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Abstract
As the elderly population rapidly increases worldwide, the onset of cognitive dysfunction is expected to increase. Although 
neuronal plasticity, neurogenesis, and mitochondrial dysfunction have been reported to be involved in cognitive function, 
the detailed mechanism of cognitive impairment accompanied by aging is poorly understood as there are many confounding 
factors associated with aging. Therefore, effective treatments for aging have not yet been developed, and the establishment 
of therapeutic strategies has not progressed accordingly. We have previously found a decline of cognitive function in the 
developmental stage in mice who lack the expression of Shati/Nat8l, an N-acetyl transferase However, the contribution of 
Shati/Nat8l to cognitive impairment in aged mice has not yet been investigated. In this study, we aimed to investigate the role 
of Shati/Nat8l in cognitive function during aging. We observed a reduction in Shati/Nat8l mRNA expression in the dorsal 
hippocampus of mice as a result of their aging. Moreover, the cognitive dysfunction observed in aged mice was reversed by 
Shati/Nat8l overexpression in the dorsal hippocampus. Shati/Nat8l overexpression in the dorsal hippocampus of mice did 
not alter the expression of neurotrophic factors or mitochondrial function-related genes, including Bdnf or Pgc-1α, which 
are suggested to be downstream genes of Shati/Nat8l. Decreased N-acetyl aspartate (NAA) in aged mice was upregulated by 
Shati/Nat8l overexpression, suggesting that the Shati/Nat8l-NAA pathway determines cognitive function with aging. Taken 
together, Shati/Nat8l and NAA in the dorsal hippocampus may be novel targets for the treatment of cognitive impairment.
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Introduction

In recent decades, improvements in healthcare have 
increased life expectancy, thereby rapidly increasing the 
aging population worldwide [1]. Aging is characterized by 
the impairment of neuronal and motor functions in humans 
[2] and is a major risk factor for the development of neu-
rodegenerative diseases, including Alzheimer’s disease 
and Parkinson’s disease [3, 4]. Although deficits in motor 

performance are among the more severe symptoms induced 
by aging, a decline in cognitive function is more common, 
thereby influencing life activities in several domains (mem-
ory, learning, comprehension, and judgment) in elderly 
humans [5]. In 2015, approximately 47 million people devel-
oped dementia, which is defined as aging-induced impair-
ment of cognitive function, and this number is estimated 
to exceed 131 million by 2050 [6]. Owing to the many risk 
factors associated with aging, the mechanisms underlying 
aging-induced cognitive dysfunction are poorly understood; 
thus, effective treatments have not been established till date. 
Therefore, the discovery of novel anti-aging targets and strat-
egies for medical treatment is desired accordingly. Under-
standing the underlying regulatory mechanisms of the aging 
process in the central nervous system could offer insights 
into the neuropathogenesis of aging-induced dysfunctions, 
including cognitive decline, resulting in more effective and 
promising approaches for treatment in humans.

As mentioned above, cognitive impairment is one of the 
most common dysfunctions accompanied by aging [7, 8]. 
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The hippocampus is widely involved in brain networks sup-
porting cognitive functions, including encoding, consolida-
tion, and retrieval of memory, and it determines episodic 
memory, pattern discrimination, novelty detection, spatial 
navigation, and binding between spatially and temporally 
distributed representations [9, 10]. A decreased hippocam-
pal volume has been observed in aged humans without any 
disease [11, 12]. Golomb et al. also reported a correlation 
between reduction in hippocampal volume and cognitive 
impairment in aged humans [13]. Several theories have been 
proposed in cognitive impairment related to changes in the 
hippocampus, suggesting decline in neuronal plasticity and 
neurogenesis, neuronal death, and mitochondrial dysfunc-
tion as plausible explanations [14–16].

We previously identified Shati/Nat8l, an N-acetyl trans-
ferase, in the brains of mice exposed to repeated meth-
amphetamine administration [17]. Shati/Nat8l is involved 
in the reward system [18], depression [19], and the stress 
response [20]. In addition, Shati/Nat8l in the hippocampus 
is involved in cognitive, learning, and memory functions 
[21], and Shati/Nat8l knockout mice show cognitive impair-
ment [22]. The expression of Shati/Nat8l, which we focused 
on in this study, increased in the whole brain following the 
maturation of mice from day 15 to 56 after birth [22]. All 
these studies have reported the contribution of Shati/Nat8l in 
the developmental stages of mice. However, the function of 
Shati/Nat8l in aged mice has not yet been investigated. Con-
sidering that hippocampal Shati/Nat8l regulates cognitive 
function in the juvenile to maturation period, it could also 
play a role in cognitive impairment associated with aging.

To investigate the mechanisms underlying aging-induced 
cognitive-behavioral alterations involving Shati/Nat8l 
expression in the dorsal hippocampus, we injected Shati/
Nat8l cDNA-encoding adeno-associated virus (AAV) vec-
tors into mice to induce Shati/Nat8l overexpression. Our 
results revealed that Shati/Nat8l overexpression in the dor-
sal hippocampus suppressed the decline in cognitive func-
tion following aging, which suggests that N-acetyl aspartate 
(NAA) regulated by Shati/Nat8l in the dorsal hippocampus 
is involved in pathogenesis. To the best of our knowledge, 
this study is the first to report a relationship between Shati/
Nat8l and aging.

Methods

Animals and Environments

Male C57Bl/6 J mice at 8 weeks of age (Nihon SLC, Hama-
matsu, Japan) and at 78 weeks of age (Nihon Charles River 
Laboratories, Kanagawa, Japan) were used in this study. All 
mice were housed in a regulated environment (temperature: 
25 ± 1 °C, humidity: 50 ± 5%) with a 12-h light/dark cycle 

(lights were turned on at 7:00 am) and ad libitum access to 
food and water.

Production and Microinjection of AAV Vectors

The production and microinjection of AAV vectors were 
performed as reported previously [23, 24]. Briefly, an 
expression cassette that included the CMV promoter and 
cDNA-encoding or non-encoding Shati/Nat8l sequence was 
contained in the AAV-Shati/Nat8l and AAV-Mock vectors, 
respectively. After anesthetizing the mice with a combina-
tion of anesthetics (medetomidine [0.3 mg/kg], midazolam 
[4.0 mg/kg], and butorphanol [5.0 mg/kg]), the AAV-Shati/
Nat8l or Mock vectors (1 × 1010–1012 units) were injected 
into their bilateral dorsal hippocampi (AP − 1.6  mm; 
ML ± 1.0 mm; DV 1.5 mm) using the mouse brain atlas [25]. 
Mice were used for the experiments 4 weeks after micro-
injection. This study was performed with permission from 
the Board of Safety Committee for Recombination DNA 
Experiments of the University of Toyama (G2020PHA-5).

Real‑time RT‑PCR Analysis

RT-PCR assays were performed as described previously 
[26]. Briefly, tissue sections were collected using mouse 
brain matrix (Brain Science Idea, Osaka, Japan). Total RNA 
was extracted and converted to cDNA using the Prime Script 
RT reagent kit (Takara, Otsu, Japan). The mRNA levels were 
quantified using the Thermal Cycler Dice Real-Time Sys-
tem (Takara) with Thunderbird SYBR qPCR Mix (Toyobo, 
Osaka, Japan). 36B4 was used as an internal control. The 
primer sequences used were designed using Primer BLAST 
as follows:

Shati/Nat8l (NM_001001985.3):
forward, 5′- GTG​ATT​CTG​GCC​TAC​CTG​GA-3′;
reverse, 5′-CCA​CTG​TGT​TGT​CCT​CCT​CA-3′;
Bdnf2 (NM_001048139.1):
forward, 5′-CCA​TCC​ACA​CGT​GAC​AAA​AC-3′;
reverse, 5′-GGT​GCT​GAA​TGG​ACT​CTG​CT-3′;
Bdnf6 (NM_001048142.1):
forward, 5′-GAC​CAG​AAG​CGT​GAC​AAC​AA-3′;
reverse, 5′-AGG​GTC​CAC​ACA​AAG​CTC​TC-3′;
Ngf (NM_013609.3):
forward, 5′-TGT​GCC​TCA​AGC​CAG​TGA​AA -3′;
reverse, 5′-CAC​TGA​GGT​GAG​CTT​GGG​TC-3′;
Nt-3 (NM_001164034.1):
forward, 5′-GGC​GAG​ACT​GAA​TGA​CCG​AA-3′;
reverse, 5′-TGG​ACA​TCA​CCT​TGT​TCA​CCT-3′;
Ppargc1a (NM_008904.2):
forward, 5′-CCC​CAA​GGG​TTC​CCC​ATT​TGA-3′;
reverse, 5′-TGA​AAG​GGT​TAT​CTT​GGT​TGGCT-3′;
Tfam (NM_009360.4):
forward, 5′-TGT​TTT​TCC​AGC​ATG​GGT​AGC-3′;



2705Neurochemical Research (2022) 47:2703–2714	

1 3

reverse, 5′-CCA​CAG​GGC​TGC​AAT​TTT​CC-3′;
36B4 (NM_0087475.5):
forward, 5′- ACC​CTG​AAG​TGC​TCG​ACA​TC-3′;
reverse, 5′- AGG​AAG​GCC​TTG​ACC​TTT​TC-3′.

Behavioral Tests

Locomotor Activity Test

Locomotor activity tests were performed as described 
previously [27]. Mice were placed in a Plexiglas box 
(40 × 40 × 30 cm), and their locomotion was measured using 
the SCANET MV-40AQ (MELQUEST, Toyama, Japan) for 
60 min.

Y‑Maze Test

The Y-maze test was performed as described in previous 
study [28]. The alteration ratio was defined as follows: (num-
ber of alternations) / (total number of arm entries—2) × 100.

Novel Object Recognition Test

The novel object recognition test was performed as 
described previously [28]. Three days after habituation, the 
mice were allowed to explore two objects (A and B) in a 
Plexiglas box (30 × 30 × 35 cm) for 10 min as a familiar pro-
cess (pre-test). Twenty-four hours after the pre-test, familiar 
objects A and novel object C were set in the box, and the 
mice were allowed to explore the two objects (A and C) in a 
Plexiglas box for 10 min as a novel process (post-test). The 
exploratory preference percentage was defined as follows: 
(approach time to object B or C)/(approach time to object B 
or C + approach time to object B or C) × 100.

Measurement of NAA 
and N‑acetyl‑aspartyl‑glutamate (NAAG)

The measurement of NAA and NAAG by HPLC was per-
formed as described previously [29]. A homogenized sample 
solution containing perchloric acid for HPLC was applied to 
Bond Elut SAX anion exchange columns (Agilent Technolo-
gies, Santa Clara, CA, USA), followed by extraction with 
phosphoric acid (85%). The samples were injected into an 
HPLC system (LC-2010CHT, Shimadzu, Japan) and ana-
lyzed using LC solution software (Shimadzu Corporation, 
Kyoto, Japan).

Statistical Analysis

All data are presented as mean ± standard error of the mean. 
Data were analyzed using Prism version 5. The Student’s 
t-test was performed to analyze the data between the two 
groups. One-way analysis of variance (ANOVA) followed 
by Bonferroni's post hoc test was performed to analyze the 
data between multiple groups. Two-way analysis of variance 
(ANOVA) followed by Bonferroni’s post hoc test was per-
formed to analyze the data between the two factors.

Results

Alteration of Shati/Nat8l Expression in the Brain 
with Aging

Shati/Nat8l mRNA levels were assessed in various regions 
of the mouse brain at 12, 26, and 78 weeks of age. Shati/
Nat8l in the medial prefrontal cortex (mPFC) [30] and hip-
pocampus [21] regulates memory, and the control of social 
interaction behaviors by Shati/Nat8l in the dorsal striatum 
has been reported previously [31]. Therefore, the role of 
Shati/Nat8l in these regions related to cognitive function 
was focused on and investigated. Shati/Nat8l mRNA levels 
in the dorsal hippocampus were lower in 78-week-old mice 
than in 12-week-old mice (Fig. 1a) (F2,12 = 5.019, p = 0.026; 
one-way ANOVA). However, Shati/Nat8l mRNA levels in 
the ventral hippocampus, mPFC, and dorsal striatum did not 
significantly change with age (Fig. 1b–d). These results sug-
gest that Shati/Nat8l in the dorsal hippocampus is involved 
in the age-related decline in cognitive function.

Shati/Nat8l Overexpression in the Dorsal 
Hippocampus Reversed the Cognitive Impairment 
in Aged Mice

We generated Shati/Nat8l overexpression in the dorsal 
hippocampus of mice (dHIP-Shati mice) by microin-
jection of AAV-Shati/Nat8l [18, 26, 27, 29] in young 
(8-week-old) and old (78-week-old) mice. We also 
microinjected AAV-Mock into the dorsal hippocampus 
as a control (dHIP-Mock mice). A significant increase in 
Shati/Nat8l mRNA levels in the dorsal hippocampus was 
confirmed in dHIP-Shati mice compared to that in mock 
mice (Fig. 2a) (t10 = 3.754, p = 0.004; Student’s t-test). 
A series of behavioral tests to assess cognitive func-
tion, including the Y-maze and novel object recognition 
tests, was performed using these mice according to their 
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schedules (Fig. 2b). First, we measured the locomotor 
activity of these mice as the effect of microinjection on 
motor activity in the behavioral test had to be considered. 
The locomotor activity test confirmed that microinjection 
did not influence motor function between young dHIP-
Mock and -Shati mice or old dHIP-Mock and -Shati mice 
(Fig. 2c) (main effect of virus: F1,20 = 2.549, p = 0.1260; 
main effect of aging: F1,20 = 22.77, p = 0.0001; interac-
tion effect: F1,20 = 0.774, p = 0.3894; two-way ANOVA). 
Although Shati/Nat8l in the dorsal hippocampus did not 
affect working memory in the Y-maze test (Fig. 2d), long-
term memory in the novel object recognition test yielded 
different results. As shown in Fig. 2e, while there was no 
difference in exploratory preference among the mice in 
the pre-test, the impaired cognitive function exhibited in 
old dHIP-Mock mice was not observed in old dHIP-Shati 
mice in the post-test (main effect of virus: F1,20 = 0.458, 
p = 0.507; main effect of aging: F1,20 = 15.86, p = 0.0007; 
interaction effect: F1,20 = 23.66, p < 0.0001; two-way 
ANOVA). Therefore, it can be concluded that Shati/Nat8l 
in the dorsal hippocampus suppresses aging-induced cog-
nitive impairment.

Shati/Nat8l in the Dorsal Hippocampus Did Not 
Affect the Expression of Neurotrophic Factors 
and Mitochondrial Function

Expression of various neurotrophic factors changes in the 
aged brain, contributing to cognitive dysfunction mediated 
by synaptic plasticity and neurogenesis [32, 33]. Brain-
derived neurotrophic factor (BDNF) is involved in cogni-
tive function [34, 35], and decreased BDNF expression is 
observed in aged individuals with cognitive decline [36]. 
Furthermore, BDNF upregulation in the brain prevents the 
onset of cognitive impairment [37]. Shati/Nat8l conditional 
knockout mice showed decreased Bdnf mRNA and protein 
levels [31], suggesting that overexpression of Shati/Nat8l 
upregulates BDNF expression. Bdnf has various promoters, 
and it is specifically regulated by different stimuli, followed 
by the production of multiple variants [38]. Bdnf II and VI, 
but not the others, are the most well-characterized Bdnf tran-
scripts in aging, and their levels are decreased in aged brains 
[39]. We confirmed a decrease in Bdnf II and VI mRNA lev-
els in the dorsal hippocampus of old dHIP-Mock mice com-
pared with those in young dHIP-Mock mice, whereas the 
mRNA levels in the dorsal hippocampus were not changed 
by Shati/Nat8l overexpression in aged mice (Fig. 3a, b) 

Fig. 1   Shati/Nat8l in the dorsal hippocampus, but not in other 
regions, decreased with aging; (a–d) Shati/Nat8l mRNA levels were 
measured in the dorsal hippocampus (dHIP) (a), ventral hippocampus 
(vHIP) (b), mPFC (c), and dorsal striatum (dSTR) (d). A significant 
reduction of Shati/Nat8l mRNA levels in the dorsal hippocampus was 
observed in 78-week-old mice (F2,12 = 5.019, p = 0.026). Dorsal hip-

pocampus: 12  weeks, n = 5; 26  weeks, n = 6; 78  weeks, n = 4; ven-
tral hippocampus: 12 weeks, n = 6; 26 weeks, n = 5; 78 weeks, n = 6; 
mPFC: 12 weeks, n = 6; 26 weeks, n = 5; 78 weeks, n = 6; dorsal stria-
tum: 12 weeks, n = 5; 26 weeks, n = 6; 78 weeks, n = 6; *p < 0.05 vs 
12-week-old mice (one-way ANOVA with Bonferroni post hoc tests)
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(Bdnf II: F2,14 = 3.226, p = 0.0704, Bdnf VI: F2,15 = 5.824, 
p = 0.0134; one-way ANOVA). Other neurotrophic factors, 
Ngf and Nt-3, also suggest the involvement of cognitive 
function in promoting the neurogenesis-mediated choliner-
gic system or interaction with BDNF, respectively [40, 41]. 
While Ngf and Nt-3 mRNA levels significantly decreased 
with age, there were no differences in Ngf and Nt-3 mRNA 
levels in the dorsal hippocampus of old dHIP-Shati mice 

compared to those of dHIP-Mock mice (Fig. 3c, d) (Ngf: 
F2,15 = 12.17, p = 0.0007, Nt-3: F2,15 = 6.396, p = 0.0098; 
one-way ANOVA).

Aging is also characterized by mitochondrial dysfunction 
[42, 43]. Reduction in mitochondria-related gene expres-
sion with aging contributes to decreased synaptic plastic-
ity, resulting in cognitive impairment [44]. The upregula-
tion of peroxisome proliferator-activated receptor-gamma 
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Fig. 2   Overexpression of Shati/Nat8l in the dorsal hippocampus 
suppressed the decline in cognitive function in aged mice; a Shati/
Nat8l mRNA levels in the dorsal hippocampus increased in the dHIP-
Shati mice compared with those in the dHIP-Mock mice (t10 = 3.754, 
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dHIP-Mock, n = 5; Old dHIP-Shati, n = 7 (two-way ANOVA with 
Bonferroni post hoc tests). d There were no differences in working 

memory in the Y-maze test. Young dHIP-Mock, n = 6; Young dHIP-
Shati, n = 6; Old dHIP-Mock, n = 5; Old dHIP-Shati, n = 7 (two-way 
ANOVA with Bonferroni post hoc tests). e Old dHIP-Mock mice 
showed the cognitive impairment compared with Young dHIP-Mock 
mice. Old dHIP-Shati mice did not show the cognitive impairment 
(main effect of virus: F1,20 = 0.458, p = 0.507; main effect of aging: 
F1,20 = 15.86, p = 0.0007; interaction effect: F1,20 = 23.66, p < 0.0001). 
Young dHIP-Mock, n = 6; Young dHIP-Shati, n = 6; Old dHIP-Mock, 
n = 5; Old dHIP-Shati, n = 7; ***p < 0.005 vs Old dHIP-Mock; 
###p < 0.005 vs Old dHIP-Shati (two-way ANOVA with Bonferroni 
post hoc tests)
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coactivator-alpha (PGC-1α) by Shati/Na8l overexpression 
in brown adipocytes has been reported previously [45]. 
PGC-1α mediates the upregulation of mitochondrial bio-
synthesis via the regulation of mitochondrial transcription 
factor A (TFAM) expression [46]. However, decreased 

Ppargc1a and Tfam mRNA levels in the dorsal hippocam-
pus with aging did not recover in dHIP-Shati mice (Fig. 4a, 
b) (Ppargc1a: F2,15 = 7.073, p = 0.0069, Tfam: F2,13 = 4.572, 
p = 0.0314; one-way ANOVA).
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were measured. Decreased expression of Ppargc1a and Tfam mRNA 
with aging were not elevated by over expression of Shati/Nat8l in 

the dorsal hippocampus (Ppargc1a: F2,15 = 7.073, p = 0.0069; Tfam: 
F2,13 = 4.572, p = 0.0314). Pgc-1α: Young dHIP-Mock, n = 6; Old 
dHIP-Mock, n = 5; Old dHIP-Shati, n = 7, Tfam: Young dHIP-Mock, 
n = 6; Old dHIP-Mock, n = 4; Old dHIP-Shati, n = 7; *p < 0.05 vs Old 
dHIP-Mock (one-way ANOVA with Bonferroni post hoc tests)
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Shati/Nat8l Overexpression in the Dorsal 
Hippocampus Increased NAA

Shati/Nat8l is an N-acetyl transferase responsible for the 
synthesis of NAA from acetyl-coenzyme A and aspartate 
[47]. NAA is then converted to NAAG, which functions as 
a highly selective agonist of the metabotropic glutamate type 
3 receptor [48]. Considering that NAA levels decrease in the 
brains of patients with cognitive impairment [49], the NAA 
and NAAG levels in the dorsal hippocampus were measured. 
Decreasing NAA content in the dorsal hippocampus of old 
dHIP-Mock mice compared with that of young dHIP-Mock 
mice was recovered by Shati/Nat8l overexpression in the 
dorsal hippocampus of aged mice (Fig. 5a) (F2,15 = 13.72, 
p = 0.0004; one-way ANOVA). In contrast, aging or Shati/
Nat8l overexpression did not alter the NAAG content in the 
dorsal hippocampus (Fig. 5b), suggesting that NAA, but 
not NAAG, in the dorsal hippocampus suppressed cogni-
tive impairment with aging.

Discussion

In this study, we found evidence that aging is accompanied 
by a decrease in Shati/Nat8l levels in the dorsal hippocam-
pus. Mice overexpressing dHIP-Shati/Nat8l were generated 
to investigate the role of Shati/Nat8l in cognitive function 
during aging. Shati/Nat8l overexpression in the dorsal hip-
pocampus prevents cognitive impairment in old mice. To 
reveal the underlying mechanisms of the regulation of cog-
nitive ability by Shati/Nat8l in the dorsal hippocampus, we 
also investigated the cognitive function-related genes down-
stream of Shati/Nat8l, including BDNF, PGC-1α, and NAA. 
Our results demonstrate that decline in NAA levels with 

aging is upregulated by Shati/Nat8l overexpression in the 
dorsal hippocampus, suggesting its involvement in aging-
induced cognitive function.

The hippocampus strongly contributes to cognitive func-
tion including memory formation [50, 51]. Some studies 
have shown that mice with lesions of the dorsal hippocam-
pus induced by microinjection of colchicine have impaired 
the long-term object recognition [52]. Another study using 
the DREADD system reported that chemogenetic inactiva-
tion of excitatory neurons in the dorsal hippocampus dis-
rupts object recognition memory [53]. Structural altera-
tions in the CNS, especially in the dorsal hippocampus, are 
observed in aged individuals with cognitive impairment, 
even in the absence of neurodegenerative diseases [54, 55]. 
There are many reports that the volume of the hippocampus, 
including the dorsal hippocampus, decreases with age, even 
in the absence of any illnesses [12, 56]. A separate analysis 
of the dorsal and ventral hippocampus using manganese-
enhanced magnetic resonance imaging showed a significant 
correlation between the volume of the dorsal hippocampus 
and cognitive dysfunction in aging; however, no such dif-
ferences were observed in the ventral hippocampus [57]. 
This finding is consistent with our results, which showed 
that Shati/Nat8l mRNA levels were altered in the dorsal hip-
pocampus, but not in the ventral hippocampus, with aging 
(Fig. 1a, b). We had previously reported that phosphoryla-
tion of cAMP response element-binding protein (CREB) 
induced Shati/Nat8l expression, suggesting that altered 
Shati/Nat8l levels are dependent on CREB activity [58]. The 
total CREB protein and phosphorylated CREB levels in the 
dorsal hippocampus decreased in aged mice [59, 60], and 
the cognitive impairment observed in aged mice was ame-
liorated by CREB overexpression in the dorsal hippocampus 
[61]. Considering the contribution of CREB in the dorsal 
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Fig. 5   Overexpression of Shati/Nat8l increased NAA contents in 
the dorsal hippocampus; a NAA contents in the dorsal hippocam-
pus decreased with aging. Reduction of NAA contents with aging 
increased in old dHIP-Shati mice (F2,15 = 13.72, p = 0.0004; one-way 
ANOVA). Young dHIP-Mock, n = 6; Old dHIP-Mock, n = 5; Old 

dHIP-Shati, n = 7; **p < 0.001 vs Old dHIP-Mock; ###p < 0.005 vs 
Old dHIP-Shati (one-way ANOVA with Bonferroni post hoc tests). b 
There were no differences in NAAG contents in the dorsal hippocam-
pus. Young dHIP-Mock, n = 6; Old dHIP-Mock, n = 5; Old dHIP-
Shati, n = 7 (one-way ANOVA with Bonferroni post hoc tests)



2710	 Neurochemical Research (2022) 47:2703–2714

1 3

hippocampus to cognitive decline in aged mice, CREB 
activity might explain the brain-specific downregulation of 
Shati/Nat8l levels following aging. We also reported that 
Shati/Nat8l in the mPFC is involved in cognitive function 
[30]. However, no significant changes in Shati/Nat8l mRNA 
levels were observed in the mPFC (Fig. 1c). Notably, our 
results are in agreement with those of previous reports. In 
the present study, we investigated the role of Shati/Nat8l in 
age-related cognitive impairments. Both Shati/Nat8l in the 
dorsal hippocampus and mPFC regulate cognitive function 
via different mechanisms, and the Shati/Nat8l pathway in 
the dorsal hippocampus is thought to mediate aging-induced 
cognitive impairment.

As mentioned above, cognitive impairment associated 
with aging is strongly related to neurogenesis and mitochon-
drial dysfunction [14–16]. In particular, the involvement of 
BDNF in the brain has been reported [34–37]. BDNF in 
the dorsal hippocampus plays an important role in neuronal 
plasticity and in the regulation of cognitive memory [62]. 
Shati/Nat8l in the dorsal striatum regulates BDNF expres-
sion via epigenetic regulation of histone acetylation [31]. 
As shown in Fig. 3a and b, the expression of Bdnf II and VI 
mRNA, which are transcripts characterized by aging [39], in 
the dorsal hippocampus are not changed in dHIP-Shati mice. 
In the mPFC, BDNF is reportedly not dominantly regulated 
by Shati/Nat8l [31]. BDNF expression in the dorsal hip-
pocampus is also controlled by other relational mechanisms, 
including histone and DNA methylation [63, 64], suggesting 
that Shati/Nat8l in the dorsal hippocampus hardly contrib-
utes to BDNF expression in the dorsal hippocampus as with 
in mPFC. Mitochondrial dysfunction has also been observed 
during aging [65]. Mitochondrial function-related genes, 
including PGC-1α and TFAM, are downregulated in the 
aging brains of mice [44]. TFAM expression is regulated by 
PGC-1α and it contributes to mitochondria biogenesis [46]. 
As Shati/Nat8l overexpression induces the upregulation of 
PGC-1α in brown adipocytes [45], these two genes were 
investigated. However, Ppargc1a and Tfam mRNA levels 
were not altered by the overexpression of Shati/Nat8l in the 
dorsal hippocampus (Fig. 4a, b), and our results are not con-
sistent with those of previous studies. Shati/Nat8l has been 
reported to exist mainly in neuronal cells [66]. Differences 
in cell types may explain this contradiction.

NAA is synthesized by Shati/Nat8l, which converts it 
into NAAG [47, 48]. We demonstrated that the NAA con-
tent increased in dHIP-Shati mice (Fig. 5b), whereas the 
NAAG contents were not changed by Shati/Nat8l over-
expression (Figs. 5b). NAAG is metabolized to NAA and 
glutamate by glutamate carboxypeptidase II (GCPII) [67]. 
Previous reports have shown that Shati/Nat8l overexpres-
sion increases GCPII levels [27]. Therefore, the activation 
of NAAG metabolism by Shati/Nat8l induced-GCPII over-
expression may induce no alteration in the NAAG content, 

even though Shati/Nat8l is overexpressed in these mice. 
NAA levels have been reported to decrease in the aging 
brain [68], which is consistent with the decrease in Shati/
Nat8l levels with age. Patients with aging-induced Alzhei-
mer’s disease also showed decreased NAA levels [49]. These 
reports and our results suggest that NAA regulates cognitive 
functions. One possible mechanism for the restoration of 
cognitive impairment by NAA is the enhancement of myeli-
nation. Dysfunction of myelination, which is a consequence 
of aging [69], contributes to cognitive impairment [70]. 
Indeed, several studies using diffusion tensor imaging indi-
cate a linear decline in myelination from young adulthood 
to older age [71, 72]. Aged rodents also show decreased 
myelin basic protein in the hippocampus compared to 
young individuals, resulting in myelin degeneration [73]. 
NAA is transported to oligoadenylate and, then converted 
to aspartate and acetate by aspartoacylase, where acetate 
is converted to acetyl-coenzyme A, which is then utilized 
for myelination [74]. We previously reported that juvenile 
genetic Shati/Nat8l-knockout mice showed dysfunction of 
myelination, which was normalized by GTA treatment for 
supplementation with acetate [22]. These results suggest that 
the Shati/Nat8l-NAA pathway may control myelination in 
aged mice. Another possible explanation is that Shati/Nat8l 
affects autophagy. Genome-wide analysis demonstrated a 
transcriptional decline in autophagy following aging in the 
human brain [75], suggesting that age-related decreases in 
autophagic activity result in age-dependent impairment [76]. 
Furthermore, the downregulation of autophagy in the hip-
pocampus has been observed in aged mice [77], and induc-
ing autophagy reverses age-related memory impairment by 
controlling neuronal plasticity [78]. Transcription factor 
EB is known to activate autophagy [79], and its expression 
is elevated by the activation of the NAA pathways [80]. 
Increased Shati/Nat8l levels in the dorsal hippocampus, fol-
lowed by activation of the NAA pathway might be an under-
lying mechanism of cognitive function. These possibilities 
should be considered when elucidating the pathogenesis of 
age-related cognitive dysfunctions.

In conclusion, our results demonstrate that Shati/Nat8l in 
the dorsal hippocampus determines aging-dependent cogni-
tive function. To the best of our knowledge, this is the first 
report on the role of Shati/Nat8l in aged mice. Although the 
detailed mechanisms underlying this regulatory ability of 
Shati/Nat8l must be clarified in future studies, the present 
results further indicate that Shati/Nat8l and NAA in the dor-
sal hippocampus should be considered as potential novel 
targets for therapy of cognitive dysfunction with aging.
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