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Abstract
Environmental enrichment induces behavioral and structural modifications in rodents and influences the capability of mice 
to cope with stress. However, little is understood about hippocampal neurogenesis and the appearance of social/agonistic 
(aggressive) behavior upon activation of different neuronal circuits in FVB/N mice. Thus, in this study we hypothesized 
that environmental enrichment differentially regulates neurogenesis, neural circuit activation and social/agonistic behavior 
in male and female FVB/N mice. We explored the (1) neurogenic process as an indicative of neuroplasticity, (2) neuronal 
activation in the limbic system, and (3) social behavior using the resident-intruder test. On postnatal day 23 (PD23), mice 
were assigned to one of two groups: Standard Housing or Environmental Enrichment. At PD53, rodents underwent the 
resident-intruder test to evaluate social behaviors. Results revealed that environmental enrichment increased neurogenesis and 
social interaction in females. In males, environmental enrichment increased neurogenesis and agonistic behavior. Enriched 
male mice expressed higher levels of agonistic-related behavior than female mice housed under the same conditions. Neural 
circuit analysis showed lower activation in the amygdala of enriched males and higher activation in enriched females than 
their respective controls. Enriched females also showed higher activation in the frontal cortex without differences in male 
groups. Moreover, the insular cortex was less activated in females than in males. Thus, our results indicate that environmental 
enrichment has different effects on neuroplasticity and social/agonistic behavior in FVB/N mice, suggesting the relevance 
of sexual dimorphism in response to environmental stimuli.

Keywords  Environmental enrichment · Neurogenesis · Hippocampus · Social behavior · Agonistic behavior · Neuronal 
activation · FVB/N mice · Adolescence

Introduction

Environmental enrichment is a paradigm providing social, 
cognitive, and physical stimuli to rodents [1]. It induces 
structural alterations in the brain and behavioral modifica-
tions [1]. Regardless of the exposure time, environmental 
enrichment increases cortical thickness, dendrite maturation, 
the establishment and maturation of dendritic spines, and 
neurogenesis in the dentate gyrus (DG) [2–7]. This paradigm 
also induces neurochemical changes such as increased levels 
of brain-derived neurotrophic factor and vascular endothe-
lial growth factor, and modifications in neurotransmitters [1, 
4, 5]. Studies have proven that environmental enrichment 
favors social interaction and has a positive effect on learning 
and memory processes and mood-related behaviors [8–11] 
[6–13]. Despite the effects on social behavior, controversial 
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evidence indicates that the benefits of environmental enrich-
ment are influenced by mouse strain, age, or sex [14–24]. 
For instance, adult male 129S6/SvEv mice exhibited agonis-
tic social behavior (i.e., increased number of attacks to their 
conspecifics), which decreased after housing in environ-
mental enrichment [18]. Moreover, environmental enrich-
ment increased aggressive behavior in adult male CD-1 
mice but not in male Balb/C mice [14]. Further, adolescent 
male NMRI mice housed in environmental enrichment spent 
more time exhibiting agonistic behavior than mice housed 
in standard conditions [13]. These studies suggest that envi-
ronmental enrichment favors social behavior depending on 
the mouse strain [25, 26]. It is important to note, however, 
that most of these studies have been performed in male mice. 
Thus, further research is needed to understand the influence 
of enriched environments on social behavior in both male 
and female mice [13, 27], as well as the neuroplastic changes 
occurring in brain regions related to social behavior, such as 
the frontal cortex (FCx), the insular cortex (ICx), the amyg-
dala (Am), and the DG [28, 29].

In the present study, we analyzed the impact of envi-
ronmental enrichment on social behavior, the neurogenic 
process, and neuronal activation in the limbic system. We 
hypothesized that housing female and male FVB/N mice 
in an enriched environment increases neurogenesis in the 
DG and elicits different social behaviors concomitantly with 
the activation of the neuronal circuit of the limbic system. 
Neuronal circuit activation was mapped with the expression 
of immediate early genes (IEGs), such as the activity-reg-
ulated cytoskeletal-associated protein (Arc) [16, 30], after 
the behavioral test [31]. IEGs have a temporal expression 
induced in response to several stimuli [31, 32]. Here, we 
used male and female FVB/N mice. The basal neurogenesis 
of this inbred strain is similar to that of Balb/C and 129/SvJ 
mice but lower to that of C57/BL/6 mice [33].

Materials and Methods

Animals

Female and male GFAP-GFP transgenic FVB/N mice were 
used for this study and kindly donated by Professor Helmut 
Kettenmann (Max Delbrück Center for Molecular Medi-
cine, Berlin, Germany). They express the green fluorescent 
protein (GFP) under the control of human glial fibrillary 
acidic protein promoter (GFAP) [34]. Mice were housed 
in standard laboratory cages under a 12-h light/12-h dark 
cycle (light phase: ZT0 = 1900, dark phase: ZT12 = 0700) 
at a temperature of 23 ± 1 °C with free access to food and 
water. Animal use and handling procedures complied with 
the Mexican Official Standard for animal care (NOM-062-
ZOO-1999) and were approved by the local Institutional 
Ethics Committee of the National Institute of Psychiatry 
“Ramón de la Fuente Muñiz” (IACUC: CEI/C/009/2013). 
On postnatal day 23 (PD23), rodents were divided into two 
groups: (1) Standard Housing (SH) or (2) Environmental 
Enrichment. The animals were given a single dose of BrdU 
injected intraperitoneally (50 mg/Kg; Sigma) on PD37, and 
the behavioral test was performed on PD53.

Experimental Design

At PD23, an age that corresponds to the preadolescence 
period [35, 36], mice were randomly assigned to one of 
the following groups: (a) Standard Housing (For males: 
MSH, n = 7. For females: FSH, n = 7) or (b) Environmen-
tal Enrichment (For males: MEE, n = 6. For females: FEE, 
n = 8) (Fig. 1A, B). The enriched environment contained 
large boxes (34 × 44 × 20 cm) with running wheels and tun-
nels of different colors and shapes. Mice were placed in 

Fig. 1   Experimental design. 
FVB/N mice were exposed to 
enriched or standard housing to 
evaluate the effects of environ-
mental enrichment on aggres-
sion. Female and male FVB/N 
mice (N = 28) were housed in 
standard conditions (A) or envi-
ronmental enrichment (B) from 
preadolescence until late adoles-
cence (PD23-53). On PD37, 
mice received a single BrdU 
injection (50 mg/kg). Then, on 
PD53, rodents were exposed to 
the resident-intruder test
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the enriched environment or normal housing conditions for 
30 days, from PD23 to PD53. The complexity of the tun-
nels was modified every third day. Mice in standard condi-
tions were housed in cages of similar size to environmental 
enrichment cages (Fig. 1B).

Resident‑Intruder Paradigm

At the end of the environmental enrichment (PD53), an open 
field test was performed, followed by the resident-intruder 
test to evaluate social behaviors (Fig. 2A). Between 0700 
and 0800 h, mice were tested in a transparent Plexiglass box 
(L: 50 cm × l: 25 cm × H: 31 cm) in an experimental room 
and under red lighting (44 lx). Observations of enriched and 
control mice were alternated to minimize any possible influ-
ence of the time of exposure to the test. The floor of the cage 
was covered with clean sawdust. The camera was outside the 
plexiglass box, and all the recordings were done in a visual 
horizontal field for 5 min. Positive social behaviors (fol-
lowing, oral-anal sniffing and allogrooming) and agonistic 
(aggressive) behaviors (mounting and biting/fighting) were 
analyzed. Further, the number of behavioral events, the dura-
tion of the events, and the latency to the first occurrence of 
an event were quantified (Figs. 2, 3).

Histology

Two hours after the behavioral test, the animals were eutha-
nized and the brain was collected to analyze neurogenesis 
by evaluating markers that indicate cell proliferation and 
survival (Ki67, BrdU, respectively). Neuronal activation 
was analyzed by identifying the Arc protein. Brains were 
removed and fixed with 4% p-formaldehyde (PFA) in 0.1 M 
phosphate buffer (pH = 7.4) for five days before being sta-
bilized in phosphate buffer containing 30% sucrose. Serial 
coronal sections were cut at a thickness of 40 µm using a 
sliding microtome (Leica) and stored at 4 °C in a cryopro-
tective solution until required. Brain coronal sections were 
incubated with primary antibodies to detect Ki67 and BrdU, 
and the peroxidase DAB method was performed [37]. Posi-
tive cells were quantified in every 6th section from all ani-
mals. Ki67- or BrdU-positive cells were visualized using 
a 40× objective throughout the rostrocaudal axis. Counting 
was done as previously described using the modified opti-
cal dissector method under bright field light microscopy 
(Leica). The cells appearing in the uppermost focal plane 
were excluded to avoid over-sampling. The resulting num-
bers were multiplied by six to obtain the estimated total 
number of Ki67, BrdU-, and Arc-labeled cells per granule 
cell layer. Also, cellular activation was quantified with Arc 
detection in the DG, FCx, ICx, and Am. Arc-positive cells 
were quantified in the FCx (interaural 2.10 mm to 0.16 mm), 
DG (Bregma Bregma −1.34 to −3.20), ICx (Bregma 2.34 

to −0.94), and Am (Bregma −0.10 to −0.3.16) [38]. The 
antibodies used were rabbit anti-Ki67 (1:1000; Abcam), rat 
anti-BrdU (1:500; Accurate Chemical), or rabbit anti-Arc 
(1:1000; Santa Cruz Biotech). GFP expression in the DG 
was analyzed with a confocal microscope (LSM510 META, 
Zeiss) to identify GFAP + cells corresponding to radial glial 
cells (RGCs) or cells with horizontal projections to the DG. 
In this case, nuclei were stained with propidium iodide 
(Santa Cruz Biotech). In addition, newborn neurons were 
analyzed by identifying the co-labeling of BrdU (1:250; 
Accurate Chemical) with calbindin (1:500; Abcam) under a 
confocal microscope (LSM 510 META, Zeiss).

Statistical Analysis

Analyses were performed using Prism 5.0 (GraphPad). The 
results are presented as mean ± standard error of the mean 
(SEM). For comparisons between both groups, we used 
an unpaired Student t-test. For additional parameters, we 
performed a one-way ANOVA followed by the Bonferroni 
post-hoc test. When the normality test failed, we applied a 
non-parametric Kruskal–Wallis one-way ANOVA on ranks 
followed by the appropriate multiple comparison methods. 
In other cases, we performed a two-way ANOVA with the 
factors housing condition (factor A) and sex (factor B) fol-
lowed by the Bonferroni post-hoc test. To verify the effect 
size (ES), η2 was calculated. Values above 0.6 represent a 
high ES, values between 0.3 and 0.6 represent a moderate 
effect, and values < 0.3 represent a low effect. Additionally, 
a Pearson coefficient was performed to find a correlation 
between brain activation and behaviors. Differences were 
considered statistically significant at p ≤ 0.05.

Results

Effects of Environmental Enrichment on Social 
Behaviors in Female and Male Mice

We analyzed the behaviors that female and male FVB/N 
mice exhibited in the resident-intruder paradigm after hous-
ing them in standard conditions or enriched environments 
for 30 days (Fig. 2A, B). Behaviors were positive (follow-
ing, oral-anal sniffing and allogrooming; Fig. 2) or agonistic 
(mounting and biting/fighting; Fig. 3).

The number of events for following behavior showed 
the main effect caused by sex (F1,27 = 116.32, p < 0.001). 
The number of following events was higher in females than 
in males, regardless of the housing condition (p < 0.001; 
Fig.  2C1). However, the analysis of time spent in this 
behavior showed an interaction between housing (factor 
A) and sex (factor B; F1,27 = 12.98, p = 0.002; Fig. 2C2). 
Female mice spent more time exhibiting following behavior 
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Fig. 2   Social behaviors evaluated after environmental enrichment 
in FVB/N mice. Environmental enrichment (EE) or standard hous-
ing (SH) applied to female and male FVB/N mice. A, B Resident-
intruder paradigm representation. Individual rodents were placed in 
a plexiglass box with clean sawdust on the floor for ten minutes. Five 
minutes later, social behavior was manually filmed and analyzed. The 
groups of animals were females or males housed in standard condi-

tions (FSH or MSH) or environmental enrichment (FEE or MEE). 
(C1-E1) Events of positive behaviors, (C2-E2) time in every behav-
ior, (C3-E3) latency to the first event. n = 6–8; Significant differences 
are indicated with * for males versus females; % for housing; & for 
males or females housed in environmental enrichment versus males 
or females housed in standard conditions. Differences were consid-
ered statistically significant at p ≤ 0.05
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than males, regardless of the housing condition (p < 0.001, 
p < 0.001). When comparing between both groups of 
females, we found that females housed in standard condi-
tions spent more time expressing following behavior than 
enriched females (p < 0.001). Similar effects were seen in the 
latency to exhibit the first following event (Fig. 2C3). Post 
hoc analysis comparison after a two-way ANOVA (housing, 
factor A; sex, factor B; F1,27 = 59.74, p < 0.001) revealed a 
significant increase in latency to the first following event in 
enriched male mice compared with standard housing male 
mice (p < 0.001). Also, male mice showed increased latency 
to the first following event compared with female mice inde-
pendently of the pre-housing condition (SH, p = 0.038; EE, 
p < 0.001). The ES for following behavior was high for the 
number of following events, time spent exhibiting these 
events, and latency to the first event (η2 = 0.83, 0.67, and 
0.91, respectively).

The analysis of the number of oral-anal sniffing events 
showed the main effect caused by sex (F1,27 = 107.70, 
p < 0.001). Again, female mice displayed more oral-anal 
sniffing events than male mice (p < 0.001; Fig.  2D1). 
Regarding the time spent in this behavior (Fig. 2D2), 
the analysis showed main effects caused by hous-
ing (F1,27 = 7.72, p = 0.011) and sex (F1,27 = 195.86, 
p < 0.001). Mice housed in environmental enrichment 
spent more time oral-anal sniffing than mice pre-housed 
in standard conditions (p = 0.011), and female mice 
spent more time in this behavior (p < 0.001). However, 
the latency to the first oral-anal sniffing event (Fig. 2D3) 
showed the main effect caused by housing (F1,27 = 10.94, 
p = 0.003). Mice pre-housed in standard conditions showed 
higher latency to the first oral-anal sniffing event than 
enriched mice (p < 0.003) (Fig. 2D3). The ES for oral-
anal sniffing behavior was high for the number of events, 
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Fig. 3   Agonist behaviors evaluated after environmental enrichment 
in FVB/N mice. Environmental enrichment (EE) or standard hous-
ing (SH) applied to female and male FVB/N mice. A Mounting or 
B fights/bites were analyzed in the resident-intruder paradigm rep-
resentation. Individual rodents were placed in a plexiglass box with 
clean sawdust on the floor for ten minutes. Five minutes later, agonist 
behavior was manually filmed and analyzed. The groups of animals 

were females or males housed in standard conditions (FSH or MSH) 
or environmental enrichment (FEE or MEE). (A1-B1) Events of ago-
nistic behaviors, (A2-B2) time in every behavior, or (A3-B3) latency 
to the first event. n = 6–8; significant differences are indicated with * 
for males versus females; & for males or females housed in environ-
mental enrichment versus males or females housed in standard condi-
tions. Differences were considered statistically significant at p ≤ 0.05
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time spent in this behavior, and latency to the first event 
(η2 = 0.86, 0.79, and 0.36, respectively).

Analysis of the number of allogrooming events showed 
main effects caused by sex (F1,27 = 181.57, p < 0.001) and 
housing (F1,27 = 4.82, p = 0.038). Female mice exhibited 
more allogrooming events than male mice (p < 0.001). 
Also, enriched mice showed more allogrooming events than 
mice housed in standard conditions (p = 0.038; Fig. 2E1). 
However, post hoc analysis following a two-way ANOVA 
(housing, factor A; sex, factor B; F1,27 = 75.79, p < 0.001) 
revealed that enriched female mice spent significantly 
increased time in allogrooming than mice pre-housed in 
standard conditions (p < 0.001). Female mice also invested 
more time in this behavior than male mice independently of 
the pre-housing conditions (p < 0.001; Fig. 2E2). Besides, 
a similar two-way ANOVA interaction (housing, factor A; 
sex, factor B; F1,27 = 49.76, p < 0.001) showed a significant 
increase in the latency to exhibit the first allogrooming event 
in standard housing male mice compared with enriched male 
mice (p < 0.001, Fig. 2E3). Male mice pre-housed in stand-
ard conditions also showed increased latency to the first allo-
grooming event compared with female mice p < 0.001). The 
ES for allogrooming was high for number of allogrooming 
events and time spent in this behavior (η2 = 0.89 and 0.92, 
respectively), and moderate for the latency to the first event 
(η2 = 0.77).

Regarding the number of aggressive behavior events 
(mounting; Fig. 3A1, A2), we found that, independently 
of housing conditions, males did not present mounting 
behavior. Female mice pre-housed in standard conditions 
presented more mounting events than females housed in 
environmental enrichment (Fig. 3A1; t = 4.49, d.f. = 11, 
p = 0.001). Regarding the total time spent in the mounting 
behavior (Fig. 3A2; t = 9.16, d.f. = 11, p < 0.0001), female 
mice pre-housed in standard conditions spent more time in 
this behavior than enriched female mice. Similar effects were 
seen in the latency to the first mounting event (Fig. 3A3; 
t = 9.70, d.f. = 11, p < 0.0001). Also, the ES for number of 
mounting events and time spent in these events was high 
(η2 = 0.82 and 0.95, respectively), while latency to the first 
mounting was moderate (η2 = 0.50).

Analysis of the number of bites/fights revealed a main 
effect of sex (Fig. 3B1; F1,27 = 39.76, p < 0.001). Male 
mice showed more biting/fighting events than female mice 
(p < 0.001). Post-hoc comparison following a two-way 
ANOVA (housing, factor A; sex, factor B; F1,27 = 13.23, 
p = 0.002; Fig. 3B2) showed that enriched mice spent more 
time biting/fighting (p < 0.001) than mice pre-housed in 
standard conditions. Independently of the housing condi-
tion, male mice spent more time in this aggressive behavior 
than females (p < 0.001, p < 0.001). Regarding the latency 
to the first biting/fighting event (Fig. 3B3), the main effects 
were caused by housing (F1,27 = 7.54, p = 0.012) and sex 

(F1,27 = 69.59, p < 0.001). In these cases, female mice pre-
housed in standard and enrichment conditions exhibited a 
higher latency to the first event than males (p < 0.001 and 
p = 0.003, respectively, Fig. 3B3). The ES for biting/fighting 
behavior was high for number of events, time spent in this 
behavior, and latency to the first event (η2 = 0.67, 0.93, and 
0.82, respectively).

These results suggest that the exposure to environmental 
enrichment increases aggressive behavior in males, while in 
females it decreases aggressive behavior, promoting social 
interaction.

Effect of Environmental Enrichment on Some 
Parameters Involved in the Neurogenic Process 
in the Dentate Gyrus

Previous studies indicated that housing in environmental 
enrichment promotes the generation of new neurons [4, 5, 
7]. The neurogenic process initiates with neural stem cells 
proliferating to rapidly amplifying cells that reach interme-
diate stages until newborn granule cells maturate [4, 5, 7]. 
First, we analyzed RGCs in female and male GFAP-GFP 
FVB/N mice housed in standard conditions or environmental 
enrichment (Fig. 4A). Female mice had more RGCs (FSH: 
469 ± 10 and FEE: 480 ± 44.8) than male mice (MSH: 
263 ± 22.017 and MEE: 265 ± 11.393). The main effect was 
caused by sex (F1,13 = 80.76, p < 0.001; Fig. 4A). However, 
the quantification of GFAP cells with horizontal processes, 
also known as type 2 cells, showed a significant increase in 
enriched females compared with standard housing females 
(FSH: 484 ± 32.76 and FEE: 715 ± 24.48; p < 0.001). Similar 
effects were seen between enriched male mice and males 
housed in standard conditions (MSH: 273 ± 17.64 and MEE: 
524 ± 38.52; p < 0.01), although the main effect was caused 
by housing (F1,13 = 27.36; p < 0.001). It should be noted 
that the enriched females presented a higher number of 
GFAP type 2 cells than enriched males (p < 0.001). The ES 
was moderate for RGCs (η2 = 0.48) and high for type 2-posi-
tive cells (η2 = 0.81), respectively.

Given the increasing number of type 2 cells, we quanti-
fied the number of Ki67 cells (Fig. 4B). A two-way ANOVA 
yielded the following values: housing condition (factor A) 
F1,13 = 107.51, p < 0.001; sex (factor B) F1,12 = 42.76, 
p < 0.001; and the interaction AxB F1,13 = 42.16, 
p < 0.001. Cellular quantification of proliferative cells 
showed an increasing number in female (27 ± 1.92) and 
male (56 ± 0.74) mice previously exposed to environmental 
enrichment compared with females (19 ± 2.52; p = 0.025) 
and males (19 ± 2.76; p < 0.001) in standard housing, respec-
tively. It should be noted that enriched males presented more 
Ki67 cells compared to females pre-housed in environmen-
tal enrichment (p < 0.001). The ES for Ki67 cells was high 
(η2 = 0.96).
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Fig. 4   Neurogenic process in 
the dentate gyrus. A Represent-
ative image of a coronal section 
within the dentate gyrus show-
ing GFAP-GFP radial glial cells 
(type 1) or type 2 cells with 
horizontal processes. Scale bars 
50 µm. The groups consisted 
of females or males housed in 
standard conditions (FSH or 
MSH) or environmental enrich-
ment (FEE or MEE). Quan-
tification of type-1 or type-2 
GFAP-GFP cells is shown in 
the left and right histograms, 
respectively. n = 3–4. Significant 
differences are indicated with 
* for males versus females; % 
for housing; & for males or 
females housed in environmen-
tal enrichment versus males 
or females housed in standard 
conditions. Differences were 
considered statistically signifi-
cant at p ≤ 0.05. Representative 
micrographs of Ki67 (B) or 
BrdU-labeled cells (C) or BrdU/
Calbindin co-labeled cells (D) 
are shown. Scale bars 400 µm, 
100 µm, 50 µm; respectively. 
Cellular quantification of Ki67 
(B) BrdU (C) labeled cells or 
BrdU/Calbindin co-labeled cells 
(D) are shown. Positive cells 
are indicated with arrowheads 
(B, C). n = 3–4. Significant 
differences are indicated with * 
for males versus females; % for 
housing; & for males or females 
housed in environmental enrich-
ment versus males or females 
housed in standard conditions. 
Differences were considered 
statistically significant at 
p ≤ 0.05
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For BrdU-positive cells (Fig. 4C), we found a main effect 
produced by the housing factor (F1,13 = 58.2, p < 0.001). 
Both female and male mice of the environmental enrichment 
groups (72 ± 11.41 and 84 ± 6.55, respectively) showed a 

higher number of positive cells compared with female and 
male mice of the standard housing groups (28 ± 2.75 and 
32 ± 2.11; p < 0.001; Fig. 4C). The ES for BrdU-positive 
cells was high (η2 = 0.81). Also, we quantified BrdU-positive 
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cells co-expressing calbindin (Fig. 4D). Post hoc compari-
son following a significant two-way ANOVA (housing, fac-
tor A; sex, factor B; F1,13 = 7.69, p = 0.021) showed that 
enriched female (p < 0.001) and male (p = 0.004) mice have 
more BrdU/Calbindin cells than mice housed in standard 
conditions (FEE = 13 ± 0.004, MEE = 8 ± 1.42 as compared 
with FSH = 3 ± 0.45 and MSH = 3 ± 0.02, respectively). 
Enriched female mice also have more newborn neurons 
than males (p = 0.002). The ES for BrdU/Calbindin was 
high (η2 = 0.84).

These results suggest that the exposure to environmental 
enrichment differentially affects the ratio of cellular popula-
tions involved in the neurogenic process in male and female 
FVB/N mice.

Activation of the Aggression Circuit 
after the Resident‑Intruder Paradigm

Once we found the differential impact of environmental 
enrichment on social/agonistic behavior and the neurogenic 
process in male and female FVB/N mice, we conducted the 
resident-intruder test to explore the activation of the aggres-
sion circuit (Fig. 5). We analyzed neuronal activation by 
identifying the immediate early gene Arc in the FCx, ICx, 
Am, and DG (Fig. 5A, B). In the FCx (Fig. 5B) post hoc 
comparison following a two-way ANOVA (housing, fac-
tor A; sex, factor B; F1,15 = 62.08, p < 0.001) showed that 
enriched female mice have more Arc-positive cells than 
female mice housed in standard conditions (694 ± 37.05 and 
198 ± 14.162, p < 0.001). Independently of the housing con-
ditions, male mice have more Arc-positive cells (835 ± 3.88 
and 894 ± 38.76) in the FCx than females (198 ± 14.16 and 

694 ± 37.05; SH p < 0.001; EE p < 0.001; respectively). The 
ES was high (η2 = 0.98).

For the DG, a two-way ANOVA revealed the main effects 
of housing (Factor A; F1,15 = 203.38 p < 0.001) and sex 
(Factor B; F1,15 = 173.64, p < 0.001). Thus, female mice 
showed more Arc-positive cells (226 ± 5.12 and 336 ± 2.44; 
p < 0.001) than male mice (111 ± 3.87 and 227 ± 2.56; 
p < 0.001), and mice of the environmental enrichment 
groups showed a higher number of Arc-positive cells than 
mice housed in standard conditions (p < 0.001). The ES was 
high (η2 = 0.97).

Regarding neuronal activation in the ICx, the main 
effect caused by sex (F1,15 = 115.48, p < 0.001) indicated 
that male mice have more Arc-positive cells than females 
(p < 0.001) but no significant differences were observed 
between SH compared to EE condition (MSH = 862 ± 55.12; 
MEE =  951  ±  52 .56 ,  FSH =  505  ±  85 .43 ,  and 
FEE = 360 ± 40.17). The ES was high (η2 = 0.94). For Am, 
post hoc comparison following a two-way ANOVA (housing, 
factor A; sex, factor B; F1,15 = 237.19, p < 0.001) showed 
that enriched female mice have more Arc-positive cells than 
female mice housed in standard conditions (325 ± 2.27 and 
195 ± 5.74, respectively; p < 0.001). However, males housed 
in standard conditions exhibit more Arc-positive cells than 
enriched male mice (382 ± 26.87 and 231 ± 3.87, respec-
tively; p < 0.001). Also, males housed in standard conditions 
have more Arc-positive cells than females (p < 0.001). In the 
environmental enrichment groups, females exhibited more 
Arc cells than males. The ES was high (η2 = 0.62).

Furthermore, we made correlation matrices (Fig. 5C, E) 
and plotted the value of r2 obtained from Pearson’s correla-
tions. For the correlation matrices, we considered the sex 
factor to elucidate the contribution of every analyzed region 
of the limbic system. In female FVB/N mice (Fig. 5C), 
the FCx was strongly correlated with the Am (r2 = 0.977, 
p = 0.001) and DG (r2 = 0.960, p = 0.002), and the DG was 
strongly correlated with the Am (r2 = 0.937, p = 0.006). 
However, in male FVB/N mice (Fig. 5E), we found a nega-
tive correlation between the Am and DG (r2 = −0.994, 
p = 5.22 × 10–5). Thus, the representation of interactions 
(Fig. 5D) among the regions analyzed in females, consider-
ing the correlation coefficients for each interaction, suggests 
a strong interaction between the FCx, DG, and Am in female 
social behavior. However, in males (Fig. 5F), a strong inter-
action exists between the FCx, DG, and ICx but not Am.

Finally, we explored the impact of housing conditions 
on relationships between neuronal activation and neuro-
genesis (Fig. 5G–J). Females housed in standard conditions 
(Fig. 5G) showed positive correlations between BrdU/Cal-
bindin cells and Arc cells in the ICx (r2 = 0.98, p = 0.043) 
or between Arc cells in the DG and GFAP type 2 cells 
(r2 = 0.00, p = 0.035). Also, negative correlations were 
found between Arc cells and the DG and GFAP type 1 cells 

Fig. 5   Neural circuit after the resident-intruder test. A Representa-
tive micrographs depict Arc-positive cells in coronal sections with the 
frontal cortex (FCx), dentate gyrus (DG) of the hippocampus, insular 
cortex (ICx), and amygdala (Am) of female and male FVB/V mice 
after standard housing (SH) or environmental enrichment (EE). Scale 
bars 100  µm and 400  µm. B The groups of animals were females 
or males housed in standard conditions (FSH or MSH) or environ-
mental enrichment (FEE or MEE). Quantification of Arc-positive 
cells in each of these regions. n = 4. Significant differences are indi-
cated with * for males versus females; % for housing; & for males or 
females housed in environmental enrichment versus males or females 
housed in standard conditions. Differences were considered statisti-
cally significant at p ≤ 0.05. C, E Correlation matrices indicating 
limbic regions in which the quantification of Arc-labeled cells was 
performed in female and male mice. Pearson correlation *p < 0.05, 
n = 4. D, F Schematic representation of the interaction of the lim-
bic system regions and correlation by sex. The positive and negative 
correlations are shown (continuous and discontinuous lines, respec-
tively). G–J Individual correlations among the parameters analyzed. 
Correlation matrices elaborated per group. Female mice housed in 
standard conditions (SH, G) or environmental enrichment (EE, H). 
Male mice housed in SH (I) or EE (J). Pearson correlation *p = 0.05; 
**p < 0.005, n = 4 per group

◂
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(r2 = −0.99, p = 1.89 × 10–8) or between GFAP type 1 cells 
and GFAP type 2 cells (r2 = −0.99, p = 0.035). Conversely, 
enriched females (Fig. 5H) showed a positive correlation 
in Arc cells in the FCx and Arc cells in the Am (r2 = 0.99 
p = 0.0001), and a negative correlation in BrdU cells and 
GFAP type 1 cells (r2 = −0.99, p = 0.004). Regarding male 
mice in standard conditions (Fig. 5I), a negative correlation 
was found between BrdU/Calbindin cells and GFAP type 
2 cells (r2 = −0.99, p = 0.009), and a positive correlation 
was found between Arc cells in the DG and Arc cells in 
the FCx (r2 = 0.99, p = 0.0001). Interestingly, enriched male 
mice (Fig. 5J) did not show significant correlations between 
neuronal activation and neurogenic-associated parameters.

Discussion

This study analyzed the effect of environmental enrich-
ment on social behavior, hippocampal neurogenesis, and 
neuronal activation in some regions of the limbic system 
after social behavior evaluation through the resident-intruder 
paradigm in female and male FVB/N mice. Female mice 
showed increased positive social behavior, but males exhib-
ited increased agonistic behavior. However, enriched female 
mice showed decreased behavior related to aggression com-
pared to standard housing female mice. Moreover, we con-
firmed that housing rodents in environmental enrichment 
is beneficial for increasing neuroplasticity; in this case, 
by favoring the neurogenic process but at different rates 
between female and male mice. We also found differential 
neuronal activation in regions of the limbic system in female 
and male FVB/N mice after the resident-intruder test.

Environmental Enrichment Modulates Social 
Behavior

Social interaction is important for reproduction, the care 
of the young, and the defense of a territory [28, 29]. One 
of the models widely used to evaluate social behavior in 
rodents is the resident-intruder paradigm [18]. This test 
allows researchers to evaluate positive (following, oral-anal 
sniffing and allogrooming) or agonistic (mounting and bit-
ing/fighting) behaviors [28, 29] to determine the influence 
of environmental stimuli [13, 18]. In fact, environmental 
enrichment has been proven to enhance learning and mem-
ory processes and mood-related behaviors [8–11]. However, 
several studies reported differential behavior in male mice 
of different strains [13, 14, 18, 39, 40]. For example, male 
129S6/SvEv mice showed more agonistic behavior than 
male C57BL/6 mice, but there were no differences between 
these strains after housing in environmental enrichment [18]. 
However, male CD-1 mice housed in environmental enrich-
ment became aggressive compared to male Balb/C mice 

[14]. And male NMRI mice showed agonistic behavior after 
environmental enrichment [13]. Interestingly, many studies 
analyzing the impact of environmental enrichment on behav-
ior have been performed in male rodents [41, 42], but only a 
few have examined the effects of this paradigm on both sexes 
[22, 24, 43]. In this regard, the sex factor is critical due to the 
differential behavioral response displayed between male and 
female C57BL/6 mice exposed to environmental enrichment, 
as was shown in emotionality-related behavior [43]. Here we 
found that, independently of the housing condition, females 
exhibited more positive social behavior events (following, 
oral-anal sniffing and allogrooming) than males. However, 
diminished aggressive behavior (mounting) in females and 
increased aggressive behavior (biting/fighting) in males 
exposed to environmental enrichment were observed in 
FVB/N mice. Besides, enriched male mice showed more 
biting/fighting behavior than standard housing male mice. 
Interestingly, environmental enrichment decreased mounting 
events in females. We also found that enriched female mice 
spent more time in allogrooming and less time in mounting 
behavior, whereas male mice spent more time biting/fighting 
with decreased latency to the first biting/fighting event. Fur-
ther, enriched male FVB/N mice showed a high latency to 
the first event of following, while male mice under standard 
conditions showed a high latency to the first allogrooming 
event. Our results support the previous report indicating dif-
ferences in social behavior in female and male CD-1 mice 
[43]. However, CD-1 mice, independent of their sex, spent 
more time in agonistic than in social behavior. Regardless, 
females were less aggressive than males in establishing dom-
inance over a same-sex conspecific [44]. And the effects of 
environmental enrichment on agonistic behavior are similar 
to those found in male CD-1 mice and male NMRI mice [13, 
18]. Moreover, the effects identified in female mice are sup-
ported by a previous study in which female C57BL/6 mice 
housed in environmental enrichment showed more social 
behavior than females exposed to standard conditions ana-
lyzed in their housing cage [12]. The differences in social 
behavior among strains may be due to the susceptibility of 
certain factors to the environment [23, 45, 46]. As for the 
mechanisms underlying the differential effects of environ-
mental enrichment it is known that single nucleotide poly-
morphisms and copy number variations might be responsible 
for the differences in aggressive behavior in male mice of 
the BALB/cJ and BALB/cByJ substrains [45]. In addition, 
C57BL/6 and 129S6/SvEv mice housed in environmental 
enrichment showed differential expression of limbic sys-
tem-associated membrane proteins A and B (Lsamp-1a and 
Lsamp-1b). These proteins are neural cell adhesion mol-
ecules expressed in neuronal dendrites and somata, and 
they enhance synaptic integrity and stability [23]. Also, 
the overexpression of the regulator of G-protein signaling 
2 (Rgs2) in serotoninergic neurons of Rgs2-/-C57Bl6 mice 
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is sufficient to induce male aggression [46]. These studies 
support the notion that intrinsic differences among mouse 
strains could explain inconsistences in social behavior.

Effect of Environmental Enrichment on Brain 
Plasticity

Several studies have shown that environmental enrichment 
positively affects neuroplasticity in the brain, including new 
neurons [1, 14, 35, 47–50]. Our results are similar to those 
of previous reports in which environmental enrichment 
increased neuronal proliferation, survival, and maturation 
[6, 7]. The strain of mice used in our study showed basal 
neurogenesis like that of Balb/C and 129/SvJ mice but lower 
than that of C57/BL/6 mice [33]. Despite the differences 
observed between male and female FVB/N mice, environ-
mental enrichment increased the neurogenic process in both 
cases. We analyzed the initial cellular populations of the 
neurogenic process identified by the expression of GFAP 
[37]. In our study FVB/N mice expressed the GFP protein 
under the GFAP promoter [34]. Analysis showed that, inde-
pendent of the housing condition, male mice have a lower 
number of RGCs and type 2 cells than female mice [37]. 
Enriched mice had more type 2 cells than those housed in 
standard conditions. Our results are similar to those in adult 
male GFAP-GFP FVB/N mice exposed to voluntary physi-
cal exercise for two weeks [51]. In that study, male mice 
exhibited an increased number of proliferative (Ki67) and 
surviving (BrdU) cells than control mice [51]. The authors 
also found an increased number of RGCs after two weeks 
of physical activity [51], an effect that we did not see in our 
males or females housed in an enriched environment. It is 
possible that the housing conditions in both studies differen-
tially impact on aspects of the neurogenic process, especially 
because environmental enrichment with tunnels favors the 
survival of newborn cells, but physical activity with the run-
ning wheel affects cell proliferation [5, 52]. Interestingly, 
adult female C57BL/6 or male Sprague–Dawley rats exposed 
to ENR showed an increased number of astrocytes in the 
DG, but not in the CA1, CA3, or cortex [51, 53, 54]. How-
ever, these effects depend on the species and strain used to 
analyze the benefits of environmental enrichment or physical 
activity [i.e. 55]. Nevertheless, we confirmed that environ-
mental enrichment favors the neurogenic process in the DG 
of the hippocampus in mice [4].

Effect of Environmental Enrichment on Cellular 
Activation

The hippocampus is a region of the limbic system where 
new neurons are generated [37]. Although the hippocam-
pus is related to learning and memory processes and mood-
related behavior, its participation in social behavior may be 

relevant [43]. The neural circuit for social behavior could 
be elucidated using immediate-early gene expression [55]. 
We analyzed cellular activation after the resident-intruder 
test because the FCx, ICx, and Am areas of the limbic 
system, as well as the hippocampus, are related to social 
behaviors or aggression [56, 57]. Thus, the Arc immunore-
activity indicated differential activation of the neural circuit 
in enriched females with increasing numbers of Arc-posi-
tive cells in the FCx, DG, and Am compared to females in 
standard housing. Also, the number of Arc-positive cells in 
enriched males increased in the FCx and DG but decreased 
in the Am compared to males in standard housing. Interest-
ingly, the number of Arc-positive cells in the FCx, DG, and 
Am are lower in males than in females pre-housed in an 
enriched environment. Our results suggest that differential 
neural circuit activation occurs after the social behavioral 
test in male and female mice previously housed in environ-
mental enrichment. The FCx is implicated in decision-mak-
ing, goal-directed behavior, and social behaviors [58–63]. 
It is also related to the nucleus accumbens, Am, DG, and 
hypothalamus, which are implicated in the neural circuit of 
aggression or emotional regulation [31]. Interestingly, male 
FVB/N mice showed increased neuronal activation in the 
ICx. This brain region is associated with aggressive behav-
ior and empathy [31]. However, the hypoactivation seen in 
male mice previously housed in environmental enrichment 
is consistent with the findings reported in mice with repeated 
experience of victory [65]. In that study, male C57Bl6 mice 
showed a decreased number of c-fos positive cells in the 
Am and an increased number of activated cells in the hip-
pocampus [64].

Female mice displayed a strong positive correlation in the 
activation of the FCx, DG, and Am and in the DG with Am. 
But in male mice, a strong negative correlation was seen 
between the DG and Am. These results and the representa-
tion of the interactions suggest a strong interaction among 
FCx, DG and Am in female mice, but in males the strong 
interactions were among FCx, DG and ICx, indicating the 
differential neuronal activation that could be associated with 
the circuits of social or agonistic behaviors in female and 
male FVB/N mice.

These differences provide partial evidence about the neu-
ral circuit involved in social behavior exhibited by female 
and male FVB/N mice previously housed in an enriched 
environment or standard conditions.

Limitations and Conclusion

Unfortunately, there are aspects that deserve exploration to 
explain the differences in social behavior such as hormone 
involvement. For instance, testosterone is related to aggres-
sive behaviors in males and females [65], and estradiol 
increases aggressive behavior specifically in females [65, 
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66]. In addition to these hormones, their receptors are asso-
ciated with territorial, hierarchical, advertent, and aggressive 
behavior [65, 66]. We did not preserve serum samples to 
perform hormone quantifications, but our results confirm the 
importance of conducting studies with female and male mice 
to evaluate the impact of environmental stimuli on behavior. 
Future studies should also consider analyzing newborn neu-
rons expressing IEGs to understand their participation in the 
regulation of social behavior.

Our study shows that FVB/N mice display sexual 
dimorphism in social behavior influenced by environmen-
tal enrichment. It also confirms that environmental enrich-
ment increases neurogenesis and activates different regions 
of the limbic system when male and female FVB/N mice 
display social or agonistic behavior. This study furthers 
our understanding about the regulation of social behavior 
and the involvement of increased neurogenesis induced by 
environmental stimuli in FVB/N mice.
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