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Abstract
Epilepsy is characterized by the manifestation of spontaneous and recurrent seizures. The high prevalence of comorbidities 
associated with epilepsy, such as cognitive dysfunction, affects the patients quality of life. Adenosine signaling modulation 
might be an effective alternative to control seizures and epilepsy-associated comorbidities. This study aimed to verify the 
role of adenosine modulation on the seizure development and cognitive impairment induced by pentylenetetrazole (PTZ) 
in zebrafish. At first, animals were submitted to a training session in the inhibitory avoidance test and, after 10 min, they 
received an intraperitoneal injection of valproate, adenosine  A1 receptor agonist cyclopentyladenosine (CPA), adenosine  A1 
receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), adenosine  A2A receptor antagonist ZM 241385, adenosine 
deaminase inhibitor erythro-9-(2-hydroxy-3-nony1)-adenine hydrochloride (EHNA) or the nucleoside transporter inhibitor 
dipyridamole. Thirty min after the intraperitoneal injection, the animals were exposed to 7.5 mM PTZ for 10 min, where 
they were evaluated for latency to reach the seizure stages (I, II, and III). Finally, 24 h after the training session, the animals 
were submitted to the inhibitory avoidance test to verify their cognitive performance during the test session. Valproate, 
CPA, and EHNA showed antiseizure effects and prevented the memory impairment induced by PTZ exposure. DPCPX, ZM 
241385, and dipyridamole pretreatments caused no changes in seizure development; however, these drugs prevented memory 
impairment without altering locomotion. Our results reinforce the antiseizure effects of adenosine signaling and support 
the idea that the involvement of adenosine in memory processes may be a target for preventive strategies against cognitive 
impairment associated with epilepsy.
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Introduction

Epilepsy is a chronic neurological disease characterized by 
the manifestation of spontaneous and recurrent seizures, 
affecting up to 70 million people worldwide [1, 2]. Epi-
lepsy rarely occurs alone, and the presence of comorbidi-
ties is frequently reported [2, 3]. Cognitive dysfunction is 

a common comorbidity associated with epilepsy, including 
memory, attention, and processing difficulties [4]. Comor-
bidities affect the quality of a patient’s life, and the existence 
of these conditions must be relevant in the choice of epilepsy 
treatment [2, 5].

Conventional antiseizure drug treatments ensure in most 
of the cases effective seizure suppression; however, about 
30–40% of patients are refractory to antiseizure drug treat-
ments [6, 7]. Adenosine, a purine ribonucleoside, is a well-
known endogenous modulator of neuronal excitability and 
several studies have shown the antiseizure action of this 
molecule [8–13]. Adenosine modulation might be an effec-
tive alternative to control seizures in patients resistant to 
conventional antiseizure drugs [13].

Adenosine can be produced by the dephosphorylation 
of nucleotides tri-, di-, and monophosphates (ATP, ADP, 
and AMP, respectively) or released through nucleoside 
transporters [14]. Ectonucleotidases are an enzyme cascade 
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system that catalyzes the successive hydrolysis of adenine 
nucleotides [15]. ATP and ADP are hydrolyzed by the ecto-
nucleoside triphosphate diphosphohydrolase (E-NTPDase) 
family members, whereas AMP is hydrolyzed by ecto-5′-
nucleotidase, generating adenosine. Adenosine, through the 
action of adenosine deaminase, may be subsequently deami-
nated to inosine [16]. Adenosine may be released through 
concentrative or equilibrative nucleoside transporters [17].

Adenosine exerts its effects by acting through the G-pro-
tein-coupled receptors:  A1,  A2A,  A2B, and  A3 subtypes 
[18, 19]. During a seizure, extracellular adenosine levels 
increase and the antiseizure adenosine effects are mediated 
by adenosine  A1 receptors, which cause presynaptic inhibi-
tion by reducing calcium influx and the excitability of the 
postsynaptic membrane by increasing potassium release [13, 
20]. Moreover, activation of  A1 receptors through selective 
receptor agonists effectively suppresses seizure activity, even 
in pharmaco-resistant epilepsy [10, 13, 14]. Although it has 
been suggested a neuroprotective and antiseizure action of 
adenosine  A2A receptors [21, 22], studies have also demon-
strated a proconvulsive and neurodegenerative role played by 
those receptors [23, 24]. The actions mediated by adenosine 
 A2B receptors and adenosine  A3 receptors in epilepsy are not 
completely characterized [13].

The involvement of adenosine receptors in cognitive pro-
cesses has been demonstrated [25–30]. A study has shown 
that  A1 receptors played a protective role against cognitive 
impairment by reducing neuron loss in a PTZ model in 
mice [29]. Furthermore, the  A1 receptors agonist prevented 
scopolamine-induced working memory impairment in mice 
[31]. In zebrafish, different modulators of adenosine sign-
aling prevented scopolamine-induced amnesia [26] and 
memory impairment induced by 3-Nitropropionic acid [30]. 
These data support the hypothesis that adenosine signaling 
may modulate memory processing. Therefore, adenosine 
signaling may be a target for the development of preventive 
strategies, not only for seizure control, but also for epilepsy-
associated cognitive comorbidities.

Zebrafish is a promising model organism to study the 
mechanisms underlying epilepsy and the biological effects 
of brain function modulation [32, 33]. Previous studies 
have demonstrated the  A1 and  A2A receptors in zebrafish 
[34, 35]. Nucleoside Triphosphate Diphosphohydrolases 
(NTPDases), ecto-5′-nucleotidase, and adenosine deaminase 
activities were characterized in zebrafish brain membranes, 
along with the gene expression patterns of these enzymes 
[36–39].

Considering that adenosine signaling is controlled by 
nucleotide- and nucleoside-metabolizing enzymes and 
nucleoside transporters, the modulation of these mecha-
nisms may be a target for new therapies for seizure control 
and epilepsy-associated comorbidities. Zebrafish is an effec-
tive model used in epilepsy research and the investigation of 

adenosine signaling in this species may contribute to eluci-
date the role of adenosine in epilepsy-related comorbidities. 
This study aimed to verify the effects of adenosine signaling 
on seizure development and cognitive impairment induced 
by PTZ in zebrafish.

Materials and Methods

Animals

A total of 336 adult zebrafish (Danio rerio) of the wild-
type AB strain (5–7 months old, ~ 50:50 male: female ratio) 
were used in the experiments. Animals were obtained from 
our breeding colony and kept in automated recirculating 
systems (Zebtec, Tecniplast, Italy) with reverse-osmosis-
filtered water and conditions recommended for the species 
[40, 41]. Temperature (28℃ ± 2℃), pH (7.0–7.5), conduc-
tivity (300–700 μS), ammonia (< 0.02 mg/L), hardness 
(80–300 mg/L), nitrite (< 1 mg/L), nitrate (< 50 mg/L), and 
chloride (0 mg/L) were monitored. Fish were maintained 
under a 14 h light:10 h dark photoperiod cycle and fed with 
commercial flakes (TetraMin Tropical Flake Fish®) three 
times a day. All protocols were approved by the Institu-
tional Animal Care Committee from Pontifícia Universidade 
Católica do Rio Grande do Sul, Brazil (CEUA- PUCRS, pro-
tocol number 9427). This study was registered in the Sistema 
Nacional de Gestão do Patrimônio Genético e Conhecimento 
Tradicional Associado-SISGEN (Protocol No. A3B073D).

Experimental Design

This study investigated the effects of drugs that can modu-
late adenosine signaling on memory consolidation impair-
ment caused by PTZ-induced seizures in zebrafish. The 
experimental design is seen in Fig. 1.

At first, zebrafish were randomly assigned to the experi-
mental groups and submitted to a training session in the 
inhibitory avoidance test. After 10 min, they received an 
intraperitoneal injection of the chosen drug. After 30 min, 
the animals were exposed to 7.5 mM PTZ for 10 min, where 
they were assessed for latency to reach the seizure stages 
(I, II, and III). Finally, 24 h after the training session, the 
animals were submitted to the inhibitory avoidance test to 
verify their cognitive performance during the test session, 
and then had their locomotor behavior evaluated.

The animals were randomly separated (8 fish per tank) 
in a 2-L aquarium with aerated and unchlorinated water, 
24 h before the beginning of the tests. The experiments were 
performed between 9 a.m. and 11 a.m., and they were con-
ducted in duplicate. No experimental procedure was car-
ried out in the maintenance area of fish to avoid any type 
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of behavioral stress. The animals were fed twice a day at 12 
p.m. and 5 p.m. Animals were not fed before the experiment.

Drug Pretreatments

Valproate (Sigma-Aldrich, St Louis, MO), cyclopentyl-
adenosine (CPA; Sigma-Aldrich, St Louis, MO), erythro-
9-(2-hydroxy-3-nony1)-adenine hydrochloride (EHNA; 
Sigma-Aldrich, St Louis, MO), 4-(2-[7-amino-2-{2-fury1}
{1,2,4}triazolo-{2,3-a}{1,3,5}triazin-5-yl-amino]ethyl) 
phenol (ZM 241385; Tocris Cookson, USA); dipyrida-
mole (Sigma-Aldrich, St Louis, MO), and 8-cyclopentyl-
1,3-dipropylxanthine (DPCPX; Tocris Cookson, USA) 
were used in the study. Saline was used as a vehicle for 
valproate, CPA, and EHNA, and 3% DMSO was used 
as a vehicle for DPCPX, ZM 241385, and dipyridamole 
according to previous studies [26, 42].The doses tested 
are: 100 mg/kg valproate, 2 mg/kg CPA, 75 mg/kg EHNA, 
2 mg/kg ZM 241385, 20 mg/kg dipyridamole, and 15 mg/
kg DPCPX were administered via intraperitoneal in a vol-
ume of 10 μl using a 3/10-mL U-100 BD Ultra-FineM 
Short Insulin Syringe 8 mm (5/16 inch) × 31G Short Nee-
dle (Becton Dickinson and Company, New Jersey, USA). 
The doses for each drug tested were chosen based on 

previous studies conducted in our laboratory  [42]. Before 
vehicle or drug administration, fish were anesthetized by 
immersion in a 100 mg/L tricaine solution (ethyl 3-amin-
obenzoate methanesulfonate salt; Sigma-Aldrich, St Louis, 
MO) until the animal demonstrated a lack of motor coor-
dination and decreased respiration rate. After the injec-
tion, the animals were placed in a separate tank for 30 min 
before PTZ (pentylenetetrazole; Sigma-Aldrich, St Louis, 
MO) exposure.

PTZ‑Induced Seizures

Seizures induced by PTZ are characterized by progressive 
behavioral changes in zebrafish, which are identified in 
three stages: (i) increased swimming activity (stage I); (ii) 
fast and circle swimming (stage II); and (iii) loss of pos-
ture and immobility for 1–3 s (stage III). The animals were 
individually exposed to 500 ml of 7.5 mM PTZ solution in 
a glass tank (15 cm × 15 cm × 6 cm; L × H × W) for 10 min. 
The behavior was recorded on video and the latency to the 
first episode of seizure activity in each stage was identified 
as previously described  [43].

Fig. 1  Schematic representation of the experimental procedures. On 
day 1, animals were submitted to a training session in the inhibitory 
avoidance test. After 10 min, they received an intraperitoneal injec-
tion of the chosen drug. 30 min later, the animals were exposed to 

7.5 mM PTZ for 10 min. On day 2, the animals were submitted to the 
inhibitory avoidance test to verify their cognitive performance during 
the test session and then had their locomotor behavior assessed
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Behavioral Analysis

Inhibitory Avoidance

Memory was assessed through the inhibitory avoidance test 
as described in the literature [44]. The behavioral apparatus 
comprises an aquarium (18 cm × 7 cm × 9 cm; L × H × W) 
with a mobile guillotine-type partition (9 cm × 7 cm; L × H), 
which separates the aquarium into two compartments of the 
same size, one dark (8 lux) and the other light (130 lux). The 
dark and light compartments are covered by opaque plastic 
self-adhesive films in black and white colors, respectively, 
covering the external walls, bottom, and corresponding sides 
of the movable partition. The aquarium water level was 3 
cm high, and the partition was raised 2 cm above the bottom 
of the aquarium to allow the free movement of the animals 
from one compartment to the other. Two electrodes were 
placed in the dark compartment and, when these electrodes 
were activated, they produced an electric shock of 3 ± 0.2 
V. The animals were trained and tested individually in the 
inhibitory avoidance apparatus.

During the training session, the fish were placed in the 
clear area of the aquarium with the partition closed and, after 
1 min of acclimatization, the partition was raised, allowing 
the animals to transition to the dark side through the open-
ing. After the animal crosses to the dark side, the partition 
was closed, and the animal received a pulsed electric shock 
administered for 5 s. The animals were then removed and 
placed in their respective aquariums. After 24 h, the test 
session was performed, where the fish were submitted to the 
same protocol; however, they did not receive the shock. The 
cognitive performance was evaluated through the latency to 
enter the dark area and this parameter was used as an index 
of memory retention.

Locomotor Activity

The locomotor activity was performed as described previ-
ously [45, 46]. Fish were placed individually in a glass tank 
(30 cm × 15 cm × 10 cm; L × H × W) filled with 2 L of non-
chlorinated water and recorded on video for 7 min, where 
the first minute recorded was to habituate the fish. The vid-
eos were analyzed using EthoVision XT® tracking software 
(version 11.5, Noldus, Wageningen, Netherlands) at a rate of 
30 positions per second. The distance traveled (m) parameter 
was chosen to verify locomotor alterations.

Statistical Analysis

The normality of data and homogeneity of variances were 
analyzed by the Shapiro-Wilk test and Bartlett's tests, 
respectively. Data were expressed as mean ± standard error 
of the mean (SEM). Nonparametric data of latencies to enter 

the dark area in training and test sessions were analyzed 
by the Mann-Whitney U test. Parametric data from seizure 
latency were analyzed by unpaired Student's t-test followed 
by Dunnett's post-hoc test. Parametric data from the locomo-
tor test were evaluated by two-way ANOVA, followed by the 
Student-Newman-Keuls multiple comparison test (effects of 
water and PTZ). The level of significance was set at p < 
0.05, and GraphPad Prism 8 (La Jolla, CA, USA) software 
was used for statistical analysis.

Results

Effects of Adenosine Signaling Modulation 
on PTZ‑Induced Seizures

Fig. 2 shows the latency to the first behavioral manifestation 
of each seizure stage (I, II, and III). All animals showed 
progressive behavioral alterations and reached all seizure 
stages.

To investigate seizure development and zebrafish 
response to a classic antiseizure drug, we investigated the 
effects of valproate on PTZ-induced seizures (Fig. 2A). Val-
proate pretreatment increased the latency to reach stages I, 
II, and III (p = 0.0173; p = 0.0076; p = 0.0127, respectively) 
when compared to control group. The animals exposed to 
PTZ without valproate treatment (saline group) reached 
stages I, II, and III at 134.7 ± 31.99, 387.3 ± 36.58, and 
406.3 ± 37.49 s, respectively, whereas animals pretreated 
with valproate reached stages I, II, and III at 274.1 ± 45.95, 
510.7 ± 23.98, and 522.9 ± 24.14 s, respectively.

To verify the role of adenosine on PTZ-induced sei-
zures, we evaluated different drugs that modulate adeno-
sine signaling. CPA, the selective  A1 receptors agonist, 
provided significant protection against PTZ-induced sei-
zures at stages II and III (p = 0.0028 and p = 0.0374, 
respectively) (Fig. 2B). Stage II was observed at 224.6 ± 
19.70 s (saline group) and 334.5 ± 27.83 s (CPA group). 
The latency to reach stage III was 303.7 ± 29.20 s in the 
saline group and 397.9 ± 32.12 s in the CPA group. CPA 
did not cause changes in the latency to reach stage I (p = 
0.4468) when compared to the control group. Stage I was 
observed at 77.53 ± 10.66 s (saline group) and 90.29 ± 
12.87 s (CPA group). The selective  A1 receptors antago-
nist, DPCPX, was not able to change behavior seizures 
responses at stages I, II, and III (p = 0.7401; p = 0.4697; 
p = 0.3790, respectively), when compared to the control 
group (Fig. 2C). The latencies to reach stages I, II, and III 
were observed at 128 ± 11.45, 256.3 ± 24.42 and 261.3 ± 
24.30 s, respectively (DMSO group), and 134.6 ± 16.13, 
280.9 ± 21.73 and 291.2 ± 23 s, respectively (DPCPX 
group). Similarly, ZM 241385, the  A2A receptors antag-
onist, did not cause changes at seizure stages I, II, and 
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III (p = 0.1895; p = 0.1481; p = 0.2873, respectively), 
when compared to the control group (Fig. 2D). DMSO 
group reached stages I, II, and III at 91.73 ± 23.86, 212.4 
± 33.01, and 278.7 ± 45.91 s, respectively. ZM 241385 
group reached stages I, II, and III at 57.27 ± 8.60, 284.6 
± 34.70, and 351.3 ± 48.20 s, respectively.

The animals pretreated with EHNA, an adenosine 
deaminase inhibitor, took longer to reach stages I, II, 
and III (p = 0.0192, p = 0.0006, and p = 0.0085, respec-
tively), when compared to the control group (Fig. 2E). 
For the saline group, stages I, II, and III were observed 
at 77.53 ± 10.66, 224.6 ± 19.70, and 319.3 ± 31.72  s, 
respectively; for the EHNA group, stages I, II, and III 
were observed at 149.3 ± 27.27, 380.2 ± 37.16, and 
458.6 ± 38.63 s, respectively. Finally, the adenosine reup-
take inhibition by the nonspecific nucleoside transport 
inhibitor, dipyridamole, did not cause changes at seizure 
stages I, II, and III (p = 0.8823; p = 0.4910; p = 0.8654, 
respectively) (Fig. 2F). In the vehicle (DMSO) group, the 
animals exposed to PTZ reached stages I, II, and III at 
107.7 ± 26.99, 198.8 ± 33.07, and 278.7 ± 45.91 s, respec-
tively. Animals pretreated with dipyridamole plus PTZ 
reached stages I, II, and III at 102.5 ± 21.49, 239.3 ± 47.44, 
and 290.3 ± 49.54 s, respectively. Descriptive data of the 
drugs’ effects on the latency to the first behavioral mani-
festation of each stage of PTZ-induced seizures (I, II, and 
III) and digital tracking maps of the total distance traveled 
are in Table S1 and Figure S1 (Supplementary Informa-
tion), respectively.

Effects of Adenosine Signaling Modulation 
on Memory Consolidation Impairment Induced 
by PTZ

Figure 3 shows the effects of PTZ-induced seizures on the 
cognition of animals pretreated and submitted to the inhibi-
tory avoidance task. Interestingly, the Mann–Whitney U test 
revealed that the classic antiseizure drug and all adenosine 
signaling modulators prevented the memory impairment 
induced by PTZ.

Pretreatment of valproate (p =  < 0.0001; Fig. 3A), CPA 
(p = 0.0004; Fig. 3B), DPCPX (p = 0.0001; Fig. 3C), ZM 
241385 (p = 0.0019; Fig. 3D), EHNA (p =  < 0.0001; Fig. 3E) 
or dipyridamole (p = 0.0001; Fig. 3F), followed by water 
treatment, showed a significant increase in the latency to 
enter the dark compartment in the test session. Their respec-
tive vehicle-groups (p =  < 0.0001, Fig. 3A; p =  < 0.0001, 
Fig.  3B; p = 0.0005, Fig.  3C; p =  < 0.0001, Fig.  3D; 
p =  < 0.0001, Fig. 3E; p =  < 0.0001, Fig. 3F, respectively), 
followed by water treatment, also demonstrated retention of 
memory during the test session. However, vehicle-exposed 
animals subsequently treated with PTZ did not exhibit mem-
ory retention during the test session performed 24 h after 
training (Fig. 3A–F). Interestingly, treatment with valproate 
(p =  < 0.0001; Fig. 3A), CPA (p = 0.0002; Fig. 3B), DPCPX 
(p = 0.0009; Fig. 3C), ZM 241385 (p = 0.0004; Fig. 3D), 
EHNA (p =  < 0.0001; Fig. 3E) or dipyridamole (p = 0.0009; 
Fig. 3F) prevented the memory consolidation impairment 
induced by PTZ. Descriptive data of the drugs’ effects on 

Fig. 2  Effect of A 100  mg/kg valproate (VPA), B 2  mg/kg CPA, C 
15 mg/kg DPCPX, D 2 mg/kg ZM 241385 (ZM), E 75 mg/kg EHNA 
or F 20 mg/kg dipyridamole (DIP) on the latency to the first behav-
ioral manifestation of each stage of PTZ-induced seizures (I, II and 

III). *p < 0.05, **p < 0.01, ***p < 0.001 indicate differences between 
the groups compared by the unpaired Student's t-test. All data were 
expressed as mean ± SEM (n = 11–20 per group)
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the latency to enter the dark area during the training and test 
session on inhibitory avoidance test are in Table S2 (Sup-
plementary Information).

Effects of Adenosine Signaling Modulation 
on Locomotor Activity

Figure 4 shows the effects of PTZ-induced seizures on the 
locomotor behavior of animals pretreated and submitted to 
the inhibitory avoidance task.

The two-way ANOVA showed no significant water x PTZ 
interaction for the pretreatment of valproate [F(1,66) = 1.331, 
p = 0.2527; Fig. 4A], CPA [F(1,53) = 1.667, p = 0.2023; 
Fig. 4B), DPCPX [F(1,55) = 0.1675, p = 0.6840; Fig. 4C), 
ZM 241385 [F(1,43) = 0.01183, p = 0.9139; Fig. 4D), EHNA 
[F (1,46) = 0.0070, p = 0.9338; Fig. 4E), and dipyridamole 
[F(1,41) = 1.615, p = 2109; Fig. 4F) on locomotor activity. 
Descriptive data of the drugs’ effects on zebrafish distance 
traveled are in Table S3 (Supplementary Information).

Discussion

Adenosine plays a protective role by interacting with 
adenosine receptors when its extracellular concentration is 
increased [47]. Several data have shown the crucial role of 
adenosine as a modulator of neurotransmission and a neu-
roprotective agent against excitotoxic neuronal injury [47, 

48]. Our results reinforce the role of adenosine receptors in 
seizure control and its effects on memory formation.

Previous studies have demonstrated that antiseizure drugs 
can interfere with the purinergic system [49–51]. In our 
results, we observed that the animals pretreated with val-
proate took longer to reach all seizure stages, demonstrating 
its anticonvulsant activity. A study using zebrafish showed 
that antiseizure drug pretreatments suppressed the increase 
of adenosine deamination induced by seizures, which coin-
cided with a longer period for the animals to reach seizure 
stage III [49]. In addition, valproate treatment suppressed the 
increase of adenosine deaminase activity induced by PTZ-
kindling in mice brain tissue [52].

Furthermore, our results showed that zebrafish pretreated 
with CPA, the  A1 receptors agonist, took longer to reach 
II and III seizure stages. On the other hand, the pretreat-
ment with DPCPX, the  A1 receptors antagonist, caused no 
changes in the animal’s behavior during the seizure stages. 
The same was observed when zebrafish were pretreated 
with ZM 241385, the selective  A2A receptors antagonist. 
These results corroborate with the studies suggesting that the 
deregulation of  A1 receptor signaling is intrinsically linked 
to the pathophysiology of epilepsy [12, 13, 53].

Adenosine is released from the cytoplasm by nucleoside 
transporters, or through ATP degradation into adenosine 
by ectonucleotidases, pathways that represent an important 
source of extracellular adenosine [14, 20]. Adenosine deami-
nase catalyzes the irreversible deamination of adenosine to 

Fig. 3  Effect of A 100  mg/kg valproate (VPA), B 2  mg/kg CPA, C 
15 mg/kg DPCPX, D 2 mg/kg ZM 241385 (ZM), E 75 mg/kg EHNA 
or F 20 mg/kg dipyridamole (DIP) on the latency to enter in the dark 
area during the training and test session on inhibitory avoidance 

test. **p < 0.01, ***p < 0.001, ****p < 0.0001 indicate differences 
between training and test session of each group compared by Mann–
Whitney U test t. All data were expressed as mean ± SEM (n = 12–20 
per group)
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inosine, and the inhibition of its activity modulates acute 
seizures in zebrafish [12, 42]. When pretreated with EHNA, 
an adenosine deaminase inhibitor, animals showed longer 
latency to reach II and III seizure stages. These data suggest 
that modulation of adenosine levels by adenosine deaminase 
activity has a key role in seizure control in zebrafish.

Regulation of adenosine levels by the action of nucleoside 
transporters is another important mechanism that may be 
crucial in controlling seizures. Here, the nucleoside trans-
porter inhibition by dipyridamole has no protective effects 
on seizure development in zebrafish. Animals pretreated 
with dipyridamole showed no changes in latency to reach 
the seizure stages. This result opposes the previous report 
that observed the protective effect of dipyridamole on sei-
zure development in zebrafish [42]. Although our study 
did not demonstrate the protective effect of dipyridamole, 
the modulation of adenosine levels through the activity of 
ectonucleotidases and nucleoside transporters are important 
mechanisms for the control of epilepsy as well as potential 
targets for pharmacological therapies [17].

Adenosine has been reported as a neuromodulator, with 
an important role in synaptic plasticity and memory pro-
cessing, and its depletion can disrupt memory formation 
[54–56]. Previous studies using adult zebrafish showed 
the memory impairment induced by the convulsant PTZ 
to reproduce cognitive dysfunctions as epilepsy-related 

comorbidities [57, 58]. Therefore, to verify the zebrafish’s 
cognitive performance on the inhibitory avoidance task, we 
choose the memory consolidation phase due to the robust 
response without altering animal locomotion [58]. As dem-
onstrated in previous studies, our data showed that animals 
pretreated with vehicles (saline or DMSO), followed by PTZ 
exposure, did not show memory retention when tested on the 
inhibitory avoidance task [58], characterizing a PTZ-induced 
seizures memory impairment.

Our work demonstrated that the valproate and all the 
adenosine modulators pretreatments prevented the memory 
consolidation impairment induced by PTZ, without altering 
locomotor activity. Studies have already demonstrated that 
valproate had the ability to recover learning and memory 
in rodent models of neurodegeneration [59, 60] and also 
contributed to memory consolidation and retrieval in mice 
[61]. We also observed that the  A1 receptors agonist (CPA) 
and the adenosine deaminase inhibitor (EHNA) promoted 
anticonvulsant effects and prevented memory impairment. 
In addition to the anticonvulsant effects, the activation of 
 A1 receptors by adenosine may modulate long-term poten-
tiation, long-term depression, and depotentiation, which 
are crucial processes for learning and memory in different 
brain areas [53, 55]. A study showed a reduced performance 
of  A1 receptors knockout mice after memory impairment 
induced by PTZ-kindling on the Morris water maze test [29]. 

Fig. 4  Effect of A 100  mg/kg valproate (VPA), B 2  mg/kg CPA, C 
15 mg/kg DPCPX, D 2 mg/kg ZM 241385 (ZM), E 75 mg/kg EHNA 
or F 20  mg/kg dipyridamole (DIP) on zebrafish distance traveled. 

Groups were compared by two-way ANOVA U test t. All data were 
expressed as mean ± SEM (n = 13–20 per group)
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Moreover, epileptic  A1 receptors knockout mice exhibited 
reduced neuronal cell survival and increased activation 
of caspase-3 in the hippocampus [29]. Also, our findings 
have shown that the  A1 receptor antagonist (DPCPX), the 
selective  A2A receptor antagonist (ZM 241385), and the 
nonspecific nucleoside transporter inhibitor (dipyridamole) 
pretreatments caused no changes in seizure development; 
however, they prevented memory impairment induced by 
PTZ. Other studies have described the beneficial effects of 
 A1 and  A2A receptor antagonism on mechanisms of learn-
ing and memory [30, 62, 63]. Interestingly, similar effects 
promoted by adenosine receptor agonists and antagonists in 
the prevention of memory impairment induced by PTZ were 
observed in our study, which could lead us to the hypoth-
esis that these compounds may act through different mecha-
nisms, i.e., as a neuroprotector on cognition pathways and/
or as an anticonvulsant. Some compounds, such as  A1 and 
 A2A receptor antagonists, could modulate directly cognitive 
functions, exerting a neuroprotective role, and preventing the 
memory impairment induced by PTZ-seizures. On the other 
hand, some adenosinergic compounds, such as  A1 receptor 
agonists, have anticonvulsant effects able to reduce seizure 
development, which could avoid the occurrence of memory 
deficits induced by PTZ. Previous studies demonstrated 
significant improvement in scopolamine-induced memory 
impairment using  A1 and  A2A receptor antagonists in adult 
zebrafish and mice [26, 64]. Wiprich et al. [30] have also 
demonstrated that the  A1 receptor agonist CPA, the  A1 
receptor antagonist DPCPX, the  A2A receptor antagonist 
ZM 241385, and the nonselective antagonist of  A2A and  A1 
receptors caffeine reversed 3-NPA-induced memory impair-
ment in adult zebrafish during the inhibitory avoidance 
task. These findings corroborate our results, suggesting that 
the modulation of adenosine receptors could influence dif-
ferent mechanisms and pathways, resulting in the prevention 
of memory impairment induced by a neurological disorder. 
Although the adenosine receptors were already identified in 
zebrafish through molecular studies [34, 35], the affinities of 
adenosine receptors by their agonists and antagonists have 
not been reported. Therefore, we chose to test doses already 
evaluated in zebrafish in other models of neurological disor-
ders, in which it was performed dose–response curves [42]. 
It is also relevant to mention that there is a gap of knowl-
edge on the pharmacokinetics and pharmacodynamics of 
these drugs in zebrafish, which could influence the effects 
observed by the adenosine agonists and antagonists in sei-
zure control and/or memory processing. Therefore, the para-
doxical effects of both agonists and antagonists of adenosine 
receptors and their effects on different pathways need to be 
further investigated in zebrafish.

An argument for the mechanisms related to the interac-
tion between seizures and memory is that seizures directly 
injure neural networks that are essential for the memory 

formation processes. PTZ-induced seizures caused altera-
tions in oxidant-antioxidant balance, γ-aminobutyric acid 
(GABA) concentration, and neuronal cells in mice brain 
[65]. Adenosine is recognized as a crucial molecule in the 
homeostasis of the nervous system cells. It is released upon 
conditions of metabolic stress and many of the known effects 
of this molecule are neuroprotective properties [66]. Adeno-
sine may decrease excitatory amino acid release, limit cal-
cium influx, hyperpolarize the neuronal membrane, restrain 
the activation of N-methyl-D-aspartate (NMDA) receptors, 
inhibit free radical formation, and exert modulatory effects 
in neuronal cells [20, 67–69].

Changes in the distance traveled parameter were not 
observed in the classical antiseizure drug and all the adeno-
sine modulators pretreatments. Importantly, the locomotor 
behavior was not altered 24 h after the exposure period, 
demonstrating that the animals’ performance on inhibitory 
avoidance task is not associated with locomotor changes but 
with a learning response [58].

Conclusion

To our knowledge, this is the first time that the role of aden-
osine modulation is evaluated in a memory consolidation 
impairment promoted by PTZ-induced seizures in zebrafish. 
Our results reinforce the anticonvulsant effects of adenosine 
signaling, and the data presented here suggest that the modu-
lation of adenosine levels via adenosine metabolism or by 
the inhibition of nucleoside transporters can prevent mem-
ory consolidation impairment induced by PTZ. These find-
ings support the idea that the involvement of adenosine in 
memory processes may be a target for preventive strategies 
against cognitive impairment.
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