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Abstract
Gliomas are common and aggressive brain tumors that carry a poor prognosis. The current multimodal therapeutic option 
for glioma includes surgery subsequently temozolomide chemotherapy and/or radiation; but gliomas are often associated 
with multidrug resistance, intensive adverse events, and tumor relapse. Thus, novel interventions that can enhance success-
ful chemo-prevention and overcome therapeutic resistance are urgently needed. Phytochemicals have several biological 
properties with multi-target sites and relatively limited degrees of toxicity. Curcumin is a natural polyphenolic compound 
with several anti-tumor effects which potentially inhibit tumor growth, development, proliferation, invasion, dissemination, 
and angiogenesis in different human malignancies. Experimental model studies have demonstrated that curcumin attenuates 
glioma cell viability by G2/M cell cycle arrest, apoptosis, induction of autophagy, gene expression alteration, and disruption 
of multi-molecular pathways. Moreover, curcumin has been reported to re-sensitize cancer to chemotherapeutics as well as 
augment the effect of radiotherapy on glioma cells. In this review, we have provided an update on the in vitro and in vivo 
effects of curcumin-based therapy on gliomas. We have also discussed the use of curcumin in combination therapies, its 
effectiveness on drug-resistant cells, and new formulations of curcumin in the treatment of gliomas.
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Background

Gliomas are the most common and invasive malignant 
brain tumors, arising from the neuroglial stem or progeni-
tor cells. The hallmarks of gliomas include local invasive 
growth and intense angiogenesis. Approximately 80% of 
malignant brain tumors, 30% of primary brain tumors, and 

the majority of fatalities from these tumors are attributed 
to glioma [1, 2]. The incidence of gliomas varies accord-
ing to age, sex, ethnicity, and geographical location. Among 
them, glioblastoma multiforme (GBM) with an incidence 
of 3.21/100,000 people-year, is the most common and most 
aggressive glioma subtype [3]. Gliomas may be histologi-
cally defined by the World Health Organization (WHO) cri-
teria into grades I–IV. Common gliomas in adults consist of 
infiltrative diffuse astrocytoma (grade II), anaplastic astro-
cytoma (grade III), GBM (grade IV), oligodendrogliomas, 
and mixed oligoastrocytomas. Pilocytic astrocytoma (grade 
I) and diffuse midline gliomas are the most prevalent glioma 
tumors in childhood. Thereafter, the WHO has modified the 
classification system of adult diffuse glioma by integrating 
the tumor morphology and its molecular changes [4, 5]. In 
this system, the best prognosis is usually seen in oligoden-
droglial tumors with mutation of isocitrate dehydrogenase 
(IDH) and simultaneous deletion of 1p/19q; intermediate 
outcome mostly present in astrocytic tumors with IDH muta-
tion but not 1p/19q deletion; and poor prognosis is mostly 
linked in GBM with wild-type IDH. However, the major-
ity of pediatric glioma tumors are characterized by limited 
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growth rates, good prognosis, and frequentative fusions or 
mutations in the BRAF gene [6]. Despite recent advances in 
glioma treatment approaches such as surgery, chemotherapy, 
radiotherapy, and immunotherapy, patient mortality rates 
remain high and the median survival is about 9 months [7]. 
The fundamental issue in the field of glioma therapy is that 
candidate drugs cannot cross the blood–brain barrier (BBB) 
and desired specificity for malignant cells [8]. Hence, the 
development of tailored therapeutic platforms may ulti-
mately improve outcomes.

It has been reported that more than 30% of glioma 
patients are prescribed supplementary and alternative thera-
pies [9]. More recently, the therapeutic potential of herbal 
and traditional medicine on gliomas has been paid more 
attention by researchers. Different agents extracted from 
natural compounds or their derivatives have been reported 
to have inhibitory effects against glioma cells [10]. 

Curcumin (1,7- bis-(hydroxy-3-methoxyphenyl)-
1,6-heptadiena-3,5-dione) is a hydrophobic and polyphe-
nolic herbal supplement extracted from a spice known as 
turmeric (the rhizome Curcuma longa plant) [11]. There 
is growing evidence that this compound is safe and pleio-
tropic with a multitude of pharmacological impacts includ-
ing anti-tumor [12–14], anti-inflammatory [15–18], anti-
oxidant [19], antiangiogenic [20], neuroprotective [21, 22], 
hepatoprotective [23, 24], cardioprotective [25], pulmo-
noprotective [26], anti-ischemic [27, 28], lipid-modifying 
[29, 30], antidiabetic[31, 32], analgesic [33], vasculopro-
tective[34], anti-thrombotic[35], and immunomodulatory 

[36] effects. Curcumin has been shown to regulate mul-
tiple cellular pathways associated with cancer develop-
ment, that include: nuclear factor-κB (NF-κB), Janus 
kinase (JAK)-Signal Transducer and Activator of Tran-
scription (STAT3), Ras, PI3K/AKT, Notch1, forkhead box 
protein 1(FOXO1), Wnt/β-catenin, mitogen-activated pro-
tein kinases (MAPK), and p53, as well as oncogenic and 
tumor-suppressive miRNAs (Fig. 1) [37–39]. Because cur-
cumin interacts differently with normal and cancer cells, 
in addition to its capacity to boost the effects of chem-
otherapy on tumor cells, and the absence of significant 
side effects have been reported [40, 41]. Hence, curcumin 
appears to be a candidate for use as an anticancer drug. 
Most importantly, the lipophilic characteristics of cur-
cumin and therefore its potential permeability to the BBB 
make it a potential therapeutic agent against CNS-related 
disorders and malignancies [42]; as the protective effects 
of curcumin on Alzheimer disease[43], Parkinson[44], and 
GBM [45] have already been reported. The major limita-
tions in curcumin’s clinical use are its low bioavailability, 
chemical mutability, fast metabolism, and short half-life 
[46]. To overcome these challenges, new formulations of 
curcumin have been designed to improve its efficacy [47]. 
In this review, we aim to provide an updated literature 
review on the in vitro and in vivo effects of curcumin on 
glioma (Fig. 2). We also scrutinized the use of curcumin 
in combination therapies against glioma, its effectiveness 
on resistant cells, and new formulations of curcumin in 
glioma.

Fig. 1  Molecular target of cur-
cumin in glioma. microRNA)
miR(; cyclin-dependent kinase 
(CDK); vascular endothe-
lial growth factor (VEGF); 
interleukin)IL (;Tumor necrosis 
factor alpha (TNF-α); matrix 
metalloproteinase-9 (MMP-9); 
Cyclooxygenase-2 (COX-2); 
poly (ADP-ribose) polymerase 
(PARP); signal transducers 
and activators of transcription 
(STAT); forkhead box protein 
O1 (FOXO1); inhibitor of 
growth (ING); extracellular 
signal-regulated kinases (ERK); 
prostate apoptosis response-4 
(Par-4); mitogen-activated pro-
tein kinases (MAPK); angiopoi-
etin-2 (Ang-2); thrombospondin 
1 (TSP-1)
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In Vitro Effects of Curcumin on Glioma Cells

Inhibition of Growth, Migration, and Invasion

There is strong evidence that supports the potential benefits 
of curcumin in brain disorders including gliomas (Table 1) 
[48–50]. Curcumin has been shown to suppress the expres-
sion of neural precursor cell expressed developmentally 
downregulated protein 4 (NEDD4), an E3 ubiquitin ligase 
promoting PTEN degradation and subsequent activation 
of PI3K/AKT pathway in A1207 and SNB19 glioma cell 
lines [2]. PTEN/PI3K/AKT is considered to be an important 
pathway for regulating the signaling of various biological 
processes including metabolism, apoptosis, proliferation, 
and cell growth [51]. S-phase kinase-associated protein 2 
(Skp2) is another major oncoprotein belonging to the ubiq-
uitin–proteasome system which affected by curcumin in 
glioma cells [52]. It has been shown that curcumin medi-
ates Skp2 downregulation and subsequent upregulation of its 
ubiquitination targets such as p57 which causes inhibited cell 

growth, migration, and invasion of U251 cells and SNB19 
glioma cells [53]. Another mechanism for the anti-migration 
and anti-invasive effects of curcumin has been suggested that 
it inhibits fascin expression by inhibiting STAT3 phospho-
rylation in the U87 cell line [54]. Because fascin is an over-
expressed actin-binding protein in the nervous system, its 
suppression in glioma cells alters the cell shape and reduces 
the formation of filopodia [55].

Downregulation of CD147, matrix metalloproteinase 
(MMP)-2/9, cyclin D1/CDK4/6, and BCL-2/BCL-XL due 
to inhibition of MAPK/extracellular signal-regulated kinases 
(ERK) pathway has been suggested as the mechanism of 
these antitumor effects of curcumin [56–58]. The MAPK 
axis is a critical pathway for human tumor cell survival, 
proliferation, differentiation, senescence, metastasis, and 
resistance to chemotherapy. The MAPK/ERK pathway is 
a convergent signaling node which has input from various 
internal and external stimuli. MAPK/ERK signaling has 
been specified to contribute in the motility and invasion of 
glioma cells [59].

Fig. 2  Molecular signaling pathways regulated by curcumin to induce 
glioma inhibition, apoptosis, and cell cycle arrest. Signal transducers 
and activators of transcription (STAT); mechanistic target of rapamy-

cin complex 1 (mTORC1); cyclin-dependent kinase (CDK); Myeloid 
cell leukemia-1 (MCL-1); pyruvate dehydrogenase kinase 1 (PDK1)
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Curcumin has been reported to downregulate JAK1,2/
STAT3 signaling and downstream targets including c-Myc, 
MMP-9, Snail, Twist, and Ki67 proliferation marker, dose-
dependently in glioma cell lines [60, 61]. Since JAK/STAT 
pathway is the cornerstone of cancer cell growth and inva-
sion, curcumin therapy may be an impressive therapeutic 
approach for gliomas [62].

Induction of Cell Cycle Arrest and Apoptosis

Curcumin stimulates glioma cells to become more stem-like 
by inhibiting the transition from G1 to S phase and increas-
ing the expression of transcription factors necessary to 
maintain the pluripotency of embryonic stem cells including 
SRY-related HMG box transcription factor 4 (SOX) 4, Sox2, 
and Oct4 [63]. In glioma-initiating cells, Oct4 is related to 
Sox4 and the Oct4-Sox4 complexes induce the enhancer 
effects of the SOX2 gene [64]. Curcumin has been shown 
to produce cell cycle arrest and enhance apoptosis by and 
mitigate exogenous norepinephrine-induced proliferation, 
migration, and G1 to S phase transition in LN229 and U87 
malignant glioma cells, in a dose-dependent manner [56].

Curcumin-mediated pro-apoptotic mechanisms in glioma 
cells may be related to the induction of Bcl-2-associated 
X protein (BAX), caspase 3 gene, and poly ADP ribose 
polymerase (PARP) [65–68]. Curcumin stimulates caspase-
dependent apoptosis in human glioma cells [69], and treat-
ment with curcumin increases the expression pro-apoptotic 
proteins, including caspase-3, -7, -8, and -9, which initi-
ate and develop the apoptotic process [69, 70]. Curcumin 
also exerts diverse pro-apoptotic effects. DNA fragmenta-
tion, cleavage of PARP-1 nuclear protein in glioma cells, 
as well as mitochondrial membrane potential loss and ROS 
generations are induced through curcumin treatment [71]. 
This indicates that curcumin induces the apoptotic path-
ways. Simultaneously, curcumin also exerts an anti-glioma 
effect via inhibiting anti-apoptotic signaling, as showed via 
an elevation in BAX:BCL2 ratio in various human glioma 
cells [69].

In curcumin-treated U138MG and C6 cells, down-
regulation of PI3K/AKT and NF-κB pathways, as well as 
NF-κB-regulated anti-apoptotic protein BCL-XL, have been 
reported as a prelude to apoptosis [72]. Another study iden-
tified overexpression of forkhead box protein O1 (FoxO1) 
and its potential target genes including cyclin G2, cleaved 
caspase-3, Fas ligand (FasL) as an underlying mechanism of 
curcumin-mediated G2/M cell cycle arrest and apoptosis in 
U87 cells [73]. Similarly, exposure of U251 cells with doses 
of curcumin greater than 10 µmol/L induced the same anti-
tumor effects, which was related to the reduced p-Akt and 
increased PTEN protein expression [74].

Su et al.have reported that there are two main sign-
aling pathways promoting apoptosis that are affected by 

curcumin in glioma cells: the p53 pathway by increasing 
p53 and p21 and repressing cdc2, and the retinoblastoma 
(RB) pathway via increasing CDKN2A/p16 and lowering 
phosphorylated RB [65].

Furthermore, curcumin stimulates p21 transcription 
independent of p53 by activating ERK and JNK MAPK 
pathways in U-87MG cells. As a result, phosphorylated 
Elk-1 increases the expression of early growth response-1 
(Egr-1), a transcriptional activator that binds to the p21 
promoter and further regulates cell cycle arrest, differ-
entiation, and apoptosis [75]. In a p53-dependent man-
ner, curcumin also could cause cell cycle arrest in the S 
and G2/M phase correlated with increased expression of a 
critical tumor suppressor belonging to the ING (inhibi-
tor of growth) family, ING4 [76]. Previous studies have 
reported that ING4 triggers tumor apoptosis and cell 
cycle arrest while inhibiting cancer growth and angio-
genesis in various malignant tumors, such as glioma [77, 
78]. Moreover, curcumin was found to sensitize U251MG 
and U87MG glioma cells to tumor necrosis factor (TNF)-
related apoptosis-inducing ligand (TRAIL)-stimulated cell 
death via both receptor-mediated and chemical induction 
(corresponding to the extrinsic and intrinsic pathways of 
apoptosis, respectively), suggesting the potential applica-
tion of curcumin in TRAIL-mediated immunotherapy of 
glioma cells [79, 80]. Zhou et al. have announced that 
curcumin administration downregulated the proliferating 
cell nuclear antigen (PCNA) in U251 cells and NADPH 
oxidase 4 (NOX4) in U87 cells, indicating a decrease in 
proliferation and reactive oxygen species (ROS) produc-
tion as well as inducing the differential regulation of apop-
tosis-associated genes, respectively [66].

In contrast there is some evidence that higher doses 
of curcumin promoted ROS production and resulted in 
greater DNA damage and cell death in glioma U87 and 
rat glioma (C-6) cells [71, 81, 82]. In a ROS-dependent 
mechanism, low curcumin doses appreciably decreased 
proliferation, sphere-and colony-forming potential, and 
viability of glioma stem cells (GSCs). It is claimed that 
ROS induces anti-neoplastic impacts on GSCs by pro-
moting the MAPK pathway and inhibiting the STAT3 
activity and inhibitor of apoptosis (IAP) [83]. Moreover, 
loss of mitochondrial membrane potential following cur-
cumin treatment has been reported as another factor in 
enhancing the apoptotic cascade activity of human glioma 
CHME cells. Curcumin’s pro-oxidant activity also led to 
a decrease in total antioxidant capacity and glutathione 
(GSH) content along with an increment in malondialde-
hyde content and superoxide dismutase activity in U87 
cells [82]. Exposure of the glioma cell line A172 to cur-
cumin leads to morphological alterations characteristic of 
paraptosis cell-death through affecting the integrity of the 
endoplasmic reticulum [84].
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Autophagy‑Induced Cell Death

Autophagic cell death is one of the main mechanism in 
the promotion of antineoplastic effects mediated by cur-
cumin in U87MG and U118MG cells [85]. Curcumin’s pro-
autophagic effect occurs through the production of ROS, 
resulting in upregulation of two distinct tumor suppressors, 
prostate apoptosis response-4 (Par-4) and ceramide [85]. As 
shown in A172 and U87 cells, curcumin-induced cell death 
was oppositely related to the baseline level of autophagic 
flux of these cells. In addition, autophagy induction due 
to serum starvation significantly alleviated the rate of cell 
death mediated by curcumin [86]. Curcumin-stimulated 
autophagic cell death may be correlated with suppression of 
the Akt/mammalian target of rapamycin (mTOR)/p70 ribo-
somal protein S6 kinase (p70S6K) pathway and activation 
of the ERK1/2 signaling [87]. These two major pathways 
contribute to the regulation of nutrient starvation-induced 
autophagy and oncogenesis in different cancer cell types 
[88]. Moreover, increased autophagy in glioma-initiating 
cells (GICs) following curcumin treatment initiates the dif-
ferentiation cascade [89]. This evidence is consistent with 
the findings of a reduction in the side population (SP) of C6 
cells, a rare population of stem cells, following curcumin 
treatment of these cells [90, 91]. Furthermore, curcumin 
could exert its antitumor effects on U251 cells by down-
regulating enolase 1 (ENO1) and hypoxia-inducible factor 
1-alpha (HIF-1α) and subsequently inhibiting glycolytic pro-
cesses [92]. It has been shown that the glycolytic enzyme 
ENO1 and its transcription activator, HIF-1α, are strongly 
expressed in various types of malignancies like glioma, and 
are directly related to tumor aggressiveness [93–95].

Anti‑Inflammation and Anti‑Angiogenesis

The anti-neuroglioma effects of curcumin on U87 cells are 
also mediated by suppressing the inflammatory HSP60/
TLR4 signaling and its downstream proteins, such as mye-
loid differentiation primary response 88 (MYD88), NF-κB, 
inducible nitric oxide synthase (iNOS), and cytokines 
IL-6 and IL-1β [96]. While, the expression of apoptosis-
dependent factors including TNF-α, caspase-3, and p53 
was enhanced in U87 cells following the treatment [96]. 
Further, curcumin was shown to inhibit hepatoma-derived 
growth factor (HDGF), an angiogenesis-inducing growth 
factor overexpressed in U251 and LN229 cell lines. Since 
the HDGF constructs a complex with β-catenin from the 
Wnt pathway, its downregulation suppresses epithelial-mes-
enchymal transition (EMT) signals and thereby reduces the 
aggressiveness of human glioma cells [97].

Another possible mechanism underlying the curcumin-
mediated attenuation of glioma cell invasion has been 
suggested to be the downregulation of atypical cadherin 

FAT1 and its transcriptional regulator, NF-κB [98]. 
Increased expression of the FAT1 gene has been speci-
fied in various cancers, including gliomas, which leads 
to upregulation of proinflammatory, stemness, and EMT 
markers [99]. Evaluation of curcumin’s deterrent effects 
on invasion and migration of glioma U87 cells by 3D 
spherical invasion assay has shown that this effect is 
gradual and begins at concentrations much lower than 
IC50 [100]. Furthermore, curcumin has been identified 
as a potential inhibitor of the sonic hedgehog (Shh) path-
way by downregulating Shh, Smo, and glioma-associated 
oncogene homolog 1 (GLI1). Subsequently, the reduced 
expression of GLI1 target genes including CyclinD1, 
Bcl-2, and Foxm1 can suppress cell proliferation and 
migration while promoting apoptosis through the internal 
mitochondrial pathway in U87 and T98G cells [101]. The 
Shh is a well-known pathway for embryonic development, 
organogenesis, regeneration, and homeostasis, often asso-
ciated with glioma tumorigenesis [102].

Modulation of microRNAs

Moreover curcumin reduces the carcinogenicity of glioma 
cells through modulating microRNAs (miRNAs) [103]. 
miRNAs are a group of small, non-coding, and single-
stranded RNAs that post-transcriptionally modulate gene 
expression to maintain the exact balance of different bio-
logical processes. miRNAs may behave like oncogenes or 
tumor suppressors and play crucial roles in the formation 
and propagation of human malignancies (Fig. 3). miRNA-21 
is a well-known oncogene correlated with the migratory and 
survival abilities of human glioma cells. It has been demon-
strated that curcumin affects several distinct glioma tumor 
processes, including: proliferation, cell death, metastasis and 
chemoresistance through targeting miR-21. miR-21 mediates 
various effects of curcumin on multiple signaling pathways 
associate to such as PTEN, PI3K/AKT, PDCD4 and NF-κB 
[104]. Curcumin treatment of U251 cells reduced the miR-21 
level and anti-apoptotic proteins expression while enhanc-
ing the pro-apoptotic proteins and microtubule-associated 
protein light chain 3-II expression [105]. miR-378 enhances 
the effects of curcumin on the U87 cell line by activating the 
P38 MAPK pathway [106].

miR-326 has been shown to be a tumor suppressor miR 
in several cancer types, and appears to mediate curcumin-
induced cytotoxicity and apoptosis as well as inhibit prolif-
eration and dissemination of glioma cells [107]. Curcumin 
induced properties of paraptosis in A172 cell line and causes 
over-expression of endoplasmic reticulum stress response 
genes IRE1 and ATF6 as well as altered levels of ER-asso-
ciated miRs such as miR-27a, miR-222, and miR-449. These 
miRs regulated by curcumin interact with and involve the 



2943Neurochemical Research (2022) 47:2936–2953 

1 3

AKT-Insulin and p53-Bcl2 cascades [84]. This evidence 
suggest that miRNAs may be potential therapeutic target in 
glioma therapy (Fig. 3).

Therapeutic Effects of Curcumin on Glioma 
Cancer Cells in Animal Models

There is some in vivo evidence supporting the chemothera-
peutic potency of curcumin against glioma (Table 2). Wang 
et al. have recently reported that the curcumin effectively 
alleviated growth and invasion of adverse psychological 

Fig. 3  Anti-cancer effect of curcumin in glioma cells through modulating microRNAs (miRs). octamer binding protein 4 (OCT4); SRY [sex 
determining region Y]-box 2 (SOX-2); sonic hedgehog (Shh)

Table 2  In vivo evidence for curcumin effects on glioma

Ang-2 angiopoietin-2, GLI1 glioma-associated oncogene homolog 1, MMP matrix metalloproteinase, STAT3 signal transducer and activator of 
transcription 3, TSP-1 thrombospondin-1, VEGF vascular endothelial growth factor

Curcumin dose Experimental model Proposed mechanisms In vivo effects References

100 mg/kg/daily Xenograft model of U87-MG 
cells

Inhibition of tumor growth and 
induction of autophagy

Inhibition the growth of tumors 
by inducing autophagy

[87]

50 mg/kg/daily C6-implanted rats Tumor size reduction Decreased brain tumors [72]
0.05%, w/w Tumor-bearing mice Inhibition of STAT3 signaling reduced the growth and prolif-

eration of tumor cells, survival 
prolongation

[60]

60 mg/kg/daily U87-implanted nude mice model Down-regulation of GLI1 Survival prolongation, tumor 
volume reduction

[101]

0.01 ml/g body weight U87 cell xeno-
grafted mouse model

Downregulation of VEGF and 
Ang-2, upregulation of TSP-1

Inhibition of tumor growth and 
angiogenesis

[110]

60 mg/kg body weight U87 cell xeno-
grafted mouse model

Decrement of the MMP9, CD105, 
and CD31 expression, reduction 
of hemoglobin content of the 
tumor

Anti-angiogenic effects [45]

Single dose (60 mg/kg) Nude mice Inhibition the growth of xeno-
grafted tumors in nude mice, 
Downregulation of CD147 and 
MMP-2/9 expression

Inhibition the stress-induced 
tumors

[56]
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stress-induced glioma transplanted tumor in nude mice, 
which was associated with decreased serum levels of nor-
epinephrine and epinephrine. The antitumor effects of cur-
cumin were associated with inhibition of the MAPK/ERK 
signaling, which downregulated the MMP-2/9 and CD147 
in tumor tissue [56]. Previously, increased growth and inva-
sion of various tumors due to stimulation of the sympathetic 
nervous system and subsequently increased production of 
catecholamines have been reported [108, 109]. Administra-
tion of 0.01 ml/g of curcumin to a U87-derived xenograft 
glioma model repressed tumor growth and angiogenesis by 
48% by downregulation of vascular endothelial growth fac-
tor (VEGF) and angiopoietin-2 (Ang-2) and upregulation 
of thrombospondin 1 (TSP-1) [110]. Also, the anti-angio-
genic effects of curcumin in U87-derived xenografts have 
been demonstrated by reducing the gelatinolytic activity of 
MMP9, hemoglobin content of the tumor, and expression of 
endothelial cell markers assigned to newly formed vessels 
including CD105 and CD31 [45].

Intraperitoneal (IP) administration of curcumin into the 
nude mice model bearing a U87-implanted tumor, resulted 
in diminished tumor size and GLI1 expression and extended 
the survival time through inhibition of the Shh pathway 
[101]. In parallel with in vitro studies, there is in vivo 
evidence on curcumin-induced autophagy that resulted in 
decreased self-renewal and clonogenic potentials and yet 
augmented the transcription of neural differentiation markers 
in intracranial GICs implanted into mice [87, 89]. IP injec-
tion of 50 mg/kg/day curcumin to C6-implanted rats also 
caused a significant decrement in tumor volume of approxi-
mately 80% of the animals studied [72]. However, curcumin 
has been found to act as a histone acetyltransferase inhibitor 
in adult neuronal progenitor cells (NPCs) isolated from ICR 
mice. Given that histone hypoacetylation is crucial in deter-
mining stem cell fate, curcumin effectively suppressed glial 
differentiation while promoting neural differentiation [68]. 
Curcumin also suppressed the expression of phosphoryl-
ated JNK in lipopolysaccharide (LPS)-stimulated C6 ortho-
tropic xenografts, thereby reducing CCL2 production [111]. 
Chemokine CCL2 has a decisive role in glioma progression 
by inducing mild leukocyte infiltration, BBB dysfunction, 
and upregulation of proinflammatory cytokines [112].

Potential of Novel Formulations of Curcumin 
in Glioma

Despite the reported anti-cancer properties, the clinical 
applications of curcumin have been limited because of its 
low water solubility and oral bioavailability. It is mainly 
due to low absorption besides rapid metabolism and excre-
tion [113]. In addition, the capability to cross the BBB and 
achieve the desired concentration to inhibit or kill glioma 

tumor cells is another important challenge. The develop-
ment of new formulations of curcumin, such as curcumin 
derivatives and nanoparticle delivery systems (NDDS), has 
somewhat alleviated these problems [114].

Curcumin Analogues

Curcumin and its analogs, bisdemethoxycurcumin (BDMC), 
demethoxycurcumin (DMC), and dimethoxycurcumin 
(DIMC) have all been shown to promote cell cycle arrest, 
apoptosis, and ROS generation in LN229 and GBM8401 
glioma cells. However, these effects were observed more 
strongly and at a lower dose of DIMC than for the other 
analogs. DIMC was reported to decrease p-mTOR, p-CDC2, 
and BCL-2, dose-dependently, whereas increasing p-AKT, 
p-ERK, and autophagy markers LC3B-II and p62 in these 
glioma cells [115]. JNK, a major member of MAPKs, may 
be activated during apoptosis of glioma cells triggered via 
different agents. DMC-BH has been demonstrated to be 
superior to DMC in inhibiting the proliferation of U87 and 
SHG44 GSCs and inducing autophagy and apoptosis in 
them by promoting the JNK/ERK signaling. Also, DMC-
BH reduced the growth of the GSCs derived-intracranial 
orthotopic tumor xenografts [116]. Through conjugation of 
triphenylphosphine (TPP) moiety with the phenolic hydroxyl 
group of DMC, Shi et al. designed a selective mitochondrial 
targeting compound with strong cytotoxicity in U251 cells 
and human glioma mouse model. DMC-TPP impressively 
repressed cellular  thioredoxin  reductase (TrxR) and yet 
induced mitochondrial-associated apoptosis by caspase acti-
vation, ROS generation, and mitochondrial membrane poten-
tial depletion [117]. It has been shown that miR-145 is a 
tumor-suppressor for gliomas by suppression of glioma cell 
proliferation, adhesion, and invasion as well as inducing 
apoptosis by targeting Notch and Sox9 signaling cascade. 
Notably, miR-145 promoted the chemosensitivity of glioma 
stem cells to DMC through targeting the SOX2-Wnt/β-
catenin pathway [118]. Curcumin encapsulated in a nanocar-
rier, called dendrosomal curcumin, decreases the prolifera-
tion of U87 cells by the down-expression of OCT4 variants 
and SOX-2 in a miR-145-dependent way [119].

Hydrazinobenzoylcurcumin (HBC) has been found to 
be a  Ca2+/Calmodulin (CaM) antagonist in U87MG and 
U373MG GSCs which downregulates CaM/CaM-dependent 
protein kinase II (CaMKII)/c-Met, thereby suppressing the 
stemness features of glioma cells [120]. Evidence suggests 
that CaMKII not only plays a vital role in the maintenance 
of cancer stem cells, but also in regulating the survival, 
proliferation, and migration of tumor cells [121, 122]. Cur-
cumin inspired bis-chalcones robustly upregulated CCAAT-
enhancer-binding protein homologous protein (CHOP), 
p-jun, and caspase 12 in the GSC line, which resulted in 



2945Neurochemical Research (2022) 47:2936–2953 

1 3

cell death via stimulation of endoplasmic reticulum stress 
as well as unfolded protein response (UPR) [123].

It has been claimed that the supercritical and hydroetha-
nolic extract of turmeric rhizomes, called Turmeric Force™, 
is more cytotoxicity against tumor cell lines compared to 
turmeric [124]. Moreover, Curcuma amada supercritical 
extract suppresses AKT path, so inducing apoptosis via 
elevating BAX, BCL-X, BCL-2, BNIP3, mutant p53, cas-
pase-3, and p21 proteins in human glioma cells. In addition, 
supercritical extract down-regulate the transcription levels 
of genes related with cell proliferation (i.e. Ki67) and angio-
genesis (i.e. VEGF) as well as regulates HSP90 and AMPKα 
genes [125].

Curcumin Nanoparticles

Compared to free curcumin, curcumin-monomethoxy poly-
ethylene glycol (MPEG)-polylactic acid (PLA) nanoparticles 
significantly inhibited the growth of GL261 cells and accel-
erated apoptosis, and folic acid (FA)-modified Cur/PEG-
PLA micelles further augmented these inhibitory effects. 
In both subcutaneous and intracranial glioma models, Cur/
Fa-PEG-PLA also represented the best therapeutic effect via 
inhibiting angiogenesis and promoting apoptosis [126]. One 
recent study has shown curcumin-loaded zein nanoparticles 
coated with polydopamine (pD) and functionalized with 
dodecamer peptide (G23), which specifically increases tran-
scytosis in an in vitro BBB model as well as inhibited prolif-
eration and migration, and increased ROS-induced apoptosis 
in C6 glioma cells. CUR-ZpD-G23 nanoparticles were also 
able to circulate after intravenous injection into zebrafish 
[127]. Moreover, encapsulation of curcumin nanopolymer-
somes in a thermo-sensitive and biodegradable composite 
hydrogel improved the sustained release of curcumin after 
intratumoral injection in ectopic C6 glioma tumor models 
[128]. GSH-sensitive biodegradable micelles constructed 
with polycaprolactone (PCL), polyethylenimine (PEI), 
and PEG, and conjugated with a cell-penetrating peptide 
(tLyp-1) could mediate simultaneous delivery of apoptosis-
inducing ligand (pUNO1-hTRAILa) and curcumin to glioma 
cells. Hence, this nanocomplex exhibited much stronger 
anti-tumor effects on C6 cells and rats bearing in situ glioma 
[129].

Other Formulations

A novel drug delivery system has been developed in the 
form of a biodegradable soft scaffold using extrusion-based 
3D printing technology for localized curcumin administra-
tion following resection surgery. This system sustainably 
released curcumin and exerted remarkable cytotoxic effects 
against the U87 human cell line [130]. Curcumin-based 
fluorescent probes are a promising approach for detecting 

glioblastoma cells during neurosurgical operations. These 
probes can only link to aldehyde dehydrogenase 1A3 
(ALDH1A3), an enzyme upregulated in GSCs and related 
to their stemness and aggressiveness. Indeed, fluorescent 
signal was absent in cells without ALDH1A3 [131]. Com-
pared to curcumin, solid lipid curcumin particles (SLCPs) 
significantly enhanced both apoptotic and autophagic cell 
death while inhibiting mitophagy markers and the PI3K/
AKT/mTOR signaling [132, 133].

Curcumin Effects on the Resistant Glioma 
Cells

Curcumin can sensitize glioma cells to radiotherapy and 
various chemotherapeutic regimens such as cisplatin, etopo-
side, and doxorubicin through down-regulation of Bcl-2 and 
members of the IAP family as well as DNA repair enzymes 
such as MGMT, DNA-PK, and ERCC-1[134].

Temozolomide (TMZ), 3-methyl isolate of mitozolomide, 
is an orally active DNA alkylating prodrug, is the frontline 
standard treatment for glioma [135]. TMZ forms genomic 
O-6-methylguanine adducts and leads DNA single and 
double-strand breaks and cell cycle at G2/M phase, conse-
quently cell apoptosis and autophagy. TMZ freely crosses 
the BBB; so, it is one of the most important cytotoxic 
agents for glioma treatment [136]. Although, at least 50% 
of treated patients develop TMZ-chemoresistance [137]. The 
emergence of chemotherapy recurrence and following dis-
ease relapse remains a major therapeutic challenge in these 
patients [138].

Recently, Huang et al. demonstrated the high expression 
of connexin 43 (Cx43) more than 2-times in TMZ-resistant 
glioblastoma cells than parental glioblastoma cells [139]. 
The gap junction channels and hemichannels protein, Cx43, 
have complicated roles in gliomagenesis, invasion, migra-
tion, and propagation. Connexins involve in the EMT of 
malignant glioma and Cx43 particularly is implicated in 
chemotherapeutic resistance to glioma cells [140]. Curcumin 
(10 μM) significantly decreased Cx43 protein amplification 
by nearly 40%. Moreover, curcumin promotes TMZ-acti-
vated apoptosis from 4 to 8%. Curcumin plus translation 
inhibitor cycloheximide synergically triggers Cx43 degrada-
tion. But, autophagy inhibitor 3-methyl adenine administra-
tion did not alter the effect of curcumin on Cx43 degrada-
tion. Notably, the combination of the proteasome inhibitor 
MG132 considerably neutralized the curcumin-mediated 
Cx43 degradation, which indicates that curcumin may 
enhance Cx43 degradation via the ubiquitin–proteasome 
proteolytic path [139].

Recently, androgen receptor (AR), has been reported 
to be an inducer of resistance to TMZ therapy. ALZ003, a 
novel curcumin analog, triggered ER stress, activated both 
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extrinsic and intrinsic apoptotic pathways as well as ferrop-
tosis in malignant glioma cells by down-expression of AR 
which regulates glutathione peroxidase 4 (GPX4)-mediated 
redox hemostasis. Interestingly, ALZ003 induces F-box and 
leucine-rich repeat protein 2 (Fbxl2)-mediated AR ubiqui-
tination, mitigating AR amplification in glioma cells and 
negating the TMZ-resistance [141].

Combination Therapy with Curcumin

In anticancer drug development, combination therapy is one 
strategy to improve therapeutic success via the synergistic 
effects of each agent (Fig. 4).

Chemotherapy

Concerning the efficacy of curcumin in different experimen-
tal models, a series of investigations have been performed 
in order to assess the potency of combining curcumin with 

chemotherapeutic agents in models of human glioma. For 
instance, nanomicelle-curcumin (50  μM) plus erlotinib 
(50 μM) remarkably reduced the translational levels of 
angiogenesis and Wnt pathway-related genes than mono-
treatments in U87 cells [142]. Combined diferuloylmethane 
(extracted from Curcuma longa Linn), and TMZ administra-
tion significantly inhibited U87 cell proliferation as well as 
stimulated apoptotic death versus each alone through over-
expression of tumor suppressor miR-146a and blocking of 
NF-κB cascade [143]. Bagherian and colleagues reported 
that curcuminoids, nano-micelle curcumin, and TMZ all 
used as mono-treatment have anti-tumor activities on U87 
cells. Concerning co-treatment, the effects of these agents 
were synergically enhanced through modulating various gli-
oma-associated pathways, including the Wnt axis, apoptosis, 
and autophagy-associated genes and proteins. All treatment 
schedules down-regulate the levels of Wnt pathway-related 
genes, such as β-catenin, cyclin D1, Twist, and ZEB1 in 
glioma cell lines [144]. In another study, curcumin promoted 
the sensitizing to TMZ treatment in U87 cells by induction 

Fig. 4  Effects of combination therapy with curcumin and chemotherapeutic agents and radiotherapy on glioma. Nimustine hydrochloride 
(ACNU); Methotrexate (MTX); Temozolomide (TMZ)
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of apoptosis. In vitro and in vivo evidence indicated that 
higher generation of ROS and suppression of AKT/mTOR 
pathway may be involved in the increased apoptosis due to 
the curcumin/TMZ co-treatments [145]. Furthermore, by 
using a magnetic nanoparticles-based dual drug delivery sys-
tem, it has been shown that curcumin plus TMZ has higher 
anti-tumor efficiency by apoptosis cell death induction 
[146]. However, Zanotto-Filho et al. reported that TMZ and 
curcumin synergism is doubtful to be successful. Whereas 
curcumin hinders the STAT3, NFκB, and PI3K/AKT axes 
to affect the survival of glioma cell lines, TMZ-induced 
autophagy is dependent on the DNA damage response and 
repair pathways. Although, both TMZ and curcumin needed 
ERK1/2 to activate autophagy. Inhibition of this ERK1/2-
mediated TMZ and curcumin stimulated autophagy with 
resveratrol, a BBB permeable compound, enhanced TMZ/
curcumin potency in brain-implanted tumors. Altogether, 
this finding indicates that autophagy disturbs the therapeu-
tic potential of TMZ/curcumin, and blocking this phenom-
enon could be a novel therapeutic option to upgrade glioma 
therapy [147]. Co-delivery of the hydrophobic magnetic 
nanoparticles and a combination of paclitaxel and curcumin 
significantly inhibited cell proliferation triggered apoptosis, 
and mitochondrion damage as well as G2/M cell cycle arrest 
synergistically compared to each drug alone. Dual-targeting 
correspondence to more than 10-time enhancement in cellu-
lar uptake investigations, and over 5-times elevation in brain 
delivery than the non-targeting nanoparticles. Additionally, 
all mice having orthotopic glioma survived, versus 62.5% 
survival rate for the combination treatment with native 
drugs. It seems that the dual-targeting and drug co-loading 
approach provides novel opportunities for optimizing brain 
drug delivery and glioma management [148].

Transferrin is a hydrophilic transporter of iron ions in 
the blood, which can enter cells via its specific receptor-
mediated endocytosis. Accumulating evidence demonstrated 
that the transferrin receptor is highly amplified in tumor tis-
sues versus their healthy adjacent tissues because cancer 
cells are in an over-proliferative state. It has been shown that 
anti-Transferrin receptor monoclonal antibody and curcumin 
lonely could suppress proliferation of A172 and U87-MG 
cell lines via cell cycle arrest at the S and G2/M phases, 
respectively. Anti-Transferrin receptor monoclonal antibody 
induced apoptosis in tumor cells; though curcumin induce 
necrosis. Interestingly, combination therapy synergistically 
affects glioma cell growth inhibition and the activation of 
cells necrosis [149].

Methotrexate (MTX) is a folate analogue that is widely 
used as a prototype anticancer drug. In a recent report, 
curcumin-loaded poly[D,L-lactide-co-glycolide] (PLGA) 
nanoparticles plus MTX-loaded PLGA nanoparticles had 
an additive effect on cell apoptosis compared to single drug 
nanoparticles. Combination therapy alters the form of cell 

death from necrosis to apoptosis. Moreover, maximum lev-
els of LDH activity are found when the U87MG cells are 
exposed to curcumin/MTX-co-loaded PLGA nanoparticles 
[150]. Nimustine hydrochloride (ACNU), is a nitrosourea 
compound, that inhibits cell replication, colony formation, 
dissemination, and invasion of glioma cells. Combination 
therapy with curcumin elevated ACNU-activated apopto-
sis via increasing cytochrome c release from mitochondria. 
Moreover, curcumin plus ACNU present synergistic anti-
tumor activity through concurrent targeting N-cadherin/
MMP2/9, cytochrome c/caspase, PI3K/AKT, as well as 
NF-κB/cyclooxygenase (COX)-2 pathways [151].

Radiotherapy

After the operation for surgical resection, radiotherapy is 
one of the frequently used adjuvant therapeutic strategies. 
Although, it has not been applied extensively under evalua-
tion of combination therapy for glioma. The radios-ensitiza-
tion potential of curcumin in vitro has been investigated in 
a few studies. Back et al. reported that combinatorial effects 
of curcumin (25 µM) and radiotherapy (5 Gy) were more 
effectively induce cell death through down-regulation of 
anti-apoptotic gene expression versus curcumin and radia-
tion alone in U87 and T98 cells. The cell death effect of 
curcumin was p53- and caspase-independent, and there-
fore maybe involve a non-classical apoptotic way [134]. 
In another study, curcumin administration along with pho-
todynamic therapy significantly decreased the viability of 
human glioma DKMG cell line dose-dependently [152]. 
Recently, it has been shown that treatment with curcumin 
and irradiation (2/4 Gy) significantly increased cell cytotox-
icity by more than 94% in U87 and T98 cell lines in a dose-
dependent manner. This combination provokes cell arrest 
at the G2/M phase and apoptosis synergistically [153]. The 
precise underlying mechanisms behind the photosensitizing 
activity of curcumin are unknown; although, it is well-estab-
lished that compounds that induce G2/M arrest are powerful 
radiosensitizers.

In vivo and in vitro evidence also suggests that curcumin 
combined with radiation considerably promoted the anti-
tumor effect compared to radiotherapy alone against both 
U87 cell line and U87 xenografted nude mice. Curcumin 
pretreatment inhibited radiation-induced ERK/JNK phos-
phorylation and triggered radiation-associated tumor cell 
apoptosis and G2/M arrest in U87 cells and subcutaneous 
xenografts. This effect is associated with the pro-apoptotic 
function of curcumin through induction of the dual-speci-
ficity phosphates (DUSP)-2 cascade [154, 155]. DUSPs as 
phosphatase enzymes are able to catalyze the dephosphoryl-
ation of both tyrosine and serine/threonine residues and have 
a crucial role in the inactivation of MAPK paths which are 
implicated in different human malignancies such as glioma 
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[156]. Wang and co-workers developed a rat model with 
triple-reporter F98/FGT glioma to examine the effectiveness 
of curcumin addition on radiotherapy for glioma. In vitro 
experiments showed that curcumin induces G2/M cell cycle 
arrest and promotes radiation sensitivity of F98 glioblas-
toma cells. In vivo model also supported that curcumin as 
radiosensitizer synergistically boosts the anti-tumor effects 
of irradiation on transplanted glioma cells and in situ brain 
tumors, and considerably lengthen the overall survival com-
pared to curcumin or radiation treatment solely [157]. How-
ever, in U251 glioma cells, curcumin pretreatment (5 μM for 
72 h) for a single dose (1 to 6 Gy) or fractionated (5 × 2 Gy) 
radiation did not support the radiosensitizer effect of cur-
cumin [158].

Conclusion and Future Prospective

There are several lines of evidence that support the potential 
of phytochemicals like curcumin in the treatment of different 
human cancers, that include brain tumors, and in particu-
lar glioma. Curcumin exerts its anticancer effects against 
glioma by several mechanisms: interfering with the cellular 
interactions necessary for the metastasis and recurrence of 
glioma cells, increasing proapoptotic proteins, or inducing 
or suppressing the production of different biomolecules 
including cytokines, transcription factors, enzymes, protein 
kinases, and growth factors such as MAPK, NF-κB, COX-2, 
IL-6, IL-8, FOXO1, STAT3, MMP-9, and TNF-α. MiRNAs 
are one of the potential therapeutic targets because of their 
involvement in the progression of gliomas. Curcumin could 
exert its therapeutic potentials through modulating miRNAs 
such as miR-21, miR-326 and miR-378 contributed in cel-
lular and molecular signaling pathways of brain tumors. 
Furthermore, curcumin could affect miRs involved in the 
response to chemotherapy.

Curcumin has the potential to modulate different core 
signaling pathways which are aberrantly disrupted in glioma. 
Although, among these signaling axes, a more emphasis on 
PI3K/AKT, JAK1,2/STAT3, and MAPK/ERK pathways as 
well as over-expression of apoptotic pathways like p21, p53, 
and executor caspase 3 could be an area of interest in future 
pre-clinical studies, because the available evidence is still 
restricted.

In addition, the use of curcumin as adjuvants or as a 
chemotherapeutic agent to address major molecular and cel-
lular glioma targets would be worthwhile since curcuminoids 
have the ability to resensitize chemo- and radio-resistant 
tumor cells through down-regulation of Bcl-2, members of 
the IAP family, DNA repair enzymes, Cx43 and AR. Moreo-
ver, greater attention should also be focused on designing 
a multimodal anticancer therapies approach by using the 
curcumin derivatives, analogues, and nano-formulations 

in future studies, in combination with the standard chemo-
therapy regimens; so this aspect of combinatorial treatment 
can synergically enhance the efficacy of current therapeutic 
agents and may provide a promising in glioma therapy.
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