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epileptic patients worldwide, about one-third are resistant 
to medical therapy [2]. Not only the quality of life but also 
the mental health of the epileptic patients were reduced [3, 
4]. Recently, although great progress has been made in the 
diagnosis and treatment of epilepsy, the detailed mechanism 
of the occurrence and development of epilepsy still needs 
to be clarified [5]. We need to improve our understanding 
of the mechanism of epilepsy, and one such mechanistic 
knowledge deficit is the lack of insight into mitochondrial 
fusion in seizures.

The major function of mitochondria is the regulation of 
cellular energy metabolism, which provides most of the ATP 
for cellular reactions through the mitochondrial respiratory 
chain [6]. A dynamic network within the cell can be formed 
through the balance of fusion and fission of the mitochondria. 
Mitofusin1/2 (MFN1/2), located on the outer mitochondrial 
membrane, is mainly involved in regulating mitochondrial 
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Background: Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), regulated by AMPK, is an important 
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excitatory post-synaptic marker PSD95, suggesting that PGC-1α may regulate the seizure susceptibility of the rats by 
mediating excitatory post-synaptic signaling. Conclusion: The AMPK/PGC-1α signaling pathway may play an important 
role in the lithium-pilocarpine-induced epileptic rat model by mediating the expression of fusion proteins.
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fusion [7, 8]. Disruption of the balance between mitochon-
drial fusion and division can lead to changes in neuronal 
excitability, affecting seizures [9, 10].

In the development of cardiomyopathy in PGC-1α-
knockout mice, PGC-1α was shown to regulate MFN1/2 
gene transcription by coactivating estrogen-related receptor 
alpha on conserved DNA elements [11]. It is reported that, 
in addition to nuclear-encoded coding genes, PGC-1α is an 
important regulator of the mitochondrial fusion process [12, 
13]. Besides this, PGC-1α has neuroprotective effects. For 
example, upregulation of PGC-1α expression could pro-
tect cultured neuronal cells from oxidative stress-induced 
cell death [14]. However, whether PGC-1α is associated 
with epilepsy by mediating the regulation of mitochondrial 
dynamics still needs to be elucidated.

Here, a lithium-pilocarpine-induced epileptic rat model 
was established. Then, the specific inhibitor of PGC-1α, 
Compound C, was used in this model. Finally, the epi-
leptic susceptibility and the expression of PGC-1α and 
MFN1/2 were observed in rats after treatment with Com-
pound C.

Methods

Establishment of the Lithium-Pilocarpine-Induced 
Epileptic Seizure Rat Model

Adult male Sprague-Dawley (SD) rats weighing 200–
250 g were obtained from the Experimental Animal Center 
of Zunyi Medical University. All experimental protocols 
were reviewed and approved by the Commission of Zunyi 
Medical University for Ethics of Experiments on Animals. 
The rats were maintained (five per cage) under standard 
animal room conditions (22–24  °C and a 12-h light/12-
h dark cycle) with free access to food and water. These 
experiments were conducted according to the guidelines 
of the National Institutes of Health Guide for the Care 
and Use of Laboratory Animals, according to the guide-
lines of the World Medical Association Declaration of 
Helsinki. In addition, all efforts have been made to mini-
mize the number and suffering of animals. The subsequent 
use of Compound C (MedChem Express, HY-13,418 A) 
is a selective, ATP-competitive AMPK inhibitor that also 
induces autophagy.

The rats were randomly divided into four groups: the 
control group (0.9% saline, n = 5), the EP groups (lith-
ium-pilocarpine was used to induce epilepsy, and tissues 
were harvested at 6 and 24 h, every time point, n = 5), the 
EP + Compound C group (15 mg/kg in 2% DMSO, n = 5), 
and the EP + DMSO group (0.9% saline + 2% DMSO, 
n = 5). The lithium-pilocarpine-induced epileptic seizure 

rat model received an intraperitoneal injection of lithium 
chloride (127 mg/kg), and an injection of atropine sulfate 
(1 mg/kg) was administered 18–24 h later. Then, the rats 
were intraperitoneally injected with pilocarpine (50  mg/
kg) 30 min after the administration of atropine. The rat’s 
total mortality is about 5% (19 alive and 1 dead in the 
EP group. After that, we remodeled and added to the EP 
group).

The rats developed stage IV or V seizure behaviors 
according to the Racine standard as follows [15]: stage 
0, no spasm; stage I, facial myoclonus and mouth move-
ments; stage II, head nodding; stage III, forelimb clonus; 
stage IV, rearing along with severe forelimb clonus; and 
stage V, rearing and falling. The status epilepticus (SE) 
was maintained for 45 min and terminated by intraperito-
neal injection of atropine sulfate (1 mg/kg) and diazepam 
(10 mg/kg). The rats in the untreated control group received 
the same doses of lithium chloride and atropine sulfate but 
were administered 0.9% saline instead of pilocarpine. The 
EP + Compound C rats received an intraperitoneal injection 
of Compound C (15 mg/kg in 2% DMSO) and 0.9% saline 
when the atropine sulfate was administered [16], and the 
rats in the EP + DMSO group only received 2% DMSO. The 
EP + DMSO group and the EP + Compound C group were 
sacrificed after 24 h.

Immunofluorescence Staining

To confirm the subcellular localization of PGC-1α in 
neurons and astrocytes in the hippocampus after the sei-
zure, the double-labeling immunofluorescence of PGC-1α 
in rats 24  h after seizures was performed as previously 
described [17]. Briefly, frozen sections were randomly 
selected, and the sections were incubated with a mixture of 
mouse anti-GFAP (1:50; Santa Cruz Biotechnology, USA, 
sc-71,143), rabbit anti-PGC-1α (1:50; Abcam, Cambridge, 
UK, ab54481) and guinea pig anti-microtubule-associated 
protein 2 (MAP2) (1:200, Sysy, Goettingen, Germany, 188 
004) overnight at 4 °C.

The next day, the sections were incubated with a mix-
ture of Alexa Fluor 488-conjugated goat anti-rabbit IgG 
(1:50, Zhongshan Golden Bridge, Inc., Beijing, China), 
Alexa Fluor 594-conjugated goat anti-mouse IgG (1:200, 
Zhongshan Golden Bridge Inc., Beijing, China), and Alexa 
Fluor 633-conjugated goat anti-guinea pig IgG (1:50, 
Abcam, Cambridge, MA, USA). Then, the sections were 
counterstained with DAPI (4′,6-diamidino-2-phenylindole, 
1:10,000 dilution, Sigma-Aldrich, D9542) for 20  min, 
mounted, and sealed with 50% glycerin. In the end, the 
slides were observed by a laser scanning confocal micro-
scope at 40× magnification [10].
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Western Blotting

The rats were anesthetized with diazepam (10 mg/kg, Sigma-
Aldrich, St. Louis, Missouri, USA), and their brains were 
quickly removed. Then, the hippocampus and cortex of the 
adjacent temporal lobe were quickly dissected and frozen. 
According to the manufacturer’s instructions, total protein 
concentrations were measured using an enhanced BCA pro-
tein assay kit (Beyotime, Haimen, China). Equal amounts of 
protein were separated by 10% SDS-PAGE and transferred to 
polyvinylidene difluoride (PVDF) membranes. After being 
blocked with 5% skim milk at room temperature for 1 h, the 
PVDF membranes were removed and incubated overnight at 
4 °C with the corresponding primary antibody, including the 
anti-PGC-1α antibody (rabbit monoclonal antibody, 1:2,000, 
Abcam, ab54481), Anti-Mitofusin 1 antibody (mouse mono-
clonal antibody, 1:1,000 Abcam, ab57602), Anti-Mitofusin 
2 antibody (rabbit monoclonal antibody, 1:5,000, Abcam, 
ab124773), β- tubulin (rabbit polyclonal antibody, 1:2,000, 
Proteintech, Inc, Rosemont, USA). β- tubulin was used as an 
internal control. The membranes were then incubated with 
HRP-conjugated secondary antibodies (1:1,000, Santa Cruz 
Biotechnology, CA, USA, sc-2004) at 25 °C for 1 h. Finally, 
the protein bands were visualized using Super Signal West 
Pico Chemiluminescent HRP substrate (Rockford, IL, USA). 
Quantity One software (Bio-Rad Laboratories, Hercules, 
CA, USA) was used to analyze the data.

Statistical Analysis

The Shapiro Wilke test was used to detect the normal 
distribution, and the Hartley test was used to test the 

homogeneity of variance. The data were expressed as the 
means ± standard deviation and were analyzed using SPSS 
version 18.0. The behavioral characteristics of the rats 
and the results of Western blot were analyzed by one-way 
ANOVA and Q statistics test. P < 0.05 indicated a signifi-
cant difference.

Results

Effects of Compound C on the Latency and 
Frequency of Epileptic Seizures in Rats

To determine the effects of Compound C on the latency 
and frequency of epileptic seizures in rats, we moni-
tored the seizures in freely moving rats using behav-
ioral observations. The latency to the first seizure was 
19.35 ± 1.51 min in the EP group, 19.22 ± 1.00 min in the 
EP + DMSO group, and 14.91 ± 1.01 min in the EP + com-
pound C group. The number of seizures within 1 h was 
6.2 ± 0.84 in the EP group, 6.0 ± 0.71 in the EP + DMSO 
solvent control group, and 8.0 ± 1.22 in the EP + com-
pound C group. There was no significant difference in 
the latency to the first seizure and the number of sei-
zures within 1 h between the EP and EP + DMSO groups 
(P > 0.05). However, in the EP + compound C group, the 
latency to the first seizure was significantly reduced, the 
number of seizures within 1 h was increased, and the dif-
ferences were statistically significant (P < 0.05) (Fig.  1). 
These results suggest that Compound C can significantly 
shorten the latency to the first seizure and increase the 
number of seizures in epileptic rats.

Fig. 1  Latency to the first seizure (A) and the number of seizures within 1 h (B) in the different groups. * P < 0.05 compared with the EP group
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marker DAPI in the hippocampal CA1, CA3, and DG 
regions in epileptic rats (Fig.  3). MFN1 was coexpressed 
with the neuronal dendritic-specific marker MAP2 but not 
with the astrocyte-specific marker GFAP in the hippocampal 
CA1, CA3, and DG regions in epileptic rats, and MFN1 was 
mainly expressed in the neuronal cell membrane (Fig. 4). 
To further verify how PGC-1α regulates the mitochondrial 
fusion protein MFN1/2, we examined the colocalization of 
PGC-1α with the excitatory post-synaptic marker PSD95 
by immunofluorescence. Coexpression was observed in the 
hippocampus and the neighboring hippocampus’s temporal 
cortex (Fig. 5).

Discussion

AMPK is a key molecule that regulates bioenergy metab-
olism and can be activated by any metabolic stress that 
increases the AMP/ATP ratio [18]. Studies have shown that 
PGC-1α, which is regulated by AMPK, is involved in regu-
lating mitochondrial respiratory genes [19]. PGC-1α inter-
acts with transcription factors or coactivators to enhance 
their effects on target gene transcription. Therefore, the 
physiological functions of PGC-1α are mainly involved in 
promoting mitochondrial biogenesis and regulating glucose 
metabolism [20, 21]. It is also associated with neurodegen-
erative diseases, such as Parkinson’s disease, decreased 
mitochondrial damage, and mitochondrial gene expression 
[22]. Under hypoxic conditions, the PGC-1αnull mice have 
marked defects in the striatum associated with movement 
disorders [23]. These studies indicate that increased expres-
sion of PGC-1α reduces neuronal cell death.

The present study showed that PGC-1α expression 
decreased at 6 h after a seizure but increased significantly 
at 24 h. The change of PGC-1α expression may be related 
to the activation of endogenous protective mechanisms after 
epileptic seizures for a certain period. Furthermore, when 
PGC-1α expression was inhibited, the susceptibility of rats 
to epilepsy was increased, and the severity of epileptic sei-
zures was exacerbated. This finding suggests that PGC-1α 
may be involved in epileptic seizures.

Mitochondria are double-membrane organelles that are 
affected by metabolic conditions, developmental stages, 
and environmental stimuli and have various shapes. Their 
dynamic morphology results from regulating the processes 
of fusion and division, and fusion is essential for mitochon-
dria’s health and physiological functions [24, 25]. The fusion 
process is regulated by a series of proteins, including fusion 
protein 1/2 (mitofusin 1/2, MFN 1/2) and optic atrophy 1 
(Opa1). MFN1/2 is localized on the outer mitochondrial 
membrane [7, 8]. The expression of MFN1 was significantly 
increased at 6 h after the epileptic model was established. 

Effects of Compound C on PGC-1α and MFN1/2 
Expression in Brain Tissue

Figure 2 A shows the basal level of PGC-1α expression in 
the normal group. The immunoblot density ratios of PGC-1α 
to β- tubulin in the control, EP + compound C, solvent con-
trol, and epilepsy groups (6 and 24  h) were 0.63 ± 0.02, 
0.42 ± 0.03, 0.74 ± 0.03, 0.39 ± 0.01, and 0.74 ± 0.03, respec-
tively. The expression of PGC-1α in the EP + compound C 
and EP-6  h groups was significantly decreased (P < 0.05) 
compared with that in the control group, while the expres-
sion level of PGC-1α was significantly increased in the 
EP-24 h group (P < 0.05).

Western blot analysis of MFN1 expression showed the 
expression level of MFN1 in the rat hippocampus and the 
immunoblot density ratios of MFN1 to β-tubulin in con-
trol, EP + compound C, solvent control, and epilepsy groups 
(6 and 24  h) were 0.11 ± 0.01, 0.11 ± 0.02, 0.15 ± 0.01, 
0.17 ± 0.01, and 0.15 ± 0.02, respectively. The expression of 
MFN1 in the hippocampus in the EP + compound C group 
was slightly decreased (P < 0.05) compared with that in the 
EP + DMSO group. The expression of MFN1 in the hip-
pocampus in the EP-6 h and EP-24 h groups was slightly 
increased (P < 0.05) compared with that in the control group 
(Fig. 2B).

The Western blot results showed that MFN2 was 
expressed in the rat hippocampus, and the immunoblot 
density ratios of MFN2 to the corresponding internal ref-
erence (β - tubulin) in control, EP + compound C, solvent 
control, and epilepsy groups (6 and 24 h) were 0.08 ± 0.004, 
0.07 ± 0.002, 0.10 ± 0.001, 0.04 ± 0.001, and 0.09 ± 0.006, 
respectively. The expression of MFN2 in the EP + Com-
pound C and EP-6  h groups was significantly decreased 
(P < 0.05) compared with that in the control group (Fig. 2 C).

Cellular Localization of PGC-1α and MFN1/2 
in the Hippocampus was Measured by 
Immunofluorescence

The Western blot results showed that the protein expres-
sion levels of PGC-1α and MFN1/2 in the hippocampus 
of epileptic rats were significantly different from those of 
rats in the untreated control group. The expression levels 
of PGC-1α and MFN1/2 in the EP-24 h group were similar 
to the expression levels in the EP + DMSO group, and they 
were not significantly different from those of the solvent 
control group (P > 0.05). For this reason, the expression of 
PGC-1α and MFN1/2 in the hippocampus by immunofluo-
rescence was measured 24 h after the seizure. The results 
showed that PGC-1α and MFN2 were coexpressed with 
the neuronal dendritic-specific marker MAP2 but not with 
the astrocyte-specific marker GFAP or the nuclear-specific 
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Fig. 2  The expression of PGC-1α (A), MFN1 (B), and MFN2 (C) in 
the hippocampal of the different groups were measured by immunob-
lot. Note: The left panel shows the Western blot image of hippocampal 

expression in the different groups, and the right panel shows the quan-
tification of the data in the image shown in the left panel (* P<0.05)
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not MFN1 [27]. In other words, PGC-1α may participate 
in epileptic seizures mainly by regulating the expression 
of MFN2. Also, we found that the expression of PGC-1α 
and MFN1/2 decreased at 72 h and 1 week compared with 
24 h after the seizure, and there was no significant difference 
between the normal group. It may be related to the body’s 
self-regulation, and the specific mechanism must be further 
studied.

Both MFN1/2 and PGC-1α were expressed mainly in 
neurons but not astrocytes in the brain tissue. MFN1/2 
was mainly expressed in the cytoplasm, while PGC-1α 
was expressed in both the cytoplasm and nucleus. More-
over, the subcellular localization of these three markers did 

Some studies have shown that when oxidative stress occurs 
in brain tissues, mitochondria actively fuse to inhibit oxida-
tive stress, thus playing a protective role in the brain [26]; 
however, MFN1 expression was significantly decreased at 
6 h after the seizure, which was consistent with the expres-
sion of PGC-1α. In the EP-24  h group, the expression of 
MFN1/2 increased significantly. We hypothesize that MFN1 
and MFN2 are expressed at different times to exert synergis-
tic effects and thus protect the brain. Besides, Compound C 
significantly decreased the expression of PGC-1α, and we 
observed that the expression of PGC-1α was consistent with 
the expression of MFN2. This finding is consistent with the 
report showing that PGC-1α mainly regulates MFN2 but 

Fig. 3  PGC-1α (upper) and 
MFN1 (lower) expression in the 
CA1, CA3, and DG areas of the 
hippocampus in epileptic rats was 
measured 24 h after seizure onset 
by multilabel immunofluores-
cence (scale: 20 μm)
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Besides, PGC-1α colocalizes with the excitatory post-syn-
aptic marker PSD95, suggesting that PGC-1α may regulate 
epileptic seizures by mediating excitatory post-synaptic 
signaling.

not change significantly in epileptic conditions compared 
with normal conditions. This finding is consistent with 
previous studies showing the expression and localization 
of MFN1/2 and PGC-1α in mammalian brain tissue [28]. 

Fig. 5  Immunofluorescence multi-labeling was used to detect the colocalization of PGC-1α with the excitatory post-synaptic specific marker 
PSD95 in the rat hippocampus and adjacent hippocampal temporal cortex (scale: 20 μm)

 

Fig. 4  MFN2 expression in the CA1, CA3, and DG areas of the hippocampus in epileptic rats was measured 24 h after seizure onset by double-
labeling immunofluorescence (scale: 20 μm)
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