral ferulic acid supplementation reduces mitochondrial 
Drp1 expression and increases PGC1α gene and protein 
expression. We found that oral FA supplementation reduced 
6-OHDA-induced oxidative stress, DNA fragmentation, 
morphological changes, and the cascade of apoptosis [227]. 
It has been shown that one to four weeks of physical exercise 
increases mitochondrial function and biogenesis in rats with 
PD by increasing PGC-1α protein levels and stimulating 
PGC-1α and TFAM gene expression, and phosphorylation 
rates in skeletal muscle, and improving complex I activity 
Induced by 6-OHDA [234]. Physical activity is also linked 
to lower α-Syn expression and upregulation of mitochondrial 
COX-I, COX-IV, and mtHSP70 proteins in MPTP-induced 
Parkinson's disease mouse models [235]. Calorie restriction 
also affects mitochondrial function. Calorie restriction in 
humans increases the expression of genes involved in the 
regulation of mitochondrial biogenesis, including PGC-1α, 
Tfam, eNOS, and SIRT1 [226]. Another environmental 
stress is frostbite. Cold increases the expression of PGC-1α 
and the expression of key enzymes in mitochondria such as 
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ATP synthetase subunits (β subunit) and COX (cytochrome 
c oxidase) (COX-II and COX- IV) [236].

Some components of signaling pathways that activate 
the transcription cascade and act as regulators of mitochon-
drial biogenesis by increasing PGC-1α expression, such as 
AMPK, CaMKIV, nitric oxide, SIRT1, TORC, Calcineurin, 
Sin3A, p38 MAPK, and RIP140 [226].

Mitochondrial Transfer

It has been explored that cells for decreasing stress and 
increasing energy production, use an intercellular mitochon-
drial transferring mechanism [237]. The defective intercel-
lular mitochondrial transferring system may be the culprit 
for the propagation of α-syn deposition seen in DA neu-
rons. Because PD has a complex and multifaceted nature, 
access to a worthwhile therapeutic approach depends on the 
development of a combined-disease modifying approach. 
Targeting and restoration of the intracellular and intercel-
lular mitochondrial dynamics and trafficking defects may 
be an important hotspot for achieving an efficient therapy 
for PD [162].

It was found that healthy microglia donate mitochondria 
to α-syn overloaded cells, as well as α-syn are transferred 
between microglia through tunneling nanotubes [238]. This 
α-syn cargo was effectively degraded in the neighboring 
naive microglia, which attenuated the inflammatory micro-
glia profile. This degradation strategy was represented in the 
cells loud the LRRK2 mutation [238].

Mitochondrial Transplantation

Transcellular transfer of mitochondria dynamically happens 
in response to CNS damage and is involved in maintain-
ing and homeostasis of the CNS. Likewise, mitochondrial 
transplantation therapy is a novel approach to overcoming 
and improvement of mitochondria-related disorders includ-
ing PD. Evidence shows that supplementing exogenous 
mitochondria to the injured site rather than focusing on a 
particular perspective of mitochondrial function may be a 
better strategy for targeting the neurodegeneration process 
[237]. Chang et al. transferred the mitochondrial with or 
without cell-penetrating peptide-based (Pep-1) conjuga-
tion into the 6-OHDA-treated PC12 cells and showed that 
Pep-1 mitochondrial delivery was able to rescue mitochon-
drial function, enhanced cell viability and improves neurite 
outgrowth. They also injected xenogenic/allogenic peptide-
labeled mitochondria into the medial forebrain bundle of 
6-OHDA-induced PD rat models and reported that mito-
chondrial graft rescued DA neuron loss, enhanced tyrosine 
hydroxylase–positive DA neurons in the SNc and striatum, 
improved motor function of PD rats, and restored mitochon-
drial function by restoring normal levels of mitochondrial 

complex I protein and ameliorating oxidative stress [239]. 
Moreover, Shi et al. in another study demonstrated that intra-
venous administration of mitochondria to MPTP-induced 
PD rats reduced ROS levels, improved the electron trans-
port chain function, restricted necrosis and apoptosis, and 
eventually prevented PD progression [240]. Some important 
issues that determine the success of mitochondrial trans-
plantation are quality and source of the isolated mitochon-
dria, delivery system, and adequate uptake of supplemen-
tal mitochondria by neurons [241]. A more recent study 
investigated the efficacy of intranasal delivery of allogeneic 
mitochondria conjugated with Pep-1 or unconjugated to the 
ipsilateral sides of 6-OHDA-lesioned rats once a week for 
three months to bypass the blood–brain barrier. Its results 
unveiled that mitochondrial could penetrate the accessory 
olfactory bulb and migrate through the rostral migratory 
stream neurons and express in striatal, but not by DA neu-
rons of SN. Intranasal mitochondria (with or without Pep-1) 
infusion leads to improvement of movement disorders of PD 
rats, and increased the survival and recovery of DA neuron 
in lesion site. This recovery was related to improvement of 
mitochondrial function and lessening of oxidative stress in 
SN. Remarkably, mitochondria conjugated with Pep-1 inhib-
ited plasma levels of inflammatory cytokines [242].

Using Stem Cells

Stem cells are a population of unspecialized cells that origi-
nate from adult body tissues and embryos. They are able to 
differentiate into different types of cells and tissue [243]. 
Stem cell-based therapies are emerging as one of the most 
promising approaches for the treatment of PD [244]. Due 
to the considerable technical difficulties in earning normal 
purified mitochondria for transplantation, and the limited 
half-life of obtained mitochondria, finding a permanent 
source of healthy mitochondria is important for therapeu-
tic purposes. In favour of this concept, a study showed that 
astrocytic conditioned media or iPSCs-derived astrocytes 
can rescue degeneration of DA neurons through intercellu-
lar mitochondrial transfer in a rotenone-induced PD model. 
Therefore, iPSCs-derived astrocytes can consider mitochon-
dria donors to the injured DA neurons to provide healthy 
mitochondria and attenuate PD symptoms. iPSCs-derived 
astrocytes may provide a novel insight toward cellular ther-
apy for PD in the future [245].

Micro RNAs as Therapeutic Targets

Micro RNAs (miRNAs) are a large family of non-coding 
RNAs with 20–24 nucleotides in length that have a critical 
role in modification of gene expression [246]. More than 
30% of genes are regulated by miRNAs, and one specific 
miRNA can mediate the expression of different genes [247]. 
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A large body of studies exhibits the association of miRNA 
dysregulation with PD pathogenesis [248]. Interestingly, 
most of these miRNAs are implicated in mitochondrial 
homeostasis destruction in PD (Table 1). Altered miRNA 
levels drive ROS production, which leads to mitochondrial 
impairment. Electron transport chain leakage that occurs 
during mitochondrial dysfunction leads to ROS formation. 
Indeed, mitochondrial dysfunction and ROS formation cause 
oxidative stress and a cascade of events results in neuronal 
network alteration and degeneration of DA neurons in PD 
[249]. Based on a study, miRNAs are regulators of the gene 
expression in the cortex of PD patients and have distinct 
expression patterns in PD brains compared with healthy ones 
[250]. In addition, decreased activity of complex I mito-
chondria was identified in the frontal cortex and SNpc of 
PD patients [251]. Peroxisome proliferator-activated recep-
tor-gamma coactivator 1-alpha (PGC1α) is a mitochondrial 
gene-activator with a crucial role in mitochondrial homeo-
stasis which diminishes in PD patients [252].

It has been reported that the overexpression of miR-124 
by regulating the impaired autophagy and apoptosis process 
could reduce DA neuron loss and reverse the striatal levels 
of dopamine in the MPTP-treated mice model of PD. Like-
wise, upregulated miR-124 by targeting protein bcl-2-like 
protein 11 (Bim) decreases the translocation of protein bcl-
2-like protein 4 (Bax) to lysosome and mitochondria. This 
cascade of events eventually inhibits mitochondria apoptotic 
signaling pathways and improves autophagy activity [253]. 
Moreover, investigations unveiled the association between 
the DJ-1 levels in the SNpc and mitochondrial function. 
MiR-494, by diminishing the DJ-1 expression, induces 
oxidative stress and exacerbates neuronal damage [254]. 
Another study revealed that the decreased level of miR34b/c 
may be through DJ-1 downregulation result in mitochon-
drial impairment in PD brains [255]. Furthermore, miR-205 

regulates the expression of LRRK2 which is a PD-related 
protein. Notably, LRRK2 protein can change the mitochon-
drial dynamics and integrity via targeting a dynamin-like 
protein (DLP1). Interestingly, reduced expression levels of 
miR-205 besides enhanced expression levels of LRRK2 were 
detected in the brains of patients with sporadic PD [256]. 
Therefore, upregulation of miR-205 may be a therapeutic 
approach for the suppression of abnormal LRRK2 over-
expression in PD. Results of another study suggested that 
tumor necrosis factor-α by improving the miR-27a and miR-
103 levels may inhibit the expression of the mitochondrial 
complex-I subunit. High miR-155 and miR-27a expression 
may promote oxidative stress, mitochondrial dysfunction 
and decrease the transcription of ATP synthase membrane 
subunit c locus 3 (ATP5G3), a mitochondrial complex-V 
subunit [257]. Another example is miR-7, which has the 
capacity to stabilize the potential of mitochondrial mem-
brane by suppression of the voltage-dependent anion channel 
1 (VDAC1) expression. Thus, miR-7 could be another target 
for improving the mitochondrial impairment in PD [258]. 
Additionally, miRNA181a/b downregulation has a neuro-
protective effect on mitochondrial dysfunction in comorbid 
neurodegenerative conditions such as PD. This miRNA 
regulates respiratory chain assembly and mitochondrial 
biogenesis and also influences mitochondrial antioxidants 
suggesting a potential target for the treatment of diseases 
with mitochondrial dysfunction, including PD [259]. Small 
drugs like L-DOPA are capable of adjusting miRNA pro-
files and thereby improving neurodegeneration status in PD 
[260]. Ebert et al. developed cell expressed-miRNA inhibi-
tors called miRNA sponges with the capability to inhibit 
various miRNA concomitantly [261]. Also, there is also the 
prospect of developing the use of miRNAs in diagnostic 
assays. For instance, salivary miR-223 and miR-153 lev-
els have been introduced as potential diagnostic markers 

Table 1  miRNAs affecting mitochondrial dysfunction in PD

miRNA Interactions functions Ref

miR-124 bcl-2-like protein 11 (Bim) and bcl-2-like protein 4 
(Bax)

Regulating the mitochondria apoptotic signaling 
pathways and autophagy activity

[253]

MiR-494 DJ-1 Inducing oxidative stress and exacerbates neuronal 
damage

[254]

miR34b/c DJ1 and Parkin Inducing oxidative stress and mitochondrial dysfunc-
tion, and compromise cell viability

[255, 309]

miR-205 LRRK2 Regulating mitochondrial dynamics and integrity, 
and preventing the neurite outgrowth defects

[256]

miR-27a and miR-155 ATP5G3 Promotes oxidative stress and mitochondrial dys-
function

[257]

miR-7 voltage-dependent anion channel 1 (VDAC1) Stabilizing the potential of mitochondrial membrane [258]
miR-181a/b Parkin,PPARGC1A, NRF1,COX11, COQ10B, and P

RDX3 genes
Regulates respiratory chain assembly and mito-

chondrial homeostasis and affects mitochondrial 
antioxidants

[259]
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of idiopathic PD [262]. In short, crosstalk between mito-
chondrial impairment, oxidative stress, and miRNAs dys-
function plays a critical role in the onset and progression of 
PD and may provide potential targeted molecules for novel, 
personalized therapeutic approaches. Controlling miRNA 
expression also provides the therapeutic potential to modify 
various mitochondrial pathways including biogenesis, bio-
energetics, oxidative stress, apoptosis, and mitophagy [263].

Other Therapeutic Strategies

Photobiomodulation

There is an agreement that apoptotic mechanisms are the 
main leading cause of DA neuron death in PD. The apop-
totic process, a slow breakdown of cellular components, is 
mediated by two major mechanisms including Lewy body 
accumulation and mitochondrial dysfunction [264, 265]. 
Photobiomodulation, which refers to the application of red 
to infrared wavelength (λ = 600-1070 nm) on body tissues 
through influences of mitochondrial activity, exerts benefi-
cial effects in PD studies. For that reason, photobiomodula-
tion has been reported as a potential therapeutic option for 
neurodegenerative diseases such as PD [266–268]. While 
the exact mechanism by which photobiomodulation displays 
neuroprotective effects in distressed neurons is presently not 
fully understood, the two proposed mechanisms are direct 
and indirect stimulation of these neurons [267, 269]. In the 
direct stimulation procedure, the direct application of pho-
tons on the distressed neurons leads to chemical changes, 
and then the conversion of light energy to metabolic energy 
impacts the survival and function of neurons. Mechanisti-
cally, absorption of light photons by cytochrome c oxidase, 
unit IV, the best-known photoacceptor in the mitochondrial 
electron transport chain, leads to the release of nitric oxide 
which in turn triggers a cascade of events leading to elec-
tron transportation along the respiratory chain and proton 
translocation across the mitochondrial membrane. This 
proton gradient across the membrane eventually results in 
ATP production. Furthermore, released nitric oxide pro-
motes the vasodilation of nearby vessels, and enhances 
blood (and lymphatic) flow. Interestingly, during this pro-
cess small, and normal levels of ROS are released within 
neurons which activate nuclear transcription factors [270]. 
There is also evidence that photobiomodulation increases 
ATP levels in the lack of cytochrome c oxidase in mouse and 
human cell lines. This finding sheds light on the presence 
of other photoacceptor(s) within the neurons [271]. Water is 
another photoacceptor within the mitochondria. Increasing 
water viscosity within the folded membranes of the mito-
chondria impedes the production of ATP, causing distress 
in the neuron. Photobiomodulation reduces the viscosity 

of the water and ultimately enhances ATP synthase, and 
decreases ROS levels [272, 273]. Further evidence showed 
that chlorophyll metabolites within the mitochondria may 
be other photoacceptors, because when treated with photo-
biomodulation, they catalysed the coenzyme Q reduction, 
activated cytochrome c oxidase, and enhanced mitochondrial 
activity and ATP production [274]. Photobiomodulation can 
improve the activity of mitochondria in distressed neurons, 
and in this way stimulate the expression of some protec-
tive genes, such as neurotrophic factor genes [275]. Taken 
together, photobiomodulation by stimulation of intrinsic 
mechanisms protects distressed neurons and helps them to 
repair their damage. These intrinsic self-protective mecha-
nisms surge energy production for the neuron and stimulate 
the expression of protective genes. Furthermore, photobio-
modulation by increasing the local blood flow and perfusion 
of the region helps to maintain neurons’ survival and homeo-
stasis [270, 276]. Two studies using in vitro models of PD 
showed the neuroprotective effects of photobiomodulation. 
Their findings reveal that photobiomodulation diminished 
oxidative stress, improved ATP levels, and reduced neural 
death [277, 278]. The culture study of human neuroblasts 
engineered to overexpress α-syn demonstrated that photo-
biomodulation improves mitochondrial function and reduces 
oxidative stress after exposure to parkinsonian toxins. More-
over, applying photobiomodulation to hybrid neural cells 
bearing mitochondrial DNA from PD patients leads to con-
siderable improvement in mitochondrial movement along 
axons [279]. In addition, photobiomodulation helped to res-
cue defects in the mitochondria of mouse DA neurons and 
drosophila pink1 mutants [280]. Although direct stimulation 
shows remarkable value in animal models, some problems 
such as restricted penetration of light through the skull and 
brain tissue inhibit its translation to the clinic [267, 270]. 
Whereas intracranial photobiomodulation tries to bypass 
this inherent obstacle, achieving sufficient penetration of 
light energy to direct stimulation of the first affected parts 
of the PD brain is exceedingly improbable [267, 269, 281]. 
Other studies disclosed that non-invasive remote photobio-
modulation (extracranial) has a neuroprotective effect [282, 
283]. Human intranasal and transcranial photobiomodulation 
have demonstrated PD symptom improvement in patients 
[284, 285]. However, this therapeutic procedure may just 
be beneficial in the early stages of PD [286]. Also, a study 
detected circulating mitochondria in blood samples and 
showed that photobiomodulation can improve the function 
of these secreted intact mitochondria and may affect neural 
cell activities [287].

Exercise

Physical activity and exercise are widely used in rehabili-
tation protocols for the treatment of PD and their effects 
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have been assessed in several animal and human studies. 
The result of these studies revealed that exercise can pro-
mote mitochondrial function and biogenesis in PD neurons 
[288]. For instance, a recent systematic review showed that 
treadmill training could improve the neural mitochondrial 
respiratory deficiency and neural mitochondrial quality-
control dysregulation in PD, and suggested that treadmill 
exercise may slow down PD progression [289]. In addition, 
previous studies exhibited that treadmill training through 
modulation of the neural mitochondrial dynamics and 
improvement of mitochondrial respiration could attenuate 
PD symptoms and delay its progression in rodent models 
[290, 291]. exercise and fasting, by interacting with the 
adaptive cellular response to oxidative stress, protect neu-
rons from oxidative damage in PD. Likewise, Curtis et al. 
introduce mitochondrial quality control as an appropriate 
target in exercise therapy for PD [292]. Long-term voluntary 
exercise markedly improved motor function, and nigrostri-
atal DA input in the mouse model of PD. Moreover, exercise 
enhanced oxygen consumption, oxidative phosphorylation, 
and conclusively ATP production. Thus, exercise increased 
mitochondrial aerobic metabolism in the nigrostriatal system 
[293]. In short, a large body of evidence demonstrates that 
regular exercise has health benefits with a great impact on 
brain health and may protect the brain against neurodegen-
erative diseases. Mitochondria seem to be the main players 
of these exercise-induced neuroprotective effects. Besides 
the direct effects of regular exercise on brain mitochondria, 
it can induce signaling from skeletal muscle to the brain via 
the muscle–brain axis. Theoretically, the release of various 
signaling molecules from muscles and direct mitochondrial 
transfer in response to exercise may mediate this signal 
transduction. Intensity, modality, duration, and frequency 
of exercise are the determinant factors for enhancing mito-
chondrial functions in the brain [294].

Diet

Another promising approach that has been proposed for 
treating PD is improving lifestyle, having a healthy diet, 
and protecting mitochondria via nutraceutical targeting of 
oxidative stress and inflammation. In addition, animal stud-
ies demonstrate that dietary management along with exercise 
can improve mitochondrial biogenesis and slow down PD 
progression [295]. Glutathione peroxidase and superoxide 
dismutase are two main players in the antioxidant system 
and their maintenance is critical for normal mitochondria 
function and the prevention of oxidative stress. Nowadays, 
targeting antioxidant systems is a novel therapeutic strat-
egy for PD therapy. For example, the therapeutic effects 
of several antioxidants such as Vitamin E, vitamin C, and 
CoQ10 are commonly studied for the treatment of neuro-
degenerative diseases. Whereas in vitro and animal studies 

showed the effectiveness of antioxidant administration in 
some neurodegenerative disorders, it was not adequately 
efficient in patients owing to the chemical instability of 
antioxidants. Also, it has been clear that dietary secondary 
metabolites are potential antioxidants with neuroprotective 
effects [296]. Creatine (α-methyl-guanidinoacetic acid) is a 
current interesting agent that as a mitochondrial-enhancing 
antioxidant substance promotes energy transduction, sta-
bilizes reactants, and inhibits mitochondrial permeability 
transition [297]. CoQ10 is another effective antioxidant that 
has up to 33% lower levels in blood and platelet mitochon-
dria of PD patients compared with healthy controls. Studies 
showed that CoQ10 by modifying mitochondrial function 
can reverse striatal DA neuron loss, and PD progression 
[298]. These compounds may be disease-modifying, but 
large studies are needed to confirm their therapeutic poten-
tial before prescribing them to PD patients. Bajracharya and 
coworkers reviewed that dietary management and maintain-
ing a low protein-to-carbohydrate (P: C) ratio in food may 
change mitochondrial energy metabolism, dynamics, and 
morphology and subsequently surge mitochondrial activity, 
motor function, and lifespan of PD [299]. Therefore, dietary 
macronutrient management may be another strategy for con-
trolling of PD progression.

Conclusion and Perspectives

Mitochondria are powerhouses of the cells by the production 
of ATP, and also contribute to critical processes such as reg-
ulation of calcium accumulation, scavenging of free radicals, 
and mediation of apoptosis [300]. It was well evidence that 
mitochondria not only exist intracellularly but can also be 
feasible extracellularly in both physiological and pathophysi-
ological conditions [301, 302]. Interestingly, dysfunction of 
mitochondria seems to have an important role in pathogen-
esis associated with PD [166], which can inhibit the nor-
mal functions of dopaminergic neurons by affecting normal 
function of mitochondrial complex I, and ROS production 
[303]. Mitochondrial dysfunctions contribute to PD severity 
by increasing oxidative stress and ROS production, which 
leads to calcium overload, NLRP3 inflammasome activa-
tion, mitophagy, and apoptotic cell death [166, 304]. Hence, 
defected bioenergetics, aberrant mitochondrial morphology 
and structure, and abnormal mitochondrial dynamics play 
an essential role in cell death induction [305], which may 
contribute to PD pathogenesis. Preclinical studies reported 
neuroprotective effects of targeting mitochondrial quality 
control and mitochondrial dynamics through genetic inter-
ventions or pharmacological agents [306].

Mitochondria represents an ideal target for candidate 
drug therapies, and its modulation will certainly have an 
impact on progression of PD [307]. However, targeting 
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mitochondria by pharmacological agents confronts chal-
lenges in the clinic (Table 2), which may be due to a failure 
in addressing the multiple intertwined systems and pathways 
in the vastly delicate homeostatic cellular system of neural 
cells. Additionally, it may be difficult to warrant adequate 
delivery of therapeutic agents to their site of action. Besides, 
disease progression in these trials may be too advanced to 
recover appropriate function in mitochondria and target cell 
[307]. The future of neuroprotective agents in PD will pos-
sibly depend on a combination of treatments acting directly 
and indirectly on affected pathways using personalized pre-
cision medicine [308].

Massive evidence approving several therapeutic strategies 
against PD, but in the clinic, they failed to show beneficial 
and hopeful effects. To overcome this difficulty, more pre-
cise details of mitochondrial dysfunction and its underly-
ing mechanisms are necessary in the pathogenesis of PD, 
to achieve accurate biomarkers for targeting mitochondria. 
Furthermore, treatments containing several approaches may 
possibly better respond to the complexity of mitochondrial 
dysfunction in PD. Besides, mitochondrial transplantation 
and mitochondrial transfer using stem cells may participate 
a pivotal role in our perspectives in treatment of PD. There-
fore, targeting mitochondrial dysfunction by appropriate and 
accurate agents with limited side effects, may offer the best 
chance for development of an effective novel therapeutic 
agent in our fight against PD.
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