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Abstract
Parkinson's disease (PD) is associated with dopamine depletion in the striatum owing to the selective and progressive loss 
of the nigrostriatal dopaminergic neurons, which results in motor dysfunction and secondary clinical manifestations. The 
dopamine level in the striatum is preserved because of the innervation of the substantia nigra (SN) dopaminergic neurons 
into it. Therefore, protection of the SN neurons is crucial for maintaining the dopamine level in the striatum and for ensur-
ing the desired motor coordination. Several strategies have been devised to protect the degenerating dopaminergic neurons 
or to restore the dopamine levels for treating PD. Most of the methods focus exclusively on preventing cell body death in 
the neurons. Although advances have been made in understanding the disease, the search for disease-modifying drugs is an 
ongoing process. The present review describes the evidence from studies involving patients with PD as well as PD models 
that axon terminals are highly vulnerable to exogenous and endogenous insults and degenerate at the early stage of the dis-
ease. Impairment of mitochondrial dynamics, Ca2+ homeostasis, axonal transport, and loss of plasticity of axon terminals 
appear before the neuronal degeneration in PD. Furthermore, distortion of synaptic morphology and reduction of postsynaptic 
dendritic spines are the neuropathological hallmarks of early-stage disease. Thus, the review proposes a shift in focus from 
discerning the mechanism of neuronal cell body loss and targeting it to an entirely different approach of preventing axonal 
degeneration. The review also suggests appropriate strategies to prevent the loss of synaptic terminals, which could induce 
regrowth of the axon and its auxiliary fibers and might offer relief from the symptomatic features of PD.

Keywords  Parkinson's disease · Axon degeneration · Mitochondrial dynamics · Synaptic homeostasis · Ca2+

Introduction

Parkinson's disease (PD) is a basal ganglia disorder caused 
by progressive and selective degeneration of the neurons. 
This degeneration consequently depletes the dopamine lev-
els in the striatum, which results in motor dysfunction and 
loss of cognitive functions in late-stage PD. Dopamine is 
a neurotransmitter that regulates the fine motor activities, 
higher cognitive functions, and feelings of pleasure and 
rewards. Moreover, dopamine is the metabolic precursor 
of norepinephrine, another crucial neurotransmitter in the 

brain. Dopamine is also involved in controlling synaptic 
transmission, axonal excitability, and dendritic integra-
tion [1]. This catecholamine is metabolized and stored in 
the specialized tyrosine hydroxylase (TH)-positive nerve 
cells, the dopaminergic neurons. A set of identically derived 
dopaminergic projections forms a dopaminergic pathway, 
and each pathway innervates into a specific region of the 
brain. The mammalian brain consists of various major and 
minor dopaminergic pathways [1, 2]. Among the 10 differ-
ent pathways, only four are prominent. The nigrostriatal, 
mesolimbic, mesocortical, and tuberoinfundibular pathways 
are the key pathways, and in PD pathology, the degeneration 
selectively occurs in the nigrostriatal system. The soma or 
cell bodies of the nigrostriatal dopaminergic neurons are 
embedded in the substantia nigra (SN), and the axons are 
innervated into the striatum. Thus, the idiopathic loss of SN 
neurons depletes the striatal dopamine level.

Numerous studies on genetics, post-mortem human brain, 
and animal and cellular models have revealed the role of 
redundant proteins, damaged mitochondria, apoptosis, 

 *	 Abhishek Kumar Mishra 
	 mishraabhishek727@gmail.com

1	 Department of Zoology, Government 
Shahid Gend Singh College Charama, 
Uttar Bastar Kanker, Chhattisgarh 494 337, India

2	 Amity Institute of Neuropsychology and Neurosciences, 
Amity University, Sector‑125, Noida, Uttar Pradesh 201 313, 
India

http://orcid.org/0000-0002-0675-0430
http://crossmark.crossref.org/dialog/?doi=10.1007/s11064-021-03464-1&domain=pdf


235Neurochemical Research (2022) 47:234–248	

1 3

autophagy, and neuroinflammation in disease pathogenesis 
[3–5]. However, these cellular pathologies are also common 
to other neurodegenerative diseases [6, 7]. Moreover, the 
enhanced susceptibility of the SN dopaminergic neurons to 
endogenous insults is not well understood. It has been opined 
that selective SN neuronal death could be due to Lewy body 
(LB) toxicity [8]. LBs are heterogenous protein aggregates 
rich in fibrillar α-synuclein and ubiquitinated proteins. 
Nonetheless, cytoskeletal and neuronal synaptic vesicle traf-
ficking proteins are also present in the LBs formed in the 
degenerating nigral neurons and astrocytes [9]. Researchers 
have accepted the role of LB toxicity in early-onset PD after 
the publication of reports on genetic predisposition in genes 
(SNCA) encoding α-synuclein. This theory gained even more 
attention when aberrant α-synuclein-mediated PD pathol-
ogy was found to be disseminated in the healthy dopamin-
ergic neuronal graft through synaptic leakage [10]. Since 
α-synuclein is a synaptic protein and is abundant near the 
terminals, the extensive axonal arborization of the nigrostri-
atal neuron increases the α-synuclein levels and, therefore, 
enhances its susceptibility to degeneration.

The SN dopaminergic neurons are long, thin, and unmy-
elinated and have an extensive arborized axon and a high 
synapse to neuronal soma ratio. This unique cellular archi-
tecture of the SN dopaminergic neurons differentiates them 
from other dopamine-containing neurons, including those 
in the ventral tegmental area (VTA) [8, 11]. The high den-
sity of synapses connected to a neuron's cell body demands 
increased energy for proper functioning. Simultaneously, the 
narrow width of the axon and the associated terminals allows 
a controlled supply of mitochondria, several essential pro-
teins, and vesicular structures to the presynaptic terminals 
through axonal trafficking [12, 13]. Therefore, the SN neu-
ron's demand–supply equilibrium remains at the edge, and 
the bioenergetic demand is considerably high at the synaptic 
site [14]. To match the elevated bioenergetic demand at the 
synapse, mitochondrial dynamics, anterograde transporta-
tion, and its biogenesis increase in the SN neurons [15–17]. 
The mitochondria present in the neurons govern several 
neurophysiological processes, including the active axonal 
trafficking of cargos, mobilization of synaptic vesicles, cal-
cium ion (Ca2+) homeostasis, and neurotransmission. Dys-
regulation of the mitochondrial dynamics disturbs several 
intraneuronal functions [18–20]. Moreover, the elevated 
bioenergy at the synaptic terminal results in enhanced oxi-
dative stress and dopamine oxidation in the neuron if the 
delicate supply-chain equilibrium is disturbed [13]. The dys-
regulation of the mitochondrial dynamics leads to protein 
accumulation, excessive Ca2+ release into the cytosol, and 
disturbance of synaptic events [13, 19]. Furthermore, the 
high cytosolic level of free Ca2+, which is caused by the 
low intrinsic calcium buffering capacity of the SN neuron, 
is equally responsible for its preferential vulnerability [8]. 

Thus, the cellular architecture and the neurophysiology of 
the PD-related dopaminergic neurons are the reasons for the 
increased vulnerability.

Notwithstanding the several advances in understanding 
PD, including pathogenesis, selective histological loss, and 
the complex interplay of genetic and environmental factors, 
the specific cause for disease onset and progression at the 
cellular level remains unknown. Most of the recent investiga-
tions have focused on pathogenesis, alteration in dopaminer-
gic neuron counts, and experimental therapeutics. However, 
the search for a permanent cure for the disease is not yet 
over. The impairment of axonal trafficking, mitochondrial 
dynamics, synaptic protein expression, neuronal excitability, 
Ca2+ homeostasis, synaptic integrity, and increased cytosolic 
dopamine level in the synaptic terminals, which have been 
reviewed here, point to the involvement of axon terminal loss 
before the degeneration of dopaminergic soma. However, 
the role of axon terminals and the initiation of the degenera-
tion cascade at the cellular level of a dopaminergic neuron 
remain undeciphered. In this review, we have explored the 
cause of axonal degeneration and the role of impaired syn-
aptic terminals in retrograde neurodegeneration that occurs 
in PD. Furthermore, we have suggested that future research 
should delve into the mechanism of preventing the degen-
eration of dopaminergic axons and their auxiliary terminals, 
which is likely to aid in restoring the dopamine level in the 
striatum and alleviate the motor complications in patients 
with PD.

Selective Vulnerability: Cellular Architecture 
and Neurotransmitter

The axon fiber of the SN dopaminergic neurons is thin, 
unmyelinated, and extensively ramified, with millions of 
synapses in the striatum (Figs. 2 and 3) [8]. The dense arbo-
rized axon terminals demand an excessive amount of energy 
for maintenance of their basal functions and survival. Fur-
thermore, preservation of membrane potential, spreading 
of the action potential throughout the axolemma, release of 
dopamine from the synapses, and synaptic transmission of 
neural information create additional bioenergetic demands 
[11, 14]. The extreme demand for energy in the diffused 
neuronal extremities is met by densely packed mitochondria 
in the dopaminergic axon [12], and the regular supply of the 
mitochondria—as per the demand—in the neuronal extremi-
ties maintains their density therein. The increased density of 
the mitochondria in the neuron’s thin axon and the extremi-
ties helps cope with the tight energy budget [8]. However, 
because of either endogenous or exogenous insults, an 
imbalance in the demand and supply equilibrium of energy 
in the axons halts the energy-driven neuronal events and 
leads to dopaminergic neurodegeneration [21, 22]. Thus, the 
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SN dopaminergic neuron's cellular morphology and mito-
chondrial homeostasis are peerless and contribute to its 
preferential vulnerability. One of the reasons for the sudden 
failure in the energy balance and the irreversible increase in 
anomalies in the SN neurons is their limited reserve capacity 
and the slow anterograde transportation of mitochondria to 
the site of need [13, 23, 24]. Therefore, in idiopathic PD and 
in several models of Parkinsonism, mitochondrial dysfunc-
tion is critical and is the reason for the selective degeneration 
[22, 25–28]. However, in addition to the SN axon terminals, 
mitochondrial dysfunction is also evident in the choliner-
gic neurons of the pedunculopontine nucleus, hippocampal 
nucleus, and the prefrontal cortex of the brain in patients 
with PD; furthermore, mitochondrial dysfunction has been 
reported in the unaffected regions of the brain, such as the 
cerebellar cortex and dentate nucleus [29–31].

Apart from the elevated mitochondrial density in the SN 
dopaminergic terminals, which engenders more risk, an 
important cause for the retrograde degeneration of the neu-
rons is the presence of the neurotransmitter dopamine. The 
nascent neurotransmitter molecules are synthesized in the 
cytosol of the neuron. Dopamine synthesis, which occurs 
in two steps, is catalyzed by TH and aromatic amino acid 
decarboxylase (AADC) to generate L-dihydroxyphenyla-
lanine (L-DOPA) and dopamine, respectively. L-DOPA, 
produced from the TH-catalyzed reaction in the presence 
of oxygen, serves as a substrate for AADC that forms dopa-
mine upon decarboxylation in the cytosol [32–34]. Both 
enzymes (TH and AADC) bind to the synaptic vesicular 
membrane-localized vesicular monoaminergic transporter-2 
(VMAT-2) protein and form a complex. Additionally, the 
dopamine molecules in the synaptic cleft are taken up into 
the cytosol through dopamine transporters (DATs) localized 
in the membranes of the axon terminals [35, 36]. Under nor-
mal circumstances, dopamine in the cytosol is recurrently 
pumped into the monoaminergic vesicles and stored therein. 
The translocation of dopamine into these acidic vesicles is 
VMAT-2-mediated and helps store dopamine in the axon ter-
minals for future use and prevents the rapid conversion and 
depletion of the neurotransmitter in the cytosol [32, 37, 38]. 
If, somehow, dopamine fails to pass into the acidic lumen of 
the monoaminergic vesicles, it undergoes degradation in the 
cytosol and the levels of its metabolites increase.

In the axoplasm, monoamine oxidase (MAO) and cat-
echol ortho-methyltransferase (COMT) catalyze the catabo-
lism of dopamine. The MAO is a flavin adenine dinucleo-
tide (FAD)-containing flavoenzyme present in the outer 
membrane of the mitochondria [39]. The enzyme converts 
the cytosolic dopamine into 3,4-dihydoxyphenylacetalde-
hyde and enhances oxidative stress because the oxidative 
deamination reaction generates hydrogen peroxide (H2O2). 
Furthermore, 3,4-dihydoxyphenylacetaldehyde is oxidized 
to form 3,4-dihydroxyphenylacetic acid (DOPAC) in the 

presence of aldehyde dehydrogenase. COMT methylates 
DOPAC and produces homovanillic acid (HVA). However, 
COMT can also directly methylate dopamine to produce 
3-methoxytyramine (3-MT), which is also degraded to 
HVA in the presence of MAO and aldehyde dehydrogenase 
[32]. Also, the cytosolic dopamine is oxidized to dopamine 
o-quinone and further undergoes cyclization to form amino-
chrome and neuromelanin at physiological pH, which results 
in the production of reactive oxygen species (ROS). How-
ever, the end product of dopamine catabolism, neuromela-
nin, is neuroprotective [37, 40], and its presence is relatively 
higher in the SN neurons than in the VTA subtype. The aug-
mented expression of neuromelanin in the neuron indicates 
increased dopamine oxidation in its cytoplasm. Thus, the 
resultant intermediate products and the ROS generated dur-
ing the reaction cascade pose a significant risk to the neuron 
(Fig. 1). Reports have shown an increased level of oxidative 
stress and dopamine catabolites in the brain of patients with 
idiopathic PD and in animal models of PD [41, 42]. The 
dopamine catabolites enhance metabolic dysfunction as well 
as mitochondrial and lysosomal impairment [43].

Impaired Axonal Transport in PD

Axonal transport is a process in the axoplasm that is respon-
sible for the movement and distribution of essential bio-
molecules and organelles to and from its nerve endings. 
This transport maintains the equilibrium in the supply and 
demand of vital organelles, such as mitochondria, and sev-
eral proteins and vesicles, including synaptic vesicles, in 
the neuron's cell body and axon terminals. Thus, the event 
is crucial for the proper functioning of the neuron and is 
equally essential for its growth and survival. The cytoskel-
etal and motor proteins facilitate the continuous anterograde 
and retrograde trafficking of cargos in the functional neuron 
to accomplish efficient axonal transport. In dopaminergic 
neurons, morphology-regulating actin and tubulin are the 
major cytoskeletal proteins that form “tracks” for cargo 
transportation [44–46] and kinesin and dynein are the motor 
proteins that assist in the anterograde and retrograde traffick-
ing, respectively, of several proteins, vesicular structures, 
mitochondria, and other organelles (Fig. 2) [47, 48]. Stud-
ies have established that altered levels of these proteins in 
the dopaminergic neurons cause the dysregulation of axonal 
transport. This dysregulation leads to neuronal dystrophy, 
which is characterized by bulging neurites, loss of presyn-
aptic terminals, deficit in synaptic function, abnormal pro-
tein accumulation in the neurites, defective mitochondrial 
dynamics, and dysregulated homeostasis long before the 
dopaminergic neurodegeneration [10, 44].

Several reports have shown that axonal transport is sig-
nificantly impaired in sporadic PD and that it precedes the 
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early decline in dopaminergic neurons [49, 50]. A similar 
finding has also suggested impaired axonal transport, which 
leads to early degeneration in a retrograde manner in familial 
PD [10] and toxin-based PD models [51, 52]. Alterations 

in the expressions of motor proteins (kinesin and dynein) 
and cytoskeletal protein (tubulin) impair the axonal trans-
port [46, 49, 53]. Disruption of the anterograde trafficking 
of the mitochondria into the axonal projections as per their 
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energy demand results in energy deficit and the loss of syn-
apses [10]. The exact reason for the onset of impairment in 
axonal trafficking is yet unknown; however, a few PD-related 
proteins (DJ-1, leucine-rich repeat kinase-2 (LRRK-2), and 
α-synuclein) have been linked to the process of axonal trans-
port, and mutations in the corresponding genes cause axonal 
transport abruption [10, 46]. Moreover, hyperserotonergic 
neurotransmission, a state of neuropathology in the brain of 
patients with PD, also disrupts the regular axonal transpor-
tation in the dopaminergic neuron because serotonin plays 
an inhibitory role in axonal growth and regeneration [54].

Defective Mitochondrial Dynamics 
in the Axon

The SN dopaminergic neurons are top-to-toe energy-
demanding cells. The neurons require energy for axonal 
transport and synaptic release and for maintaining basal cell 
functions, growth, and survival. The unique morphology of 
the SN neurons—dense axon terminal arborization with 
millions of synaptic contacts—requires additional energy 
when compared with the less vulnerable VTA dopaminer-
gic neurons to maintain their synaptic events and adequate 
axonal transport as per the demand. The elevated bioener-
getic demand is fulfilled by transporting more mitochondria 
to the axon terminals. In the dopaminergic neuron, the mito-
chondria perform many intraneuronal functions such as Ca2+ 
buffering, dopamine synthesis and degradation, neurotrans-
mitter translocation, synaptic vesicle mobilization, and bidi-
rectional axonal transport [48, 55, 56]. However, the narrow 
axonal width of the SN neurons imposes cytoplasmic space 
restrictions and controls the motility of the trafficking mito-
chondria [12]. Therefore, in the SN neurons, mitochondrial 
homeostasis is at the edge. However, the dynamic properties 
of the mitochondria, such as fission, fusion, trafficking, bio-
genesis, and degradation, are significantly higher in the SN 
neurons than in the VTA counterpart for maintaining their 

health [12, 57]. A disruption in any of these dynamic mito-
chondrial events disturbs the others and is associated with 
mitochondrial dysfunction, a critical pathology reported in 
PD [27, 48, 58].

Experimental studies have suggested that several endog-
enous and exogenous insults influence the defective mito-
chondrial dynamic processes in the axon terminals dur-
ing early-stage PD [59–61]. For being functional, neurons 
depend on the regular supply and distribution of functional 
mitochondria in their axon and terminals. Simultaneously, 
the dysfunctional mitochondria need to be eliminated from 
the synaptic terminals for their ultimate degradation via 
mitophagy [62, 63]. The equilibrium between the supply 
of healthy mitochondria and the clearance of aberrant mito-
chondria is crucial for maintaining the morphology, plastic-
ity, and functionality of the synapses. Several experimental 
and idiopathic PD studies have stated that defects in the 
mitochondrial dynamics appear early, well before neurode-
generation [27, 28, 64]. In familial PD cases, mutations in a 
few genes associated with disease onset have been linked to 
the mitochondria and have been shown to play a crucial role 
in regulating the mitochondrial dynamics in the neurons [61, 
65]. Defects in the dynamics distort the synapse morphol-
ogy and reduce the postsynaptic dendritic spines, which lead 
to a loss of plasticity [55, 66]. Moreover, abnormal mito-
chondrial dynamics cause cyclic oxidative stress, increased 
energy demand at the synaptic contact, and dysregulated 
Ca2+ buffering at the synaptic site. These events culminate 
in the untimely degeneration of the dopaminergic neurons 
originating from their synaptic sites [24, 61].

Early Impairment of Synaptic Homeostasis

The synapses are often distantly located from the cell body 
of the neurons owing to axonal extension. Synapse is the 
functional junction and comprises the presynaptic bouton, 
which contains neurotransmitters packaged in vesicles, and 
the postsynaptic neuronal membrane, which consists of 
target receptors that bind the released neurotransmitters to 
exchange the presynaptic neural information. Between them, 
there is a synaptic cleft that isolates and holds the presyn-
aptic and postsynaptic components. The homeostasis and 
sustained functionality of the neuronal synapses, including 
the SN dopaminergic neurons, depend on several synaptic 
proteins residing in the presynaptic boutons, mitochondrial 
influx and elevated bioenergetics in the presynaptic bou-
tons that fuel effective and sustained neurotransmission, and 
the postsynaptic membrane-receptor proteins that bind the 
neurotransmitter and transmit the neural information to the 
postsynaptic neurons.

A study has established the loss of synaptic sites and its 
association with the onset of motor symptoms in PD [67]. A 

Fig. 1   Dopamine metabolism: In the presence of tyrosine hydroxy-
lase (TH) and aromatic amino acid decarboxylase (AADC) enzymes, 
amino acid tyrosine is converted to dopamine, the neurotransmitter. 
An intermediate L-Dopa is also synthesized in the enzyme-catalyzed 
reactions in the axoplasm (cytoplasm of the axon). The degradation 
of dopamine in the cytosol is preserved by vesicular monoaminer-
gic transporter-2 (VMAT-2) mediated transportation into the mono-
aminergic vesicles, the vesicle with low pH inside. The catabolism 
of dopamine in relatively alkaline pH of the cytosol is catalyzed by 
the mitochondrial monoamine oxidase (MAO), and cytosol local-
ized catechol methyl-ortho-transferase (COMT) enzymes to form 
several intermediate metabolites and reactive oxygen species (ROS) 
molecules. Dopamine is also oxidized directly through different cas-
cades to generate dopamine-O-quinone, aminochrome, neuromelanin, 
and ROS (All chemical structures were drawn using CambridgeSoft 
ChemDraw, RRID:SCR_016768) [32, 37, 39, 40, 42]

◂
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similar study has suggested that synaptic decay and loss of 
auxiliary axonal fibers in the striatum occur earlier than the 
degeneration of the cell bodies in the nigral compartment. 
Thus, the demise of the synaptic terminals occurs before 
that of the cell bodies in the SN dopaminergic neurons [68, 
69]. However, the reason behind the early loss of synaptic 
terminals in PD is largely obscure.

The presynaptic boutons contain several proteins called 
synaptic proteins, which are involved in maintaining the sur-
vivability, plasticity, and functionality of the synapse. Mem-
bers of these proteins also regulate vesicular packaging and 
exocytosis of the neurotransmitters. In the SN dopaminergic 
neurons, members of the synaptic protein family belong to 
both types, i.e., membrane-bound and soluble cytosolic pro-
teins (Table 1) [70–72]. These proteins regulate the Ca2+ 
level, dopamine release, growth and alignment of the den-
drites, synaptic density, and the plasticity of the synapses 
[70]. Impairment in the genes encoding the synaptic proteins 

and their abnormal expression cause synaptic dysfunction 
in PD-linked dopaminergic neurons. The abnormal expres-
sion of the synaptic proteins alters neurotransmission and 
results in synaptic dysfunction but does not necessarily lead 
to synaptic degeneration (Fig. 3). However, abnormalities in 
a few synaptic proteins and/or genes encoding them, includ-
ing α-synuclein, LRRK-2, auxilin, synaptojanin-1 (Synj-1), 
and endophilin A1, have been linked to Parkinsonism [70, 
73, 74]. Moreover, elevated levels of the synaptic proteins 
neurogranin and the 25-kDa synaptosomal-associated pro-
tein (SNAP25) have been observed in the cerebrospinal fluid 
of patients with PD [75].

The exact mechanism of synaptic dysfunction, which is 
caused by abnormalities in the proteins and leads to synaptic 
loss, is an enigmatic question. The autopsy of PD-affected 
brains has revealed aggregates of α-synuclein, a protein 
involved in regulating the synaptic functions [71], in the 
presynaptic terminals [76]. Such reports are also standard 

Fig. 2   Axonal trafficking in the functional dopaminergic neuron [A] 
and in degenerating neuron in PD [B]. The cytoskeleton proteins 
(actin and tubulin) form “tracks” to transport proteins and organelles 
to and from the neuron's cell body. The kinesin and the dynein are 
two motor proteins for anterograde and retrograde trafficking, respec-
tively. Impaired axonal transport in PD is marked by a higher ratio 

of obstructed protein inclusion and dysfunctional mitochondria in 
the deteriorating dopaminergic neurons. Failure in the trafficking of 
essential proteins, mitochondria, lysosomes and vesicular structures 
at the distal ends causes retrograde axonal loss (All structures are 
made with Inkscape Software, RRID:SCR_014479) [10, 45–49, 53]
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in experimental studies [77]. The aberrant α-synuclein is 
propagated intercellularly to neighboring neurons, which 
results in the transfection of the deleterious cascade in 
a prion-like manner. The presence of the pathological 
α-synuclein in deteriorating neurons and ingrafted tissues 
received by patients with PD supports the prion hypothesis 
of disease spread [78–80]. The aberrant α-synuclein impairs 
the dopamine release [79], abruptly snares the essential cel-
lular components at an inappropriate location, including 
the mitochondria and lysosomes, and obstructs the normal 
axonal trafficking [10, 53]. Furthermore, the protein binds 
to other presynaptic proteins such as cysteine-string pro-
tein α (CSP α)—a protein involved in maintaining synaptic 
integrity—and heat shock protein cognate 70 (Hsc 70)—a 
chaperone protein for α-synuclein turnover—thereby hinder-
ing their functions [81].

Breakdown of Ca2+ Homeostasis in the Axon 
Terminals

The abundance and homeostasis of Ca2+ in the cytoplasm of 
dopaminergic neurons are vital for the function and survival 
of these neurons. Ca2+ regulates many physiological pro-
cesses, including membrane excitability, dopamine release, 
and synaptic plasticity [82]. The divalent cation is pumped 
into the cytosol from intracellular and extracellular sources 
in a nigrostriatal dopaminergic neuron. The central intracel-
lular Ca2+ reserve is the endoplasmic reticulum (ER), and 
the opening of voltage-gated Ca2+-channel (Cav) proteins, 
which are located on the ER membrane, releases these 
cations into the cytoplasm. Simultaneously, Ca2+ from the 
extracellular source enters through the Cav proteins situated 
on the axonal membrane [83, 84]. However, the dopaminer-
gic neuron's action potential modulates the Ca2+ influx into 
the cytosol from its reservoirs, i.e., the intracellular and the 
extracellular sources. The Ca2+ entry, its cytosolic oscilla-
tion, and the electric activity of the neuron play a decisive 
role in dopamine release within the dorsal striatum. Addi-
tionally, the secondary messenger molecule maintains the 
basal dopamine levels for the next neurotransmission cycle 
[85].

The SN neuron has a unique slow and broad action poten-
tial that maximizes the Ca2+ entry into the cytoplasm from 
its reserves [8]. The additional feature of the SN dopamin-
ergic neuron that distinguishes it from the other neuronal 
types is its low intrinsic calcium buffering ability. The inflow 
of Ca2+, when released from the reserves, floods the nearby 
cytosol. Therefore, calcium-binding proteins in the neuron, 
such as calbindin, interact with the available free cytosolic 
Ca2+ and rapidly buffer the situation until the surplus Ca2+ 
is instead pumped back into the reservoirs [86]. In the SN 
neurons, the presence of the calcium buffering protein is low. Ta
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Thus, the surplus free Ca2+ interacts with other proteins, 
alters the cytosolic pH, and inhibits the cellular functions. 
Furthermore, the Cav aligned to the plasma membrane of the 
SN neurons allows more Ca2+ to enter the cytosol than the 
Cav of the VTA neurons [87, 88]. Ca2+ long-lasting presence 
in the cytosol synergizes with the PD-linked risk factors 
including ageing, environmental agents, and genetics, and 
induces mitochondrial dysfunction, which leads to oxidative 
stress [89]. A report has suggested imbalance in Cav activity 
in the dopaminergic terminals of PD models [90] and altered 
expression of Cav and calcium-binding proteins in early- and 
late-stage PD, which establishes the key role of calcium 
ions in the disease [91, 92]. The aberrant α-synuclein in the 
presynaptic terminals of the degenerating neurons causes 
dysregulation of Ca2+ and also induces Ca2+-mediated neu-
ronal death [93]. Gene mutations and abnormal expressions 
of PD-associated proteins also dysregulate the homeostasis 
of Ca2+, the secondary signaling molecule [94, 95].

Relevance of Axonal Degeneration in PD

The dopaminergic neurons of the nigrostriatal pathway con-
nect the SN nucleus to the striatum compartment, the path-
way which is defective in PD. Of course, both SN and striatal 
tissue deteriorate as the disease progresses, but from where 
does the degeneration initiate? Does the neuronal soma of 
the SN neuron degenerate before losing its extended axon 
and arborized terminals, or does the dysfunction begin in 
the axon terminals/axon and propagate in a retrograde man-
ner? Many believe that the degeneration co-occurs in the SN 
dopaminergic soma and axon terminals, whereas others are 
unclear of the degeneration pattern. Thus, the underlying 
facts are yet to be established.

Studies have indicated that the motor deficits are visible 
in PD only after approximately 70% of the striatal dopa-
mine has been depleted [25, 41]; hence, the demise of the 
presynaptic terminals governing the neurotransmitter release 

Fig. 3   Presynaptic homeostasis in the functional dopaminergic neu-
ron [A] and presynaptic impairment in PD [B]. The presynaptic bou-
ton of an operational dopaminergic neuron shows a proper morphol-
ogy and consists of abundant mitochondria, functional lysosomes and 
synaptic vesicles packed with neurotransmitters [A]. Early synaptic 

alteration in PD is marked with a change in the morphology of the 
bouton, increased cytosolic dopamine, protein inclusion/aggregates, 
dysfunctional mitochondria and lysosomes and reduction in the syn-
aptic structures in the presynaptic bouton [B] (All structures are made 
with Inkscape Software, RRID:SCR_014479) [10, 53, 78–81, 128]
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must begin much earlier than the appearance of the disease 
symptoms. Therefore, the loss of striatal axon terminals 
outweighs the loss of cell bodies of the SN dopaminergic 
neurons during the disease progression because the axon 
terminals participate earlier in the degenerative cascade 
[68]. Furthermore, the flaws in the presynaptic terminals 
of the degenerating neurons confirm the prior involvement 
of the axon terminals during progressive degeneration. The 
presynaptic terminals become a damping corner of aber-
rant proteins, damaged mitochondria, and dysregulated 
Ca2+ [24]. The accumulation of aberrant proteins and the 
breakdown of the synaptic bioenergetics—due to defective 
mitochondria—hinder the transmission of impulses from the 
neuron's functional junction. These aberrations need to be 
urgently cleared form the deteriorating neuron to be revived 
and regain its functionality. However, the central clearance 
machinery for defective proteins and organelles exists in 
the neuron's cell body, and the defective axon trafficking 
of the deteriorating neurons obstructs the retrograde cargo 
transportation. In addition, dopaminergic neurons are post-
mitotic cells that forever remain in their resting phase (G0 
phase) and never redistribute their damaged proteins and 
organelles to the daughter cells [96]. Thus, in the absence 
of redispersal and proper trafficking, these abnormalities 
remain intracellularly in millions of tiny presynaptic axon 
terminals and cell bodies and are disproportionately over-
shared in the axon terminals when compared with the cell 
body of the neurons. Moreover, the terminals exhibit syn-
aptic density and structural alterations, which is yet another 
link to disease progression [69]. Apart from PD, chronic 
exposure to various psychostimulant addictions also impairs 
the dopaminergic terminals. These addictive drugs increase 
cytosolic dopamine levels, block DAT reuptake, modulate 
neuronal firing, alter neurotransmission, and induce changes 
in synaptic morphology [97–99].

Thus, the axonal projections, not the cell bodies, are 
the initial players in the SN dopaminergic neurodegen-
eration; subsequently, their loss, which propagates toward 
the cell body, leads to the appearance and progression of 
clinical manifestations. Unfortunately, very few studies have 
reported the axonal origin of the dopaminergic neurons' dis-
integration in PD [3, 62, 100, 101]. If loss of axon terminals 
occurs early in PD and is responsible for the progression 
of the motor symptoms, targeting the cell bodies for a neu-
roprotective approach is non-directional. However, despite 
the mounting evidence for the predominant role of the axon 
terminals in PD, to date, researchers have rarely studied the 
axons and the cell body of a neuron separately and have con-
tinued to focus on the death of the entire neuron structure. 
The strategy to cure the disease has been to either target the 
neuronal soma or replace the defective ones with exogenous 
healthy neurons. Similarly, experimental strategies for neu-
roprotection have focused on preventing the demise of the 

cell bodies and not axonal loss. Until now, the protective 
strategies have revolved around targeting different pathways 
of programmed cell death, but the apoptotic mechanism of 
cell death is applied only in the neuronal soma. The mecha-
nism of axonal degeneration is utterly different from pro-
grammed cell death, and much of the degenerative cascade 
is indescribable [3]. Investigating the pathological changes 
only in neuronal soma could well be the reason for our fail-
ure in developing clinical neuroprotective and restorative 
therapeutics despite experimental successes.

The Future Perspective of Axon 
Neurobiology

The proper functioning of the nigrostriatal system depends 
on the structurally polarized SN dopaminergic neuron. In 
the polarized architecture, the soma overshares the cellular 
machinery for its maintenance. Simultaneously, the axon 
projections rely on bidirectional axonal transport for their 
survival and for maintaining their functionality. Unfortu-
nately, in PD, the axonal trafficking in the related neurons 
deteriorates with the progression of the disease. The pro-
gressive deterioration in bidirectional trafficking is due to the 
gradual accumulation of redundant proteins and damaged 
organelles. At the initial stage of the disease, neuronal debris 
is formed at the synaptic site but is successively accumu-
lated in the axon and cell body because of the obstruction 
of axonal trafficking, retardation in the clearance machin-
ery, and advancement of the disease. Thus, unlike other cell 
types, the neuron's architectural components—neuronal 
soma and axon projections—should be studied separately 
and the neuropathological changes should be classified dis-
cretely in the ramified terminals and soma of the degener-
ating PD-related neurons. The neurobiological alterations 
should be separately measured per unit area/volume in both 
the neuronal compartments. Designing such studies could 
help investigate the comparative alterations in the soma and 
terminals and identify early-stage PD biomarkers residing at 
or near the synaptic sites and causing synaptic dysfunction. 
Furthermore, spatial autophagy in the terminals and synap-
tic sites, which involve synaptic proteins, could be induced 
to digest the synaptic junks locally before they exponen-
tially multiply in the axon and hinder the axonal transport 
[102–104]. Since dopaminergic neurons are non-dividing 
cells, correcting the neuronal aberrations and digesting the 
cellular debris through site-specific autophagy, particularly 
at an early stage, are the sole strategies available.

Although neuronal soma restoration is crucial for axonal 
growth, maintenance, and survival, it is not sufficient to 
prevent the clinical progression of PD. Ignoring the axons' 
decisive relevance in formulating neuroprotective strat-
egies could be due to the obstacles in the experimental 
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demonstration of axons and their auxiliary fibers in the brain 
tissue. Studying axons requires high-quality tissue preser-
vation and special techniques. However, if studying axonal 
destruction, regrowth, and anatomical organization becomes 
feasible in the future with advanced techniques, attempts 
to develop therapeutic strategies by correcting the synaptic 
autophagy at the pre-symptomatic stage may be more effec-
tive. Moreover, while the lost neuronal tissues are replaced 
by the exogenous implant in the grafting technique, in the 
new approach, the surviving neurons can be stimulated to 
regrow their axons and the associated auxiliary fibers for 
proper anatomical arrangement and reintegration into the 
surviving circuitry. Thus, if the approach for correcting the 
spatial clearance machinery of the axon terminals to design 
neuroprotective and restorative drugs could be made feasi-
ble in the future, it could offer a better direction in devising 
novel therapeutic strategies for PD.
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