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Abstract
Finding an effective cure for Alzheimer’s disease has eluded scientists despite intense research. The disease is a cause of 
suffering for millions of people worldwide and is characterized by dementia accompanied by cognitive and motor deficits, 
ultimately culminating in the death of the patient. The course of the disease progression has various underlying contributing 
pathways, with the first and foremost factor being the development and accumulation of aberrant and misfolded proteins 
exhibiting neurotoxic functions. The impairment of cellular clearance mechanisms adds to their accumulation, resulting in 
neuronal death. This is where the PROteolysis TArgeting Chimera (PROTAC) technology comes into play, bringing the UPS 
degradation machinery in the proximity of the target protein for initiating its degradation and clearing abnormal protein debris 
with unparalleled precision demonstrating an edge over traditional protein inhibitors in many respects. The technology is 
widely explored in cancer research and utilized in the treatment of various tumors and malignancies, and is now being applied 
in treating AD. This review explores the application of PROTAC technology in developing lead compounds for managing 
this deadly disease along with detailing the pieces of evidence justifying its utility and efficacy.
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Abbreviations
AD  Alzheimer’s disease
PROTAC   PROteolysis TArgeting Chimera
UPS  Ubiquitin–proteasome system
PHF  Paired helical filaments
UBB  Ubiquitin-B protein
BET  Bromodomain and extraterminal

Introduction

Dementia is the 5th leading cause of death worldwide, and 
Alzheimer’s disease (AD) is the most common contribu-
tor, accounting for about 60–70% of dementia cases. Esti-
mates indicate that currently 6.5 million Americans aged 
65 or older are living with Alzheimer’s and the number is 
likely to increase to 12.7 million by 2050 [1]. The disorder 
is catastrophic in terms of morbidity and mortality, charac-
terized by primarily motor deficits, dementia, and cognitive 
impairments [2]. The rising number of patients with AD 
and the non-availability of a cure for the disease present 
great hardships and difficulties among patients, their caretak-
ers and physicians, and researchers. For understanding the 
etiology of the disease, the interplay of many factors needs 
to be considered, including oxidative stress, mitochondrial 
dysfunction, and protein abnormalities [2, 3]. Aberrant and 
misfolded proteins with altered conformations are found in 
AD which changes their functions from physiological to 
neurotoxic [4, 5]. These forms aggregate and accumulate 
intracellularly in the case of tau proteins or α-synuclein and 
extracellularly in synaptic spaces in the case of Aβ proteins 
showing abnormal protein–protein interactions [6]. The 
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existence of these abnormal protein clusters interfering with 
normal cell signaling has led to AD being qualified as pro-
teinopathy [6]. Protein misfolding can occur due to altera-
tions in the conformations of native proteins or improper 
folding of newly formed polypeptides [4, 5]. The defective 
folding of these proteins can result in surface exposure of 
hydrophobic amino acid side chains that were initially bur-
ied deeply, making them susceptible to joining additional 
monomers and forming oligomers and aggregates, which can 
turn infectious, also referred to as prions [7]. These prions 
can penetrate the cellular membrane and may further spread 
the infected proteins, aggravating the disorder [7, 8]. There-
fore, the only way left for a smooth neuronal functioning is 
successful clearance of these abnormal protein structures. 
The two prominent clearing paths are through the ubiqui-
tin–proteasome system (UPS) and autophagy involving lys-
osomes. Both of these pathways are found to be impaired 
in AD [8] and have been identified as the cause of neuronal 
death in AD [9–13]. The pivotal role of protein degradation 
in the pathogenesis of the disease has motivated researchers 
to design novel techniques for establishing efficient protein 
degradation, including the development of the PROteolysis 
TArgeting Chimera (PROTAC) technology, a trailblazing 
tool that efficiently degrades the target protein by bringing 
the UPS machinery in its proximity [51]. This review tries to 
connect the dots between the uses of PROTACs for targeting 
culprit proteins involved in multiple allied AD pathways. 
An effort is made here to give insights into the PROTACs 
developed to date for the treatment of AD and an attempt 
is also made to bridge the gap between said technology’s 
powerful strengths and future challenges in managing this 
deadly disorder.

Protein Degradation in AD (Autophagy 
and UPS)

The immortal and non-dividing nature of neuronal cells 
predisposes them to the toxic effects of accumulated mis-
folded proteins and damaged organelles and the associated 
cytotoxicity [8]. Neurons depend on cellular proteasomes 
for maintaining cellular homeostasis and clearance of these 
accumulated proteins [14, 15]. There are two major path-
ways responsible for initiating this clearance cycle which 
are: the Ubiquitin–Proteasome System and the Autophagy 
Lysosomal Pathway. The diminishment of these pathways 
with aging is one of the factors initiating the development 
of neurodegenerative disorders [9, 12].

The ubiquitin proteasome system (UPS) is localized in 
the cytosol and nucleus of the cell and is responsible for 
degrading 70–80% of intracellular proteins. It comprises 
ubiquitin, made up of 76 amino acid residues conjugated 
to substrate proteins via a linker attached to the C-terminal 

glycine residue [16]. This commonly involves a lysine resi-
due’s side chain or an N-terminal methionine [17, 18]. The 
ubiquitination process proceeds through an enzymatic cycle 
involving the interplay of highly specific enzymes like E1 
ubiquitin-activating enzymes, E2 ubiquitin-conjugating 
enzyme, and E3 ubiquitin ligases [19]. E1 activates ubiqui-
tin via an ATP-dependent reaction, forming a high-energy 
thioester bond between the cysteine active site of E1 and the 
carboxyl group of ubiquitin. After this, ubiquitin is passed 
onto E2, forming an identical thioester intermediate with 
it, followed by binding of E2 and the substrate by the E3 
enzyme, and ubiquitin is transferred to the substrate [20, 
21]. The 26S proteasome, a large multi-subunit complex, 
plays a central role in the degradation of the Ub-conjugated 
proteins [15] (Fig. 1). The wide range of E3-protein ligases 
is able to distinguish between various substrates due to its 
high specificity and subjectivity.

The UPS has a remarkable impact on the progression of 
Alzheimer’s disease. It has a direct correlation with various 
AD pathologies. UPS is involved in the degradation of Aβ, 
and its alteration in AD, aggravates the amassing of Aβ in 
several parts of the brain of AD patients. It also leads to 
increased Aβ formation by upregulating α-secretase activ-
ity in neurons of the AD brain [22]. On the other hand, it 
is also found that Aβ inhibits the proteolytic activities of 
the 26S proteasomes and significantly increases the levels 
of Ub-protein conjugates in neurons which is a pathologi-
cal hallmark of AD [23, 24]. It also leads to the inhibition 
of the multivesicular sorting pathway which is known to 
be an important route for retrograde transportation, sup-
plying important substrates from neuronal terminals to the 
cell body for signaling and degradation via lysosomes [13]. 
Similar to its involvement in Aβ’s pathological aspects, UPS 
is also involved in the degradation of tau through the 26S 
proteasome. The association between UPS and tau pathol-
ogy r results from the recurrent building up and aggrega-
tion of Ub in paired helical filaments (PHF) and neurofi-
brillary tangles in order to initiate the tau degradation. The 
polyubiquitinated tau molecules present within the paired 
helical filaments is localized in the form of Lys48-linked 
poly-Ub form, which is the most recognized degradation 
signal. This clearly illustrates the role of UPS-mediated tau 
removal in the protection against AD pathogenesis. Hence, 
Aβ accumulation, tau hyperphosphorylation and neurode-
generation are all connected to the UPS dysfunction in AD 
[15]. Moreover, functional failure of UPS in AD pathology 
is also evident from the research findings of downregula-
tion of proteasome activities in multiple sections of the AD 
brain which includes the inferior parietal lobe, superior and 
middle temporal gyri and para hippocampal gyrus [25]. 
Another major connection between UPS and the pathology 
of AD comes from the identification of frameshift mutation 
in the Ub transcript known as UBB+1, formed as a result of 
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molecular misreading of Ubiquitin-B Protein (UBB) in AD 
patients leading to the elongation of molecule by 20 amino 
acids [26]. The UBB+1 is an effective polyubiquitination 
acceptor, however, neither it can be activated by the E1 due 
to the absence of crucial G76 moiety nor it can bind to a sub-
strate or the Ub portion. The resultant chain is also difficult 
to be disassembled by the deubiquitinases like isopeptidases 
T. The aggregated poly-Ub chains also result in inhibition of 
proteosomal degradation leading to neuronal apoptosis [27, 
28]. The UBB+1 expression considerably rises in the brain 
due to aging resulting in UPS suppression and accumulation 
of toxic protein aggravating AD [15].

The autophagy mode of degradation is another major 
degradation pathway for clearing abnormal proteins from 
cytoplasm, triggered by cellular insults like starvation. It 
is also pivotal for capturing and degrading damaged or dis-
rupted cytoplasmic structures like mitochondria (mitophagy) 
or invading microbes (Xenophagy), or protein aggregates 
(aggrephagy). The pathway involves the ubiquitin-depend-
ent degradation of cargo via lysosomes in place of proteas-
omes involved in above mentioned pathways, and the cycle 
is modulated by autophagy-related genes [14, 29]. Protein 
quality control maintained by autophagy is imperative for 
the removal of aggregated pathogenic protein forms in neu-
rodegenerative disorders like tau and Aβ in AD, α-synuclein 
in Parkinson’s disease, and polyQ-Htt in Huntington’s dis-
ease [29]. Any dysfunction in this autophagy process can 

give rise to neurodegeneration even in the absence of any 
disease-associated mutant, as shown in a research study 
with mice models lacking the Atg5 (autophagy-related 5) 
gene responsible for autolysosomal formation in their neural 
cells; such mice were found to develop motor defects along 
with the aggravated build-up of cytoplasmic inclusion bod-
ies in neurons [30]. The cycle employs ubiquitin binding 
autophagy adaptors like p62/sequestosome 1, optineurin, 
Nuclear Domain 10 Protein 52 and Tax1 Binding Protein 
1 (TAX1BP1) [31, 32]. The p62 adaptor is associated with 
the ubiquitin domain which interacts with the polyubiquitin 
chains of misfolded proteins and a PB1 domain that modu-
lates the self-aggregation forming condensed cargo p62 
complexes [33]. These cargo-loaded p62 and other joined 
complexes are delivered to autophagic vacuoles by the inter-
action of p62 with light chain 3 II (LC3-II) on the surface of 
autophagic double membrane structures [34]. This process 
subsequently decreases the toxicity of the free forms or oli-
gomeric species of misfolded proteins [29]. After the deliv-
ery of misfolded proteins to phagophores, the membranes 
fuse together and proliferate further to form autophagosomes 
which fuse with lysosomes to form autolysosomes in which 
these cargoes are degraded by lysosomal hydrolases (Fig. 2) 
[35].

The degradation of misfolded protein structures via 
autophagy and subsequent cell cleansing determines proper 
neuronal functioning and survival. However, similar to 

Fig. 1  Protein degradation 
caused by the Ubiquitin protea-
some system degrading it into 
amino acids with the help of E1 
ubiquitin activating enzymes, 
E2 ubiquitin conjugating 
enzyme and E3 ubiquitin ligases 
and 26S proteasome
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the impairment of the UPS pathway, autophagy is also 
known to be impaired in AD brains. The examination of 
AD brains shows reduced levels of autophagosomes [36], 
autophagy regulatory proteins like beclin-1 [37], autophagy 
marker ATG5 and mitophagy marker RBR E3 ubiquitin-
protein ligase (PRKN) [38, 39] signaling the impairment of 
autophagy in AD [40]. The impaired autophagy dampens the 
clearance of abnormal proteins and influences their accumu-
lation in the synapse leading to AD.

Thus, protein degradation is imperative for proper neu-
ronal functioning. The processes involved in cellular quality 
control have interconnected links with AD pathology and 
can be a wonderful target for its therapeutic management. 
Hijacking the ubiquitin-dependent degradation has been one 
of approaches gaining attention of researchers to treat a vari-
ety of neurodegenerative disorders.

PROTACS as the Emerging Technology 
for Protein Degradation

The PROTAC technology was first reported in 2001 to tar-
get the ubiquitin ligase complex SKF (Skp1-Cullin-F-box-
HRT1) [43–45], and since then it has been a focus of inter-
est for attacking otherwise undruggable protein targets; it 

is increasingly being employed in biological research and 
therapeutic development [41, 48]. PROTACS are bifunc-
tional molecules that hijack the ubiquitin proteasome system 
to perform target protein degradation. The PROTAC entity 
is made up of a ligand that binds selectively to an E3 ligase 
connected by a linker to a ligand that binds the protein of 
interest. PROTACS brings the E3 ligase close to the pro-
tein of interest (POI) to trigger the ubiquitination by the E3 
ligases and consequently lead to proteosomal degradation 
[42–47] (Fig. 3). Thus, the PROTAC molecule must possess 
an adequate affinity for both the E3 ligase and the protein of 
interest as its substrates. As compared to conventional small 
molecule inhibitors that operate by blocking the catalytic 
activity of the druggable protein via occupancy-driven phar-
macology, PROTACs function by the event-driven mode of 
action to eliminate the protein and put an end to all its pos-
sible functions, be it enzymatic, scaffolding, regulatory or 
other activities [48–53].

There are several advantages associated with PRO-
TACs. First is their potential to target undruggable tar-
gets or proteasomes that comprise about 85% of all the 
human proteins. PROTACs are able to target proteins that 
do not display any well-defined active sites or possess flat 
protein interfaces. Thus, these are appropriate for target-
ing transcription factors and scaffolding proteins that do 

Fig. 2  Clearance of misfolded proteins by autophagy. The misfolded 
proteins are delivered to the phagophores by ubiquitin and autophagy 
adaptors resulting in the formation of autophagosome formation 

which join with lysosome resulting in the lysosomal degradation of 
misfolded protein structures
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not possess specific binding sites [54, 55]. PROTACs are 
known to exert isoform-selective degradation, provided 
that each isoform-PROTAC-E3 complex can modulate 
differential degradation outcomes [56]. The selectivity 
depends on the protein–protein interactions between the 
E3 ubiquitin ligase and the target protein. The proteins 
that are not degraded result from the formation of unsta-
ble ternary complexes with PROTAC-recruited E3 ligases. 
The weak PROTAC:target protein affinity can stabilize 
the high-affinity target:PROTAC:ligase trimer interac-
tions facilitating efficient degradation [56]. Another major 
plus point comes from the ability of PROTACs to over-
come drug resistance due to mutations. The nonsynony-
mous mutations occurring at the active site can develop 
resistance to small molecule inhibitors. In contrast, the 

degradation induced by PROTACs only depends on the 
transient and the reversible association with substrate, 
making it capable of degrading the mutant proteins [57]. 
Prime examples showing their useful implementation in 
treating AD come from PROTACs used for initiating tau 
protein degradation or for targeting Bromodomain and 
extraterminal (BET) family proteins. PROTACs are known 
to possess high-target specificity [55, 58] employed for 
achieving degradation of resistant targets and exerting 
rapid and sustained depletion of the target proteins.

Due to the immense potential of PROTACs to degrade 
aberrant proteins, it has been implemented to treat AD, 
by inducing the degradation of misfolded and aggregated 
proteins like tau, BET and GSK-3β, as discussed in detail 
in the next section.

Fig. 3  The mechanism of degra-
dation of proteins by PROTACs 
by bringing the POI in close 
proximity to the E3 ligase and 
resulting in its complete degra-
dation. (POI Protein of interest, 
Ub Ubiquitin)
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Potential AD Targets for PROTACs

PROTACs Targeting Tau Proteins

The primary culprit in AD pathology is the tau protein 
that primarily binds to microtubules in healthy neurons. 
Microtubules form the backbone of the neuronal structure 
and aid in transporting proteins and organelles through the 
cytoplasm. As the onset of changes occurs in AD patients, 
tau proteins become hyperphosphorylated and start form-
ing threads and tangles, disrupting microtubules and 
destroying neuronal transportation and communication 
[59]. The cell may also become deprived of nutrition due 
to this disruption, ultimately culminating in cell death. 
Tau proteinss have been observed as the most viable tar-
get for AD treatment and have been immensely explored 
for curative therapies [60–62]. A significant PROTAC 
intervention advanced by Lu et al. was the formulation of 
Keap-1-dependant PROTAC (Fig. 4) for tau degradation 
by employing UPS [63]. The Keap-1 protein (Kelch-like 
ECH-associated protein-1) was chosen as the target for 
employing UPS and initiating the degradation of tau pro-
teins as it functioned as the substrate adaptor protein for 
the Cullin-3 (Cul3)/Ring-Box1 (Rbx1)-dependant E3 ubiq-
uitin ligase complex. NF-E2-related factor-2 (Nrf2) func-
tions as the prevalent substrate of the complex and plays 
a role in the regulation of oxidative stress [64, 65]. The 
PROTAC includes Ac-LDPETGEYL-OH peptide for rec-
ognition and binding with Keap-1, and peptide YQQYQ-
DATADEQG for tau recognition. A short peptide was 
incorporated to increase flexibility and added with poly-
d-arginine (RRR RRR RR) for cell penetration. The formed 
PROTAC was found to show strong binding in vitro with 
both Keap1 and tau proteins, coimmunoprecipitating with 
both the proteins. Further analysis using flow cytometry 
and other assays demonstrated a reduction in intracellular 

tau concentration in a time- and concentration-dependent 
manner [63].

In another research study, Chu et al. developed a series 
of PROTACs consisting of varying motifs for binding with 
E3 and tau [71]. These molecules comprised 3 parts which 
included a moiety for selective recognition of tau, for which 
2 peptides from α- and β-tubulin were chosen that were 
known to interact with the tau proteins: α (430–441): KDY-
EEVGVDSVE and β (422–434): YQQYQDATADEQG [66, 
67]. It also included a moiety for selective E3 recognition, 
for which 2 peptides based on the substrates of the two E3 
ligases were chosen. These are DRHDS(p) GLDS(p)M, 
procured from IкBα, bound to Skp1-cullin-F box (SCF) E3 
Ligase [68, 69] and the other one was ALAPYIP, procured 
from the substrate of E3 ligase, von Hippel-Lindau tumour 
suppressor protein (VHL) [43]. The tau recognizing moie-
ties were linked to the E3 recognition moieties using short 
peptides like GSGS or GGSGG to enhance flexibility. For 
facilitating penetration, poly-arginine (D-Arg)8 was fused to 
the C-terminus of the peptides [70]. Out of the 12 developed 
entities, PROTAC TH006, which included YQQYQDATA-
DEQG peptide for recognizing tau, GSGS peptide as the 
linker, ALAPYIP for recruiting UPS for degradation and 
poly-d-arginine (RRR RRR RR) for penetrating the cell, was 
reported to be most effective in initiating the degradation of 
tau proteins and increasing its polyubiquitination depending 
on VHL-E3 ligase. It also normalized the unevenly distrib-
uted mitochondria in cells with a high concentration of tau 
proteins and it decreased the toxicity of Aβ plaques [71]. A 
small-molecule PROTAC, C004019, designed by Wang et 
al., consisted of a triazole-based tau binder moiety and a 
VHL (E3-ligase) to aid in tau degradation by E3-Ubiquitin 
ligase. The formed compound was found to initiate vigorous 
tau clearance in HEK293 and SH-SY5Y cells expressing 
human tau. Intracerebral ventricular infusion of C004019 
led to significant tau clearance in vivo, and single and mul-
tiple doses administered subcutaneously downregulated the 
tau concentration in brains of wild-type, hTau-transgenic 
and 3xTg-AD mice along with enhancement of synaptic and 
cognitive functions [72].

PROTACs Targeting Epigenetic Processes

Epigenetic mechanisms like DNA methylation, chromatin 
remodeling and histone post-translational modifications, his-
tone protein variants, and non-coding RNA, influence the 
course of brain development and proper brain functioning. 
Alterations in DNA structure can lead to the initiation of 
various pathological conditions. Mutations in chromatin-
associated factors can lead to neurological disorders like 
AD [73]. The most remarkable factor that plays a role in 
major neurodegenerative disorders is age accompanied by a 
diminishment in cognitive capabilities. The process of aging 

Fig. 4  Mechanism of Triazole-based PROTAC, C004019 in inducing 
tau protein degradation by bringing tau in proximity to the E3 ligase 
enzyme (VHL) by the use of appropriate binders for both the moieties 
connected via a linker
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is associated with impaired levels of histone acetylation and 
methylation [73, 74]. The acetylation and deacetylation of 
histone proteins are catalyzed by histone acetyltransferases 
(HATs) and histone deacetylases (HDACs), respectively. 
It regulates the condensation of chromatin and the tran-
scription of genes [75]. Inhibition of HDAC may serve as a 
wonderful target for improving memory and cognition and 
thus may augment other therapeutic aids in treating AD. 
There is evidence that blockade of HDAC2 reduces memory 
impairment accompanying neurodegeneration accompanied 
by reinforcement of structural and synaptic plasticity [76]. 
Some HDAC inhibitors alleviated the memory impairment 
in 3xTg AD mouse models. Examples of some of these 
inhibitors are RGFP-966, a selective HDAC3 inhibitor [77], 
and M344 for class I and IIB histone deacetylases [78].

With the potential of HDAC inhibition for memory 
enhancement in mind, researchers designed novel PRO-
TACS targeting HDAC. The first PROTAC targeting HDAC 
proteins aimed at selective degradation of the SIRT2 (sir-
tuins) which constitute class-III HDAC proteins employ-
ing NAD + as a cofactor for exerting their action [79]. The 
newly developed triazole-based SIRT2-selective PROTAC 
(1) (Fig. 5) employed thalidomide which is a bonafide cer-
eblon ligand. This PROTAC induced up to 90% isotype-
selective Sirt2 degradation at 5 μM concentration in HeLa 
cells, leading to the microtubule network’s hyperacetylation 
and improved process elongation [80].

PROTACs Targeting BET Proteins

The BET proteins commence the transcription of inflamma-
tory genes on the activation of the immune system. These 
comprise four proteins which are BRD2 (Bromodomain-
containing protein 2), BRD3 (Bromodomain-containing 
protein 3), BRD4 (Bromodomain-containing protein 4), and 
BRDT (Bromodomain-testis associated protein), which are 
expressed in most cells and tissues of the body except BRDT 

which is expressed in testis [81, 82]. BET proteins contain 
2 tandem bromodomains-BD1 and BD2 that form bonds 
with acetyl lysine histone residues like H3K27ac, H4K5ac, 
H4K12ac and non-histone acetylated proteins like NF-кB 
(Nuclear Factor-кB), Twist and GATA1. Gene transcription 
of NF-кB was modulated by Brd2 and Brd4, which can in 
turn aggravate the transcription of various genes involved 
in neuroinflammation following various types of brain 
injury [82]. BRD4 serves as the chromatin reader that binds 
lysine’s in histones and tunes the neurons’ transcription in 
response to neuronal activation. It is imperative for proper 
brain functioning and is linked to memory function and neu-
rological disorders [83]. Thus, BET inhibitors were visual-
ized as potential targets for the treatment of AD.

BET inhibitors like JQ1 (2) (Fig. 5) were incorporated 
with E3 ligands to form PROTACs that target BET bromo-
domains. The efficacy of JQ1 in AD mice models is con-
troversial in terms of its effects. Some researchers advance 
the fact that JQ1 administered at a dose of 50 mg/kg down-
regulated brain inflammation and phosphorylation of tau at 
Ser396 in 3xTg mouse models of AD. The concentration 
of pro-inflammatory mediators like IL-1β, IL-6, TNF-α, 
Ccl2, Nos2 and Ptgs2 was found to be drastically reduced. 
But the inhibitor was found to be ineffective in improving 
learning and cognitive deficits in these mice models [84]. 
In contrast, a different study demonstrated its potential 
efficacy in aiding memory improvement and synaptic plas-
ticity along with enhancement in hippocampal LTP in a 
dose-dependent manner which contradicts the results of 
the previous studies [85]. Another study reported JQ1 to 
have excellent blood brain barrier permeability and good 
tolerance in mice at a dose of 50 mg/kg daily for 1 week 
or 3 weeks. Administration of JQ1 did not cause anxiety or 
mobility problems but it was found to not exert any effects 
on short-term memory; instead, long-term memory was 
found to be hampered causing memory deficits [83]. It 
was conjugated with the phthalimide moiety which was the 

Fig. 5  Strutures of various PROTACS documented for management of AD. (1) Triazole based SIRT2-selective PROTAC; (2) BET inhibitors 
(JQ1); (3) pyridinethiazole based PROTACs degrading GSK-3β
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ligand for the E3 ubiquitin ligase CRBN. JQ1 recognizes 
BET protein and then the proteasomes degrade it. It dis-
placed BET proteins from chromatin and the phthalimide 
employed E3 ubiquitin ligases resulting in polyubiquity-
lation of BET proteins and proteasome-dependent deg-
radation. Thus, the PROTAC compound led to rapid and 
selective BET protein degradation causing impairment of 
BRD4 and transcriptional factors interaction and lipopol-
ysaccharide-induced transcription of pro-inflammatory 
genes in microglia of SIM-A9 mice. dBET1 administration 
also reduced the deleterious effects of neuroinflammatory 
disease-activated microglia [81, 82].

PROTACs Targeting GSK‑3β

Glycogen synthase kinase-3 is a protein serine/threonine 
kinase that plays a key part in a multitude of cellular pro-
cesses (catabolic and anabolic) and in monitoring cell 
growth and signaling [86]. It has been observed to be 
directly involved in the pathogenesis of AD and forms a 
connecting link between senile plaques and neurofibril-
lary tangles [87, 88]. The GSK-3 promotes tau hyperphos-
phorylation and is actively involved in multiple neuronal 
pathologies that are dysregulated in AD like the produc-
tion of amyloid-β (Aβ) peptides or Aβ-induced cell death, 
axonal transport, adult neurogenesis, synaptic function, 
and cholinergic function. GSK-3β overexpression initi-
ates tau-dependent AD pathology [89]. Pro-inflammatory 
activity of the kinase can result in loss of neurons [90]. 
Due to the intense interplay of GSK-3β in various AD 
pathologies, it has been employed as a prime target for 
therapeutic strategies. Various studies also demonstrated 
the effectiveness of GSK-3 inhibitors in alleviating AD 
symptoms. These have been demonstrated to downregu-
late tau phosphorylation in cells and preclinical studies 
in mice. One of such inhibitors that have reached phase-2 
clinical trials is tideglusib, a non-ATP competitive GSK-3 
inhibitor acting as an allosteric inhibitor. It exerts neuro-
protective action by reducing the deposition of amyloid-β, 
gliosis, tau phosphorylation, and loss of neurons, and it 
reverses the memory deficits in transgenic mice [89, 91]. 
Jiang et al.  recently explored a pyridinethiazole-based 
PROTAC (3) (Fig. 5) to degrade GSK-3β. The pyridinethi-
azole-based inhibitor G1 was conjugated to thalidomide to 
form the PROTAC PG21, a potent protein degrader which 
displayed dose-dependent degradation of GSK-3β. It was 
found to cause about 44.2% protein degradation at 2.8 μM. 
Further research demonstrated the PROTAC to protect 
against glutamate-induced cell death in HT-22 cells sign-
aling the efficacy of PG21 in impairing the inflammatory 
response and cell damage in nerve cells, indicating its neu-
roprotective action [92].

Patented PROTAC Formulations

Several potential PROTACs have been patented. One 
of the PROTACs targeting tau proteins was patented by 
Gray et al. in 2019 (WO 2019/014429 A1). The investiga-
tor reported various forms including hydrates, solvates, 
cocrystals, and polymorphs of PROTACs consisting of 
one tau binding moiety conjugated with an E3 ubiquitin 
ligase binding moiety like lenalidomide or thalidomide 
joined via a linker which was substituted and unsubstituted 
alkylene, alkenylene, arylene, heterocyclylene, heteroalky-
lene, or other similar moieties. PROTACs were analyzed 
using tau degradation assays to evaluate their tau degrad-
ing efficiency in human cells and were reported to degrade 
hyperphosphorylated tau and total tau proteins in human 
tau-A152T neurons and tau-P301L neurons after a 24-h 
treatment [93, 94].

Similarly, Crew et al., in 2020, reported a series of 
PROTACs (WO 2020/041331 A1) developed with alpha-
synuclein modulators which can be advantageous for the 
treatment of neurodegenerative disorders, mainly Alzhei-
mer’s disease and Parkinson’s disease. The study disclosed 
that the bifunctional compounds consist of a Von-Hippel-
Lindau (VHL), cereblon (CRBN), inhibitors of apoptosis 
proteins or mouse double-minute homologue 2 ligand at 
one end that binds to the E3 ubiquitin ligase, with the 
other end binding with the target moiety bringing the 
target protein in close proximity to the ubiquitin ligase 
and inducing protein degradation. The ELISA technique 
was used to evaluate the α-synuclein protein degradation 
activity in HEK293 TREX α-syn A53T cells. Out of the 
series of compounds synthesized, compound 4, 5, 6 and 7 
displayed significant α-synuclein degrading activity with 
less than 35% protein remaining relative to DMSO con-
trol; compounds 8 and 9 (Fig. 6) also displayed signifi-
cant α-synuclein degrading activity with 35–70% protein 
remaining relative to DMSO control [95, 96].

A series of PROTACs targeting tau proteins were 
designed and patented by Crew et al. under patent applica-
tion number WO 2018/102067 A2 and US 2018/0125821/
A1 [97, 98]. These consisted of bifunctional molecules 
with at one end of cereblon or VHL ligand and at the other 
end a tau-binding moiety. The formulated PROTACs were 
effective in degrading tau protein in SK-N-SH cells at the 
dose of 3 μl of 1 mg/ml solution [97, 98].

Gray et al. patented a series of PROTAC molecules 
targeting EGFR (epidermal growth factor receptor) under 
patent application number US 2019/0106417/ A1. These 
compounds have the potential to be employed in the treat-
ment of kinase-mediated disorders which are modulated by 
EGFR [99]. Key structures of some significant PROTACs 
are depicted in the figures. The  EC50 values of compounds 
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Fig. 6  Structures of various patented PROTACS (4–9) PROTACs modulating α-synuclein; (10–13) PROTACs targeting epidermal growth factor 
receptor (EGFR)
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10, 11, 12 and 13 (Fig. 6) against T790M/L858R trans-
formed Ba/F3 cells were found to be < 500Nm.

Conclusion and Future Prospects

Development of drugs, including those for Alzheimer’s, 
depends on the ability to design compounds that can pen-
etrate the blood–brain barrier. Gene silencing techniques 
likewise run into problems due to the inability of nucleic 
acids to penetrate the blood–brain barrier [100]. In contrast, 
PROTACs do not suffer from this problem. The advent of 
PROTACs technology tackled various issues associated with 
the traditional small molecule inhibitors, which possessed 
poor selectivity leading to adverse effects and drug resist-
ance. However, the application of this technology is still in 
its infancy due to the paucity of knowledge and evidences 
needed for safely treating neurodegenerative disorders. As 
of now, fewer than 10 of more than 600 E3 ubiquitin ligases 
have been employed for targeted protein degradation. Many 
more E3 ligases are yet to be explored and developed, which 
can be a major area of focus [101, 102]. Exploring additional 
E3 ligases can help in the prevention of off-target effects 
[103]. Identification of factors governing effective target-
ligase pairings can lead to the development of additional E3 
ligase tools that can validate further progress in this arena 
[102]. Direct binding assays can also be an approach for 
evaluating the binding and hit identification strategies for E3 
ligases [102]. Furthermore, optimizing the design, synthesis, 
and evaluation of PROTACs is necessary to develop useful 
decision trees to be used in future synthesis programs and 
to establish a concrete evaluation platform [82, 101, 103]. 
Novel drug targets should be elucidated for targeting by 
PROTACs. As of now, PROTACs have only been used to tar-
get druggable proteins, but the technology has the potential 
to target non-druggable proteins too. Many such potential 
targets for managing Alzheimer’s disease are yet too to be 
found for PROTACs like Sirt2, which is dysregulated in AD. 
Other potential targets and scaffolding proteins that can be 
tapped for the AD treatment are BCL proteins, β-arrestins, 
and β-catenins. Another issue with the development of PRO-
TACs is their molecular size which can sometimes be bulky 
enough to majorly impact their suitability to act as drugs 
as well as to cause a problem with their penetration into 
the blood–brain barrier, which is imperative for its efficacy 
in AD [104]. Applying crystallography techniques can also 
help understand the structural mechanism of PROTACs 
[102]. Until now, the developed PROTACs are not being 
evaluated in full-fledged clinical trials for proper elucida-
tion of their pharmacokinetics, dosing, and toxicity, which 
are much required key points to be considered prior to their 
clinical application in the treatment of AD. Another limita-
tion associated with PROTACs is that these cannot be used 

to tackle the genetic mutations associated with the familiar 
forms of AD. Since PROTACs are not able to treat the root 
cause (genetic mutations), their lifetime administration to 
the patient would be required, which could be thought to 
result in potential adverse effects in patients. Another limi-
tation is that although PROTACs can halt the further pro-
gression of the disease, they cannot reverse the damage that 
has already occurred. Since there is a lack of diagnostical 
techniques to map the exact extent of disease progression, 
using PROTACs may not be effective in patients in advanced 
stages. Yet another limitation associated with its use is that 
since AD is limited to only certain parts of the brain in the 
initial stages of the disease, there remains an inadequacy to 
evaluate the exact concentration of PROTACs reaching the 
affected portions of the brain. Hence, successful therapeutic 
application of PROTACs in treating AD requires a thorough 
consideration of these limitations.
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