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Abstract
In multiple neurodevelopmental and neurodegenerative disorders, endosomal changes correlate with changes in exosomes. 
We examined this linkage in the brain of mice that received cocaine injections for two weeks starting at 2.5 months of age. 
Cocaine caused a decrease in the number of both neuronal early and late endosomes and exosomes in the brains of male but 
not female mice. The response to cocaine in ovariectomized females mirrored male, demonstrating that these sex-differences 
in response to cocaine are driven by hormonal differences. Moreover, cocaine increased the amount of α-synuclein per exo-
some in the brain of females but did not affect exosomal α-synuclein content in the brain of males, a sex-difference elimi-
nated by ovariectomy. Enhanced packaging of α-synuclein into female brain exosomes with the potential for propagation 
of pathology throughout the brain suggests a mechanism for the different response of females to chronic cocaine exposure 
as compared to males.
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Introduction

Cocaine is presently one of the most abused stimulant drugs 
in the United States. It binds to and inhibits the sodium-
dependent dopamine (DA) transporter (Slc6a3, also known 

as DAT), increasing the levels of DA in the extracellu-
lar space. Beyond the known effects of cocaine on DAT, 
long-term repeated cocaine use has actions independent 
of DAT, including an effect on α-synuclein-related path-
ways. Repeated cocaine use elevates α-synuclein levels in 
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blood and brain tissue in humans and increased levels of 
α-synuclein correlate with increased cocaine cravings [1, 
2]. Multiple studies using α-synuclein overexpressing or KO 
mice argue that α-synuclein is involved in the regulation 
of DA neurotransmission [3–6]. Postmortem human stud-
ies show higher levels of α-synuclein in ventral tegmental 
area and substantia nigra dopaminergic neurons of cocaine 
addicts [3]. Increased levels of α-synuclein result in a direct 
insult to the dopaminergic system [3]. Furthermore, cocaine 
has a direct effect on the D2 and D1 receptors and a direct 
action on the remodeling of lipid rafts [7–9] that serve as a 
platform for regulating receptors and other proteins includ-
ing DAT [10]. Lipid rafts are an important pathway for 
clathrin-independent endocytosis [11], suggesting an effect 
of cocaine on the endosomal system. In fact, cocaine induces 
the formation of large vacuoles in cells in vitro, likely via 
fusion of late endosomes, and these enlarged vacuoles can 
trigger dysregulation of the endocytic flux, leading to dam-
age to the cell [12]. Upon repeated administration, cocaine 
causes alterations in the endocytic [6], autophagic [13], and 
lysosomal compartments [14].

Intraluminal vesicles are formed by the invagination of 
the late endosome/multivesicular body (MVB) membrane 
around cytoplasmic materials. MVB content can either be 
delivered to the lysosome for degradation or secreted by the 
cell, with the intraluminal vesicles now known as exosomes. 
Exosomes have diverse biological properties, markers, and 
functions, and are of research interest as long-lived vesi-
cles often found distant from the exosome generating cell 
that can carry important information regarding the source 
cell and the endosomal-lysosomal system within that cell 
[15–18]. Our prior studies have shown that modifications of 
the endocytic system are directly linked to a change in the 
biogenesis of extracellular vesicles (EVs) in the brain [15, 
19–22]. EVs are nanoscale secreted vesicles that encapsu-
late lipids, proteins, and nucleic acids and are involved in 
cell-to-cell communication, waste removal, and transfer of 
bioactive molecules between cells. Classically, two main EV 
subpopulations of different origin have been defined, called 
microvesicles and exosomes. Each of these EV populations 
are secreted by diverse cell types, are found in all body flu-
ids, and have specific biological properties, markers, and 
functions [15–18]. Given the effect of cocaine on the endo-
somal-lysosomal system, we hypothesized that exosomes 
within the cocaine-treated brain likely reflect alterations 
within the neuronal endosomal-lysosomal system, and that 
altered regulation of the exosomal system may contrib-
ute to the neurobiological mechanisms of chronic cocaine 
exposure.

Thus, we investigated EVs in the brain extracellular space 
of mice in response to chronic, non-contingent cocaine treat-
ment. Male and female mice were included in the study 
because we have previously identified sex differences in 

drug-induced responses [23]. By using a recently described 
approach to isolate and separate EVs [24], we show that 
cocaine has a sex-dependent impact on exosomes levels 
and cargo. We provide evidence that cocaine perturbs EV 
secretion and the endocytic pathway in vivo in neurons of 
male, but not female, mice, suggesting an underlining role 
of gonadal hormones in chronic cocaine exposure mecha-
nisms. These studies may lead to find sex-specific therapies 
for substance use disorder and/or biomarkers for chronic 
cocaine exposure.

Materials and Methods

Experimental Design and Statistical Analyses

Male and female C57BL/6 J mice (indicated as wild-type 
mice in the text, RRID:IMSR_JAX:000,664) were purchased 
from the Jackson Laboratory (Bay Harbor, ME, US). Start-
ing at 2.5 months of age, a cohort of C57BL/6 J male and 
female mice were given non-contingent intraperitoneal 
injection of 10 mg/kg cocaine-HCl (Sigma-Aldrich, St. 
Louis, MO, US) prepared in sterile 0.9% sodium chloride 
solution (saline; Hospira, Lake Forest, IL, US) or saline as 
control, once daily for 12 days [25]. An additional cohort 
of female 2-month-old C57BL/6 J mice were subjected to 
ovariectomy or sham surgery. Under isoflurane anesthesia 
and sterile field, a dorsal transverse incision was made to 
allow bilateral access to both ovaries. The abdominal wall 
was cut over each white fatty tissue, ovaries retracted and 
cut, and the muscle layer and skin sutured. The mice rested 
for 14 days post-operation and then were administered non-
contingent intraperitoneal injection of cocaine or saline, 
once daily for 12 days. Mice were sacrificed 30 min after 
the final cocaine/saline injection.

For biochemical analyses of mouse brains, mice were 
sacrificed by cervical dislocation and the two hemibrains 
without the cerebellum and the olfactory bulbs were kept 
at −  80  °C until further processing. For immunohisto-
chemical procedures, mice were anesthetized with isoflu-
rane (Henry Schein Animal Health, Melville, NY, US) and 
transcardially perfusion-fixed with 4% paraformaldehyde 
(PFA, Electron Microscopy Sciences, Hatfield, PA, US) 
in phosphate buffered saline (PBS, Corning Incorporated, 
Corning, NY, US). Brains were removed and post-fixed 
overnight in 4% PFA in PBS at 4 ºC, transferred to 20% 
glycerol/2% DMSO/0.1 M phosphate buffer (all reagents 
from Sigma-Aldrich) on the next day and kept at 4 ºC until 
further processing. All experiments were performed follow-
ing the ‘Animal Research: Reporting In Vivo Experiments’ 
(ARRIVE) guidelines. Statistical analysis was carried out 
using GraphPad Prism (version 6.01, GraphPad Holdings, 
San Diego, CA, US). Data are shown as mean ± standard 
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error of the mean (SEM). The variable n is defined as the 
number of mice analyzed per experimental condition. It cor-
responds to the number of mice within each group for behav-
ior and immunohistochemistry data. EVs were isolated from 
one mouse hemibrain for each experimental group per each 
isolation, and four hemibrains were manipulated together: 
male/female either treated with saline or cocaine, or sham/
ovariectomized females treated with saline or cocaine. For 
immunohistochemistry, the average of 30 random neurons 
in the frontoparietal cortex was calculated for each mouse, 
and we included 4 different mice per group (n = 4), for a total 
of ~ 120 neurons per experimental group. ImageJ was used 
to quantify the number, area, and diameter of endosomes 
using the “Analyze Particles” plug-in in a fully unbiased, 
automatized way. Significance was calculated through two-
way ANOVA with Bonferroni’s multiple comparisons test, 
considering as significant changes with a P < 0.05 (95% con-
fidence interval). All experiments were performed at least 
three times independently, and mice were randomly allo-
cated to saline or cocaine groups, as well as to either sham 
surgery or ovariectomy. To minimize statistical confounders, 
cage location and the order of treatments were randomly 
allocated. No data points were excluded by the analysis and 
no criteria were set to exclude animals or data points.

Behavioral Assay

Locomotor activity was measured with Opto-Varimex activ-
ity monitors (Columbus Instruments, Columbus, OH, US), 
and calculated based on total ambulatory counts (TAC) of 
consecutive beams broken during ambulation. Single beams 
broken repeatedly were not counted. Data are expressed as 
TAC over 60 min after the injection of cocaine on days 1, 
8 and 11.

Immunohistochemistry

Brains were cut into 40 µm-thick coronal sections with a 
vibratome. Free-floating sections from all mouse groups 
were concurrently processed for immunohistochemical 
examination [26]. Control sections were processed with 
the omission of either the primary or secondary antibodies 
to exclude non-specific reactions. Labeling conditions and 
exposure times were identical throughout.

Fluorescent labeling of early and late endosomes was per-
formed using antibodies to Rab5a (1:100, clone EPR21801, 
ab218624, Abcam, Cambridge, UK, RRID:N/A) and Rab7a 
(1:100, clone 5G8.1, MABC119, EMD Millipore, Billerica, 
MA, US, RRID:N/A), respectively. Double immunolabeling 
with antibodies to the neuronal nuclei antigen (NeuN, also 
known as Rbfox3) was performed to identify neurons. We 
used an anti-NeuN mouse monoclonal antibody (1:100, 
clone A60, MAB377, EMD Millipore, RRID:AB_2298772), 

for the double staining with Rab5a and an anti-NeuN rab-
bit polyclonal antibody (1:100, ABN78, EMD Millipore, 
RRID:AB_10807945) for the double staining with Rab7a. 
Following incubation with fluoresceinated secondary anti-
bodies (A21202 donkey, AlexaFluor488-conjugated, anti-
mouse secondary antibody, RRID:AB_141607; A21206 
donkey, AlexaFluor488-conjugated, anti-rabbit second-
ary antibody, RRID:AB_2535792; A11031 goat, Alex-
aFluor568-conjugated, anti-mouse secondary antibody, 
RRID:AB_144696; A11036 goat, AlexaFluor568-conju-
gated, anti-rabbit secondary antibody, RRID:AB_10563566; 
all antibodies from ThermoFisher Scientific, Waltham, MA, 
US, and used at a 1:500 dilution). Slides were covered with 
coverslips using an aqueous mounting medium designed 
to preserve fluorescence (Fluoroshield, Sigma-Aldrich). 
Immunofluorescence was observed and captured using an 
LSM 510 Meta confocal microscope (Zeiss, Thornwood, 
NY, US). For quantification, we calculated the number of 
endosomes and endosome diameter as the average of at least 
30 random neurons in the frontoparietal cortex per mouse, 
and we included 4 different mice per group (n = 4), for a 
total of ~ 120 neurons per experimental group. We chose 
to quantify cortical pyramidal neurons instead of midbrain 
DA neurons because cortical pyramidal neurons are the 
more abundant neuronal population found in a total murine 
hemibrain and, as such, endosomal dynamics in these cells 
are more representative of our EV data (EVs are isolated 
from a whole right hemibrain). Data were measured by a 
treatment- and surgery-blinded observer. Quantification 
of Rab5a and Rab7a signal was performed using ImageJ 
(NIH, Bethesda, MD, US) [27]. Briefly, ImageJ was first 
calibrated for each picture by adjusting to the scale on each 
image. ImageJ “Watershed” plug-in was used to separate 
overlapping particles in binary images. ImageJ quantified the 
number, area, and diameter of particles using the “Analyze 
Particles” plug-in in a fully unbiased, automatized way. To 
ensure the software would neglect aberrant background, the 
exclusion parameter was set to diameter < 100 nm. Two-way 
ANOVA followed by post-hoc multiple comparisons Bonfer-
roni’s test was used to assess the differences between groups 
(variables considered: sex or surgery and treatment); level 
of statistical significance was set at P < 0.05.

Brain Homogenates

Frozen left hemi-brains were weighed and stored at − 80 °C 
until homogenization. Protease inhibitors [5 μg/mL leupep-
tin, 5 μg/mL antipain dihydrochloride, 5 μg/mL pepstatin 
A, 1 mM phenylmethanesulfonyl fluoride (PMSF), 1 μM 
E64; all reagents from Sigma-Aldrich] were added to a tis-
sue homogenization buffer (THB: 0.25 M sucrose, 20 mM 
Tris–HCl pH 7.4, 1 mM EDTA, 1 mM EGTA; all reagents 
from Sigma-Aldrich) immediately before homogenization. 
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Brains were homogenized in an ice-cold glass homogenizer 
with a Teflon pestle (Wheaton, DWK Life Sciences, Mill-
ville, NJ, US) in 10% v/w THB with 20 complete up-and-
down spinning strokes. Aliquots of homogenate were stored 
at − 80 °C until use.

Isolation of EVs From Brain Parenchyma

Murine EVs were isolated from the right hemibrains as 
previously described [28, 29]. Briefly, hemibrains were 
minced and incubated with 20 U/mL papain (Worthington, 
Lakewood, NJ, US) in Hibernate A (BrainBits, Springfield, 
IL, US) for 15 min at 37 °C. The enzymatic digestion was 
stopped by the addition of ice-cold protease inhibitors in 
Hibernate A. The solution was gently disassociated by pipet-
ting and centrifuged at 300 g for 10 min at 4 °C. The super-
natant was subsequently filtered twice, first through a 40 μm 
cell strainer (Fisher Scientific, Pittsburgh, PA, US) and then 
through a 0.2 μm surfactant-free cellulose acetate (SFCA) 
syringe filter (Corning Incorporated). The cleared mixture 
was centrifuged at 2,000 g for 10 min at 4 °C and the super-
natant centrifuged at 10,000 g for 30 min at 4 °C. The super-
natant was then ultra-centrifuged at 100,000 g (k-factor: 
207.5, 45Ti rotor type, Beckman Coulter, Brea, CA, US) 
for 70 min at 4 °C. The pellet was washed once in PBS 
pH 7.4 (Corning Incorporated), re-centrifuged at 100,000 g 
for 70 min at 4 °C and resuspended in a 40% v/v OptiPrep 
(Sigma-Aldrich) solution, containing 10 mM Tris–HCl pH 
7.4, 0.25 M sucrose and 40% iodixanol (all reagents from 
Sigma-Aldrich) for fractionation on an OptiPrep density 
step-gradient [24]. The gradient was set up by carefully 
layering on the top of the 40% OptiPrep-equilibrated EVs 
a decreasing scale of OptiPrep solutions (20%, 15%, 13%, 
11%, 9%, 7%, 5%). The column was centrifuged overnight at 
4 °C in a swinging bucket rotor at 200,000 g (k-factor: 137.3, 
SW40Ti rotor type, Beckman Coulter). Afterwards, 1.5 mL 
fractions, corresponding to the different interphases, were 
collected, washed in PBS, and centrifuged at 100,000 g for 
70 min at 4 °C in a fixed-angle rotor (k-factor: 61.2, MLA80 
rotor type, Beckman Coulter). Pellets were resuspended in 
PBS. The strategy employed in this study to isolate brain 
EVs is designed to enrich for canonical small EVs, includ-
ing microvesicles, exosomes, and mitovesicles. It does not 
isolate all types of EV-like particles that may be present 
in the brain. Apoptotic bodies and very large oncosomes 
(> 1 µm) are filtered and pelleted out by the first steps of our 
brain EV isolation procedure and therefore are not included 
in the crude brain EV pellet. On the other hand, very small 
(< 50 nm) EV-like particles, including exomeres, pellet only 
by very long (16 h) centrifugation steps at 167,000 g [30], 
while we obtain the precolumn brain EV pellet using only 
a 100,000 g centrifugation step for 70 min. Accordingly, 
exomeres are not pelleted using our conditions and are 

discarded together with the supernatant of the first 100,000 g 
centrifugation. BCA protein assay, transmission electron 
microscopy and nanotrack analysis (NTA) of brain EVs were 
performed using manufacturer’s instructions, as described 
in detail elsewhere [24]. For Western blot analyses, aliquots 
were lysed adding 1:1 equal volume of 2X RIPA buffer (2% 
Triton X-100, 2% sodium deoxycholate, 0.2% SDS, 300 mM 
sodium chloride, 100 mM Tris–HCl pH 7.4, 2 mM EDTA, 
all reagents from Sigma-Aldrich) with protease inhibitors. 
The characterization of the EVs shown in this paper comply 
in full with the minimal information for studies of EVs 2018 
(MISEV2018) guidelines [31].

Western Blot Analysis

EV fractions and brain homogenates were supplemented 
with a 6X Laemmli sample buffer (375 mM Tris–HCl pH 
7.4, 9% SDS, 50% glycerol, 9% β-mercaptoethanol, 0.03% 
bromophenol blue, all reagents from Sigma-Aldrich) and 
boiled for 5 min at 95 °C. Equal volumes for EV prepa-
rations or equal amount of proteins for brain homogen-
ates were loaded on 4–20% gradient precast Tris–HCl 
polyacrylamide gels (Bio‐Rad, Hercules, CA, US) and 
ran for 2 h at 120 V. Samples were then transferred onto 
a PVDF membrane (Immobilon, EMD Millipore) over-
night at 100 mA. The membranes were blocked in 5% w/v 
BSA (Sigma-Aldrich) for 1 h. Primary antibodies used in 
this study were: anti-ALG-2-interacting protein X (Alix, 
also known as Pdcd6ip, 1:1,000, #92880S, Cell Signal-
ing Technology, Danvers, MA, US, RRID:AB_2800192), 
anti-heat shock cognate 71 kDa protein 8 (Hsc70, also 
known as Hspa8, 1:1,000, #sc-7298, Santa Cruz Biotech-
nology, Santa Cruz, CA, US, RRID:AB_627761), anti-
Cd63 (1:1,000, #ab217345, Abcam, RRID:AB_2754982), 
anti-Annexin A2 (1:10,000, #ab178677, Abcam, RRID 
N/A), anti-α-synuclein (1:1,000, #610,787, BD Bio-
sciences, San Jose, CA, US, RRID:AB_398108), anti-
Rab27a (1:1,000, #ab55667, Abcam, RRID:AB_945112), 
anti-Rab35 (1:1,000, #9690, Cell Signaling Technology, 
RRID:AB_11178805), anti-130 kDa cis-Golgi matrix pro-
tein (Gm130, also known as Golga2, 1:300, #610,823, BD 
Biosciences, RRID:AB_398141), anti-β-actin (1:30,000, 
#3700, Cell Signaling Technology, RRID:AB_2242334), 
anti-cytochrome c oxidase subunit 4, isoform 1 (Cox-
IV, also known as Cox4i1, 1:1,000, #ab33985, Abcam, 
RRID:AB_879754). The secondary antibodies used were 
HRP-conjugated from Jackson ImmunoResearch (West 
Grove, PA, US). Membranes were incubated with ECL 
(Pierce, Rockford, IL, US) or femto ECL (Pierce) for 5 min 
and protein bands were visualized with the iBright FL1500 
imaging system (ThermoFisher Scientific). Protein bands 
were quantified using ImageJ.
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Results

Behavioral Locomotion is Affected by Cocaine 
Administration in a Sex‑ and Hormone‑Dependent 
Fashion

As an animal model for substance use disorder, cocaine 
administration to mice has been widely used to study 
behavioral, molecular, and structural parameters associated 
with human processes related to chronic drug exposure. 
C57BL/6 J mice (2.5-month-old) were injected with non-
contingent doses of either cocaine (10 mg/kg) or saline once 
daily for 12 days [25], and locomotor activity was measured 
and calculated based on TAC (total ambulatory counts) over 
60 min post injection. The mice displayed enhanced locomo-
tor activity after repeated cocaine administration (Fig. 1a). 
Although drug use is higher in men, women appear to be 
more prone to develop drug dependence, suffer more severe 
physical and psychological consequences of drug abuse, and 
have more difficulties in quitting [32]. We observed a greater 
locomotor activity response in female C57BL/6 mice than 
males (Fig. 1a), consistent with previous reports [23]. In 
order to investigate the hormonal effect in the response of 
females to cocaine as compared with males, females were 
ovariectomized prior to the chronic injection of cocaine or 
saline. Similar to males, ovariectomized females had less 
locomotor activity response to cocaine than sham treated 
female mice (Fig. 1b).

Cocaine Impacts the Endosomal Pathway Differently 
in Males and Females

For morphological examination of early and late endosomes, 
murine frontoparietal cortex sections were labeled as pre-
viously described [26] either with an antibody against the 
small GTPase Rab5a, a regulator of endocytosis and a spe-
cific marker of early endosomes [33] (Fig. 2), or with an 
antibody to Rab7a, a regulator of vesicular trafficking in 
the late endocytic pathway and a late endosomal marker 
[34] (Fig. 3). Double staining with antibodies to the neu-
ronal nuclei protein NeuN was used to identify neuronal 
endosomes. Rab5a- and Rab7a-immunolabelling in random 
frontoparietal cortical neurons were quantified to compare 
the endosomal diameter, number of endosomes per neu-
ron, and average endosomal area per neuron of early and 
late endosomes among the mouse groups. While no effect 
of cocaine was found on Rab5a-positive early endosomes 
in cortical neurons of female mice, a significantly lower 
number and area fraction of early endosomes was found in 
cocaine-injected compared to saline-injected males, with 
no effect on endosomal size (Fig. 2a–d). Similarly, immu-
nostaining with anti-Rab7a antibody revealed no effect of 

cocaine on late endosomes in cortical neurons of female 
mice but a significant lower number and area fraction of 
late endosomes in cocaine-injected compared to saline-
injected males (Fig. 3a–d). Similar to males, in ovariecto-
mized females, cocaine caused lower number and area frac-
tion per neuron, but did not affect the apparent size of early 
(Fig. 2e–h) and late endosomes (Fig. 3e–h) as compared 
with sham treated females. Our data also show that the num-
ber of both early and late endosomes in brain neurons of 
male mice is higher than of female mice (Figs. 2, 3). Similar 
to males, in ovariectomized females the number of Rab7-
positive neuronal endosomes is higher as compared to sham 
treated females (Fig. 3g).

Cocaine Impacts the Number of Brain‑Derived EVs 
Differently in Males and Females

EVs were isolated from the right hemibrain of mice of the 
eight groups: females, males, ovariectomized and sham 
operated females, treated with either cocaine or saline. EV 
subpopulations were fractionated using an iodixanol-based 
density-gradient which enriches microvesicles in fractions 

Fig. 1   Cocaine-induced locomotor activity is sex- and hormone-
dependent. a Saline or cocaine (10 mg/kg, i.p.) were injected 30 min 
after the mouse was placed in the activity monitor. Mice were treated 
once daily for 12 days and total ambulatory counts were measured for 
60  min after each injection (days 1, 8, and 11 are shown). Females 
responded to cocaine injections with higher locomotor activity as 
compared with males (n = 6 mice per group). b Ovariectomy reduced 
the cocaine-induced locomotor activity of female mice (n = 6 mice 
per group). Statistical test: two-way ANOVA with Bonferroni’s mul-
tiple comparisons test. Data are represented as mean ± SEM. The 
differences between the groups were significant at * P < 0.05, *** 
P < 0.001 and **** P < 0.0001
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1, 2, and 3, and exosomes in fractions 4, 5, and 6 [24]. The 
morphology of the EV species in each of the six fractions 
studied here was identified by transmission electron micros-
copy, which revealed that all fractions contained characteris-
tic cup shaped EVs (Fig. 4a). None of the samples contained 
debris, broken membranes, or protein aggregates, an indica-
tion of their purity. Western blot analyses were performed to 
identify the type of vesicles contained in each EV fraction. 

An antibody to Annexin A2, a marker of microvesicles, 
identified these plasma membrane-derived vesicles mainly 
in fractions 1–3 (Fig. 4b). The tetraspanin Cd63, a general 
marker of exosomes, was enriched in fractions 4–6, consist-
ent with our previous reports. Fraction 8 contained mainly 
EVs of mitochondrial origin (mitovesicles), not considered 
in this study, while fraction 7 was promiscuous, contain-
ing both exosomes and mitovesicles (Fig. 4b). Proteins of 

Fig. 2   Cocaine affects Rab5-postitive early endosomes in a sex-
dependent manner. a–d Neurons in the frontoparietal cortex of 
cocaine-treated male mice show lower number and area fraction per 
neuron of Rab5a-positive early endosomes as compared with saline-
treated male mice. No effect was found in the brains of female mice 
(n = 4 mice per group; for each mouse, the average of at least 30 
neurons was calculated). e–h Similar to males, in ovariectomized 
females, cocaine caused lower number and area fraction per neuron of 
early endosomes as compared with sham-treated females (n = 4 mice 

per group; for each mouse, the average of at least 30 neurons was cal-
culated). a and c Double immunolabeling with antibodies to Rab5a 
(green) and NeuN (fuchsia) and grayscale Rab5a staining in corti-
cal neurons are shown (scale bars, 10 µm). b and f Diameter, c and 
g Number, d and h Area per neuron of Rab5a-labeled endosomes. 
Statistical test: two-way ANOVA with Bonferroni’s multiple com-
parisons test. Data are represented as mean ± SEM. The differences 
between the groups were significant at * P < 0.05, ** P < 0.01, and 
*** P < 0.001
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unrelated intracellular compartments, such as the Golgi 
marker Gm130, were not observed by Western blot analyses 
in any of the fractions, confirming a lack of intracellular con-
taminants (Fig. 4b). Nanoparticle tracking analysis (NTA) 
demonstrated that EVs found in fractions 1–3 were larger 
than EVs found in fractions 4–6 (Fig. 4c, d), consistent with 
enrichment of microvesicles and exosomes, respectively.

Western blot analyses of the EV fractions isolated from 
female brains with the microvesicle marker Annexin A2 
and with the exosomal markers Alix, Tsg101, Hsc70, and 
Cd63 did not identify any effect of cocaine on the levels of 
exosomes and microvesicles. However, the level detected by 
Western blot analyses for exosomes (but not microvesicle) 
was reduced by cocaine in males (Fig. 5a–e). These data 
suggest a male-specific reduction in exosome generation 

Fig. 3   Cocaine affects Rab7-positive late endosomes in a sex-depend-
ent manner. a–d Neurons in the frontoparietal cortex of cocaine-
treated male mice show lower number and area fraction per neuron of 
Rab7a-positive late endosomes as compared with saline-treated male 
mice. No effect was found in the brains of female mice (n = 4 mice 
per group; for each mouse, the average of at least 30 neurons was cal-
culated). e–h Similar to males, in ovariectomized females, cocaine 
caused lower number and area fraction per neuron of late endosomes 
as compared with saline treated ovariectomized females (n = 4 mice 

per group; for each mouse, the average of at least 30 neurons was cal-
culated). a and e Double immunolabeling with antibodies to Rab7a 
(green) and NeuN (fuchsia) and grayscale Rab7a staining in corti-
cal neurons are shown (scale bars, 10 µm). b and f Diameter, c and 
g Number, d and h Area per neuron of Rab7a-labeled endosomes. 
Statistical test: two-way ANOVA with Bonferroni’s multiple com-
parisons test. Data are represented as mean ± SEM. The differences 
between the groups were significant at ** P < 0.01, *** P < 0.001, 
and **** P < 0.0001
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upon cocaine administration and are consistent with the 
respective endosomal changes. To validate this speculation, 
we performed NTA to quantify the number of EVs. NTA 
showed that while cocaine does not affect the number of EVs 
in the brains of female mice, it causes a significant reduction 
in the number of exosomes in the brains of males (Fig. 5f, g). 
Cocaine also reduced the number of exosomes in the brain 
of ovariectomized mice, mimicking its effect in males, as 
estimated by western blot and NTA analyses (Fig. 5h–n).

Western blot analyses of homogenates of the left hemi-
brains of the same mice revealed that cocaine injection did 
not affect the level of expression of any of these proteins 
in either females, males, sham-operated, or ovariectomized 
mice (Fig. 6). In addition, normalization of the amount of 
each of the proteins investigated to the total protein amount 
within each fraction did not reveal an effect of cocaine on 
the protein levels (data not shown), indicating that it is not 
the level of expression or loading of EVs that are affected 

by cocaine in males and in ovariectomized females. These 
data show that the reduction in the number of exosomes 
identified by protein markers is due to either reduced pro-
duction, reduced secretion, or increased uptake and turnover 
of exosomes in the brain of males.

Cocaine Impacts the Level of α‑Synuclein 
in Brain‑EVs Differently in Males and Females

Given that cocaine- and DA-induced behaviors related to 
chronic substance exposure as well as MVB homeostasis 
are mediated by α-synuclein [3–6] we investigated the effect 
of cocaine treatment on the level of expression and EV con-
tent of α-synuclein in the brain of male and female mice. 
α-synuclein amount per vesicle was quantified by Western 
blot analysis of the different exosomal fractions and normal-
ized to the protein content in each fraction. The data showed 
that the α-synuclein content is higher in exosomes in the 

Fig. 4   Characterization of EVs isolated from mouse brains. a Repre-
sentative photomicrographs imaged by transmission electron micros-
copy of brain EV fractions 1 to 6, fractionated by an OptiPrep density 
gradient. Scale bar: 200 nm. b Representative Western blot analyses 
of EVs isolated from the brain of a 3-month-old wild-type mouse 
and fractionated by an OptiPrep density gradient. The same volume 
of each fraction was loaded in each lane. Annexin A2, a marker of 
microvesicles is enriched mainly in fractions 1 to 3, the exosomal 
marker Cd63 in fractions 4 to 6, the marker of EVs of mitochondrial 
origin (mitovesicles) Cox-IV is found mainly in fractions 7 and 8, and 
a marker of an unrelated intracellular compartment (Gm130) was not 

observed in any of the EV fractions but found in brain homogenates 
(BH). c Diameter analysis of brain EVs by NTA. The frequency of 
the distribution was normalized to the mode, while the bell curves 
were obtained using a four-point moving average. The numbers of 
fractions 1 to 3 and of fractions 4 to 6 were combined as they showed 
similar characteristics (n = 3 mice per group). d Percentage of vesi-
cles with a diameter that falls within a 125 nm bin, as estimated in 
c (n = 3 mice per group). Statistical test: two-way ANOVA with 
Bonferroni’s multiple comparisons test. Data are represented as 
mean ± SEM. ** P < 0.01, **** P < 0.0001
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brain of cocaine-injected as compared with saline-injected 
females. No effect of cocaine on the level of α-synuclein 
per exosome was observed in the brains of males (Fig. 7a, 
b). Ovariectomy eliminated the increase in the amount 
of α-synuclein in brain exosomes of females treated with 

cocaine as compared with saline-injected females, mimick-
ing the male response (Fig. 7c, d). Western blot analysis of 
homogenates of the left hemibrains of the mice revealed 
that cocaine injection did not affect the level of overall 
brain α-synuclein expression (Fig. 6). Thus, cocaine affects 

Fig. 5   Cocaine does not affect the level of EVs in the brain of female 
mice but reduces the levels of EVs in the brain of male mice. a Rep-
resentative western blot analyses of female and male EV lysates upon 
treatment with either cocaine or saline. Markers of microvesicles and 
exosomes were assessed. The same volume of the EV fractions was 
loaded in each lane. Scanned bands were quantified and normalized 
to hemibrain weight for Annexin A2 (b), Alix (c), Hsc70 (d) and 
Cd63 (e) (n = 5 mice per group). f and g Number of EVs found in 
microvesicle-enriched fractions (fractions 1 + 2 + 3) (f) and in exo-
some-enriched fractions (4 + 5 + 6) (g) of EVs isolated from the brain 
of female and male mice upon treatment with either cocaine or saline, 
as quantified by NTA and normalized to hemibrain weight (n = 5 mice 
per group). h Representative western blot analyses of EV lysates from 
females following sham surgery and ovariectomized females upon 
treatment with either cocaine or saline. Markers of microvesicles 

and exosomes were assessed. The same volume of the EV fractions 
was loaded in each lane. Scanned bands were quantified and normal-
ized to hemibrain weight for Annexin A2 (i), Alix (j), Hsc70 (k), and 
Cd63 (l) (n = 5 mice per group). m and n Number of EVs found in 
microvesicle-enriched fractions (fractions 1 + 2 + 3) (m) and in exo-
some-enriched fractions (4 + 5 + 6) (n) of EVs isolated from the brain 
of female mice following sham surgery and ovariectomized females 
upon treatment with either cocaine or saline, as quantified by NTA 
and normalized to hemibrain weight (n = 5 mice per group). Frac-
tions 1–3 are enriched in microvesicles, fractions 4–6 are enriched 
in exosomes, fractions 7–8 are enriched in other EVs. Statistical test: 
two-way ANOVA with Bonferroni’s multiple comparisons test. Data 
are represented as mean ± SEM. * P < 0.05, ** P < 0.01, and *** 
P < 0.001
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Fig. 6   Cocaine injection does not affect the level of expression of 
EV protein markers and of α-synuclein. a–h Western blot analyses 
of brain homogenates of female (a), male (b), and females undergone 
sham (e) or ovariectomy (f) surgeries injected with either saline (S) 
or cocaine (C) (n = 7 mice for the female set, 6 for the other groups). 
The antibodies detected a marker of microvesicles (Annexin A2), 
markers of exosomes (Alix, Tsg101, Hsc70, Cd63, Rab27a, and 

Rab35), and α-synuclein. β-actin was used as a loading control. The 
same amount of total protein was loaded in each lane. Graphs in c, 
d, g and h show the densitometric quantification of the bands nor-
malized to β-actin in the same lane. Statistical test: two-way ANOVA 
with Bonferroni’s multiple comparisons test. No difference between 
cocaine and saline treatments was found. Data are represented as 
mean ± SEM
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the loading of exosomes with α-synuclein differently in 
males and females. While cocaine reduces the number of 
exosomes in the brain of males, it increases the content of 
α-synuclein per exosome, without affecting the number of 
total exosomes, in the brain of females.

Discussion

Sex Differences in Cocaine Abuse Disorders

Cocaine abuse disorders are observed in both men and 
women; however, compared to men, women have a higher 
likelihood of becoming addicted at a younger age [35], take 
higher doses [36], require less time to become addicted 
[37], experience more cravings [38, 39], and have a greater 
difficulty remaining abstinent [40–42]. Sex differences in 
response to cocaine are also seen in experimental animals 
[39]. It was proposed that the differential efficacy of cocaine 
across sexes is driven by circulating estrogens, which affect 
DAT activity [43]. In females, behavioral and physiological 
responses to cocaine have been correlated to menstrual cycle 
fluctuations of estrogens. During the follicular phase (ris-
ing estrogens levels), females experience increased potency 
of cocaine, compared to luteal phase (low estrogens levels) 
[43–45], and females subjectively reported heightened crav-
ings [46, 47]. Additionally, prepubescent rats did not show 
sex differences in cocaine-induced locomotor activity after 
one or repeated cocaine injections [48], suggesting that dif-
ferences in gonadal hormones of adult animals mediate, at 
least partially, the sex difference in response to cocaine.

Consistent with these previous studies, we observed a 
greater locomotor activity response in female C57BL/6 
mice than males and that, similar to males, ovariectomized 
females had less locomotor activity response to cocaine than 
sham treated female mice. In addition to behavioral differ-
ences, we found sex differences within the endosomal and 
exosomal pathways and ovariectomy undid this difference.

The Effect of Cocaine on the Endosomal‑Exosomal 
Pathways

It was previously shown that cocaine causes alterations in 
the endosomal, autophagic, and lysosomal system, both 
in vitro and in vivo in selected populations of neurons, 
although sex differences have not been examined [12–14]. 
We find that the number and area per neuron of early and 
late endosomes are higher in brains of male as compared 
to female mice at three months of age, a previously unap-
preciated sex difference in the neuronal endosomal pathway. 
Cocaine administration for twelve days at that age did not 
affect the endosomal pathway in cortical neurons of female 
mice. However, consistently with sex-differences in cocaine 
effects, this cocaine treatment leads to a decrease in the num-
ber and area per neuron of early and late endosomes in cor-
tical neurons of male mice. This sex-dependent effect was 
profound, with the neuronal early and late endosome area 
and number reaching lower levels in treated males compared 
to females, regardless of treatment status. Additionally, ova-
riectomized females showed the male pattern for neuronal 
endosomes: greater endosome number and area fraction per 
neuron at baseline, with a decrease in the number of early 

Fig. 7   Cocaine increases the content of α-synuclein in exosomes in 
the brain of females. a–d Western blot analysis of α-synuclein con-
tent in EV fractions (n = 5 mice per group). The same volume of the 
EV fractions was loaded in each lane. Scanned bands were quantified 
and normalized to the total EV protein content as estimated by the 
BCA assay for females and males (a-b), females following sham sur-

gery, and ovariectomized females (c-d). Fractions 1–3 are enriched 
in microvesicles, fractions 4–6 are enriched in exosomes, fractions 
7–8 are enriched in other EVs. Statistical test: two-way ANOVA 
with Bonferroni’s multiple comparisons test. Data are represented as 
mean ± SEM. * P < 0.05
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and late endosomes following cocaine injection, arguing that 
the sex difference is mediated by female sex hormones.

While cocaine affects the secretion of EVs studied 
in vitro, the reported effect depended upon the cell type stud-
ied, the concentration of cocaine used, and the experimental 
conditions. Although cocaine treatment of human glioblas-
toma cell cultures increased the number of EVs, mainly 
exosomes, in the medium in a concentration-dependent 
manner [49], there was a significant decrease in the number 
of total EVs secreted by BV2 microglial cells after cocaine 
treatment [50]. In addition to effects on EV and exosome 
secretion, it was shown that self-administration of cocaine 
reduces the internalization of neuronal exosomes, particu-
larly by astrocytes in the nucleus accumbens, but not in the 
motor cortex [51]. In order to capture a comprehensive pic-
ture using an in vivo model in which sex-differences can 
also be explored, we examined microvesicles and exosomes 
in the brain extracellular space. Similar to our endosomal 
findings, cocaine did not affect the level of EVs in the brain 
extracellular space of female mice. However, cocaine treat-
ment reduced the level of exosomes in the brain of male 
mice. Again, ovariectomized females resembled males in 
the brain exosome response to cocaine injection.

Thus, our data suggest that hormonal regulation of the 
endosomal-exosomal pathways may be one mechanism 
responsible for the sexually dimorphic responses to cocaine. 
Given the sex-effects on chronic cocaine exposure described 
above, it is striking that brain endosomal and exosome 
responses to cocaine are similarly sex-dependent. While this 
may be correlative, many lines of research would suggest 
that changes within the endosomal system might contribute 
to effects induced by chronic cocaine exposure [7–9, 52–54].

Interdependence between the endosomal and exosomal 
systems were previously shown to occur in an age-dependent 
manner. A dysfunctional endosomal pathway and abnor-
mally enlarged early and late endosomes in neurons are an 
early characteristic of Down syndrome and in the trisomy 
mouse model Ts[Rb(12.1716)]2Cje [21, 55]. An age-depend-
ent increase in exosome levels was found in the brain extra-
cellular space of 12-month-old Ts2 mice as compared to 
diploid littermates, but not in younger, 3- and 8-month-old 
mice, suggesting a compensatory role for exosomes in the 
regulation of endosomal function in Down syndrome [20]. 
In human post-mortem tissue and mouse models humanized 
for apolipoprotein E, apolipoprotein E4, the greatest genetic 
risk factor for Alzheimer’s disease, drives an age-dependent 
lowering of the exosome levels in the brain extracellular 
space. While not present at 6 months of age, it is detectable 

at 12 months in apolipoprotein E4 murine carriers. This 
reduction in brain exosome levels occurs earlier than endo-
somal changes that initiate at 18 months of age, arguing that 
an apolipoprotein E4-driven failure in exosome production 
plays a primary role in endosomal and lysosomal deficits 
that occur in apolipoprotein E4 mouse and human brains 
[15]. Here we report for the first time a change in both the 
endosomal and exosomal systems upon cocaine administra-
tion, occurring together in a short period of time in young 
mice.

The Role of α‑Synuclein Transfer in Extracellular 
Vesicles

Multiple studies have shown the association of α-synuclein 
with EVs and the transfer of the protein between cells via 
EVs [56, 57]. It was also demonstrated that neuroblastoma 
cell-derived EVs containing α-synuclein induce cell death 
in neuronal cells [58]. Inhibition of lysosomal function in 
α-synuclein overexpressing neural cell lines increased exo-
somal secretion of α-synuclein and promoted cell-to-cell 
transfer of the protein [56]. Furthermore, blockage of mac-
roautophagy increased exosomal secretion of α-synuclein 
[59].

We found that more α-synuclein is incorporated into 
exosomes in female mice upon cocaine administration, while 
no effect was found in the EVs isolated from treated male 
mice. These findings reveal that recruitment of α-synuclein 
is sex specific and incorporation of α-synuclein may provide 
a novel mechanism for the heightened cocaine cravings and 
sensitivity of females as compared with males.

Conclusion

In sum, we found that the number of EVs released into the 
brain extracellular space of male mice is reduced follow-
ing cocaine administration (Fig. 8). While the number of 
EVs released in the brain of female mice is not affected by 
cocaine, the secreted exosomes contain larger amount of 
α-synuclein (Fig. 8). We hypothesize that higher content of 
α-synuclein in exosomes causes higher level of uptake of 
the protein by naïve cells, potentially propagating cocaine-
induced abnormalities throughout the brain. Our findings 
that females secrete larger amounts of α-synuclein through 
exosomes than males suggest a mechanism for the higher 
susceptibility of females to cocaine abuse.
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