
Vol.:(0123456789)1 3

Neurochemical Research (2021) 46:3273–3285 
https://doi.org/10.1007/s11064-021-03430-x

ORIGINAL PAPER

Therapeutic Potential of Curcumin in Reversing the Depression 
and Associated Pseudodementia via Modulating Stress Hormone, 
Hippocampal Neurotransmitters, and BDNF Levels in Rats

Asia Afzal1 · Zehra Batool2 · Sadia Sadir1 · Laraib Liaquat3 · Sidrah Shahzad1,4 · Saiqa Tabassum5 · Saara Ahmad6 · 
Noor Kamil7 · Tahira Perveen1 · Saida Haider1

Received: 4 July 2021 / Revised: 6 August 2021 / Accepted: 13 August 2021 / Published online: 18 August 2021 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Depressive state adversely affects the memory functions, especially in the geriatric population. The initial stage of memory 
deficits associated with depression is particularly called as pseudodementia. It is the starting point of memory disturbance 
before dementia. The purpose of this research was to study depression and its consequent pseudodementia. For this purpose 
24 male albino Wistar rats were divided into four groups. Depression was induced by 14 days of chronic restraint stress 
(CRS) daily for 4 h. After developing a depression model, pattern separation test was conducted to monitor pseudodementia 
in rats. Morris water maze test (MWM) was also performed to observe spatial memory. It was observed that model animals 
displayed impaired pattern separation and spatial memory. Treatment was started after the development of pseudodementia 
in rats. Curcumin at a dose of 200 mg/kg was given to model rats for one week along with the stress procedure. Following 
the treatment with curcumin, rats were again subjected to the aforementioned behavioral tests before decapitation. Corti-
costerone levels, brain derived neurotrophic factor (BDNF) and neurochemical analysis were conducted. Model rats showed 
depressogenic behavior and impaired memory performance. In addition to this, high corticosterone levels and decreased 
hippocampal BDNF, 5-HT, dopamine (DA), and acetylcholine (ACh) levels were also observed in depressed animals. These 
behavioral biochemical and neurochemical changes were effectively restored following treatment with curcumin. Hence, 
it is suggested from this study that pseudodementia can be reversed unlike true dementia by controlling the factors such as 
depression which induce memory impairment.
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Introduction

Depression is the most prevalent and debilitating psychiatric 
disorder worldwide that alters a person’s thoughts, feelings, 
and behavior. Prevalence of the major depressive disorder 

is about 9–23% among the general population [1]. Depres-
sion and other psychiatric illnesses are brutally affecting the 
health and quality of life. Daily life stressors, genetic, and 
environmental factors may be involved in the etiology of 
depression [2]. Chronic stress increases corticosterone level 
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that leads to depression-like illness causing hippocampal 
damage that can be a risk factor for the onset of prodromal 
stage of dementia [3–5]. Depression induces mood distur-
bances which also alters the mental capability of an affected 
person leading to reduced performance in daily routine life. 
Depression is a major risk factor for inducing dementia [6]. 
However, the symptoms of dementia due to depression are 
different from ‘true’ dementia, therefore, dementia second-
ary to depression is called ‘pseudodementia’ [7]. The differ-
ence between true dementia and pseudodementia is revers-
ibility, as the symptoms of pseudodementia can be reversed 
unlike true dementia [8]. Moreover, memory deficits in 
depression are noticeably mild in comparison to dementia 
[9]. Evidence shows that pseudodementia is the precursor 
of true dementia and if the underlying psychiatric illness 
is treated then pseudodementia can be treated [1, 10]. This 
emphasizes the significance of prevention and early treat-
ment of mood disorders.

Depressive patients show less improvement in psycho-
motor, verbal, and visual memory as compared to schizo-
phrenic patients [11]. Several studies have described that 
serotonergic and dopaminergic neurotransmission decreases 
in depressive disorder [12–14]. The brain regions mainly 
affected by depression are hippocampus, amygdala, and 
prefrontal cortex [15]. It has been shown that individuals 
with major depression exhibit decreased neurogenesis in the 
hippocampus [16]. Depression is involved in hippocampal 
atrophy leading to impaired memory functions [17]. Depres-
sion has also been associated with impaired pattern separa-
tion which can be described as misperceived stimuli and 
impaired ability to distinguish information at a basic sensory 
processing level [18]. Pattern separation is the ability to dis-
criminate among similar experiences. It is hypothesized that 
pattern separation is associated with hippocampal function-
ing [19]. BDNF helps to regulate hippocampal functions 
and its plasticity [20]. Decreased BDNF expression has 
been reported in depression which ultimately halts neuronal 
regeneration [21].

For the management of depression and mood disorders 
mostly drugs are used that regulate serotonergic transmis-
sion [22]. Curcumin is a component of turmeric possessing 
anti-inflammatory, antistress, and neurotropic effects. Tra-
ditionally curcumin is used for the treatment of depression 
as it increases serotonergic and dopaminergic neurotrans-
mission and BDNF protein expression in the brain [23, 24]. 
Curcumin decreases acetylcholinesterase (AChE) activity 
and hence increases acetylcholine (ACh) function in hip-
pocampus and cerebral cortex [25]. Oral administration of 
curcumin was found to enhance memory functions by having 
a positive effect on cholinergic and serotonergic neurotrans-
mission [26, 27].

The reversibility of pseudodementia increases the pos-
sibility to treat it by eliminating the underlying psychiatric 

illness. By this strategy, it is possible to halt the progress 
of pseudodementia into true dementia. Previously, cur-
cumin has been consistently reported for its antidepressant 
effects. The present study was, therefore, particularly aimed 
to investigate the biochemical and neurochemical changes 
in memory deficits associated with depression following 
the treatment with curcumin. Curcumin has been used as 
an antidepressant and memory-enhancing compound but in 
the present study, the role of curcumin was investigated as 
a therapeutic agent to overcome depression-induced pseud-
odementia in rats.

Experimental Procedures

Animals

Twenty four locally bred, male albino Wistar rats (body 
weight: 180–200 g) were purchased from Dow University of 
Health Sciences, OJHA campus Karachi. Animals were kept 
individually in their cages in a quiet room for at least a week 
so that the rats adapt to the laboratory environment. The 
study was reviewed and approved by the ethical clearance 
committee, University of Karachi (Advance Studies and 
Research Board) and obtained ethical clearance under ASRB 
no: 03344/Sc. The study was also performed in accordance 
with National Institute of Health Guide for Care and Use of 
Laboratory Animals (Publication No. 85-23, revised 2011). 
All experimental procedures were performed in a balanced 
design to avoid the effect of time and order.

Drug

Curcumin used in the experiment was purchased from Sigma 
Aldrich. The drug was prepared in sunflower oil and admin-
istered orally to the test animals at a dose of 200 mg/kg/ml 
using a feeding tube. Untreated rats received an equal vol-
ume of sunflower oil. Effects of curcumin were monitored 
after seven days of treatment.

Experimental Protocol

Animals (n = 24) were randomly divided into two experimen-
tal groups unstressed (n = 12) and stressed (n = 12). Stressed 
rats were subjected to chronic restraint stress in restrainer 
tube. The stress procedure was continued for 14 days for 4 h 
daily. Depressive-like behaviors were then assessed in forced 
swim test (FST). After observing depression-like symptoms, 
pseudodementia in rats was checked by conducting pattern 
separation test for similar new object (PST-SNO) and pattern 
separation test for different location of object (PST-DLO). 
Spatial memory was also monitored by using Morris water 
maze (MWM) paradigm. After the initial behavioral phase, 
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both groups were further divided for vehicle and curcumin 
treatment resulting in four groups (n = 6 per group) including 
control, depression (DEP), curcumin (CUR), and depres-
sion + curcumin (DEP + CUR). The control and DEP groups 
were treated with vehicle whereas CUR and DEP + CUR 
groups were treated with curcumin at a dose of 200 mg/kg 
for seven days. The stress procedure was continued during 
the supplementation of curcumin for DEP and DEP + CUR 
groups. After 7 days of curcumin treatment, rats were again 
subjected to behavioral analyses including FST, PST-SNO, 
PST-DLO and MWM. Behaviors were performed between 
0800 and 1600 h. Following the behavioral analysis, rats 
were subjected to decapitation to dissect the brain and the 
hippocampal region was separated for neurochemical analy-
sis. Plasma samples were also collected for the estimation 
of corticosterone. All samples were immediately stored at 
− 20 °C till further analysis (Fig. 1).

Restraint Stress Procedure

The stress groups were subjected to stress procedure by 
restraining them in a ventilated closed plastic tube that only 
allowed mild lateral movement. The stress procedure was 
continued for 4 h daily for 14 days [28].

Assessment of Depression‑Like Symptoms

The expression for depression was monitored by FST para-
digm. The apparatus and procedure was essentially the same 
as described previously [29]. It was one day protocol of FST. 
Rats were allowed to swim for 5 min followed by a pre-
test of 2 min. Immobility time was observed during testing 
duration of the experiment. The increase in immobility time 
showed depression-like behavior of rats.
Pattern Separation for Similar New Object (PST‑SNO)

This test was conducted to evaluate the ability of rats to dif-
ferentiate between similar but new objects. This test has been 
suggested to determine the tendency of pattern separation to 
identify the minute differences between two similar objects. 

The apparatus consisted of an open field 40 × 40 × 40 cm. 
The test comprised of three sessions; habituation, familiari-
zation, and test sessions. During habituation, each rat was 
placed in the box and allowed to explore the area for 10 min 
in order to habituate with the box. After 24 h of habitua-
tion, two similar objects were placed in the box and rat was 
allowed to explore both objects for 5 min so that rat got 
familiarized with both objects. The test session was carried 
out after 20 min of familiarization phase during which one 
of the objects was replaced by a new but similar object. The 
old object which was not replaced was designated as ‘a’ 
whereas the new object was assigned as ‘b’. During the test 
session exploring time for each object was recorded. Dis-
crimination index (DI) was calculated by using the formula 
(b − a/a + b), where ‘a’ is the time to sniff the old object 
and ‘b’ is the time to sniff the new object placed during the 
test session. This test is based on the recognizing ability of 
rodent using olfactory cues. The discrimination index ranges 
from − 1 to + 1. The lower values of discrimination index 
represent inability of the rat to differentiate between similar 
but new objects [1].

Pattern Separation Test for Different Location 
of Object (PST‑DLO)

This test was also used to analyze the ability of pattern 
separation in rats. This test was based on the ability to dis-
criminate similar events [30]. In this test an apparatus having 
the dimension of 76 × 76 × 42 cm was used as an open field 
area. This test also comprised of three sessions; habitua-
tion, familiarization and test sessions. The rat was allowed 
to habituate with the open field arena during habituation 
for 10 min which was followed by familiarization phase 
after 24 h. During familiarization two massive and identical 
(12 × 12 × 12 cm) wooden blocks were placed in the mid-
dle area on a same horizontal line. Rat was introduced into 
the open field area facing towards the wall and was allowed 
to explore both objects for 5 min. After 20 min of second 
phase, test session was conducted during which one of the 
objects was displaced from its position to a definite point to 

Fig. 1   Schematic diagram showing experimental protocol of the cur-
rent study. After chronic restraint stress (CRS) the rats for 14 days, 
rats were subjected to behavioral tests using forced swim test (FST), 
pattern separation test for similar new object (PST-SNO), pattern 
separation test for different location of objects (PST-DLO), and Mor-

ris water maze (MWM). There was a gap of 3  h between the tests 
which were performed on the same day. Curcumin supplementation 
was continued for 7 days followed by same sequence of behavioral 
analysis and decapitation to collect the samples
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change its location so that the objects aligned diagonally. 
Time to sniff both objects was recorded during testing phase. 
The object which was not displaced from its location was 
designated as ‘a’ whereas the object with new location was 
named as ‘b’. Discrimination index was calculated by the 
same formula as mentioned above. Discrimination index 
value ranges from − 1 to + 1. The impaired pattern separa-
tion was determined by lower discrimination index values 
indicating that rat was unable to identify the new location 
of displaced object.

Assessment of Spatial Memory by Morris Water 
Maze (MWM)

Spatial memory was observed by MWM apparatus. The 
dimensions of the apparatus were same as described earlier 
[31]. The MWM tank was divided into four quadrants as 
North (N), West (W), East (E), and South (S). The test con-
sisted of two sessions; training and testing. During training 
session rats were allowed to swim in a circular tank filled 
with opaque water (having milk in it). Rats were given 120 s 
to find hidden platform; if the rat found the platform it was 
allowed to stay there for 10 s to familiarize and find cues 
related to the platform. In case rat failed to find platform 
then it was dragged gently to the platform. After initial train-
ing for 120 s, rats were trained from four different directions 
NE, SE, NW, and SW (target quadrant) to find the platform. 
There was 15 min gap between each trial. The cumulative 
escape latency was calculated for each rat by the summa-
tion of escape latencies observed during four training trials 
to find out the learning ability. After one hour of last trial, 
the test session was conducted during which platform was 
removed from the target quadrant. During test session time 
spent in target quadrant was noted. Cut off time was 120 s 
during testing. More time spent in target quadrant showed 
improved memory function.

Corticosterone Estimation

Blood samples were collected in heparinized tubes following 
decapitation of rats. These samples were centrifuged at 4 °C 
and plasma was separated for the estimation of corticoster-
one. Procedure for extraction of corticosterone was exactly 
same as described in [32]. It is a fluorimetric method in 
which 0.2 ml plasma was extracted with 1.5 ml of dichlo-
romethane. It was shaken well and centrifuged. The upper 
layer was aspirated and 1 ml dichloromethane layer was 
transferred to another tube and shaken with 1 ml of sulphu-
ric acid-ethanol reagent (7:3, v/v). The solvent was removed 
and sulphuric acid-ethanol reagent layer was transferred to 
a cuvette. It was read in fluorimeter at 470 nm excitation 
and 570 nm emission. The stock solution was prepared in 

ethanol and diluted with distilled water. The concentration 
of corticosterone was expressed in µg/dl.

Estimation of Hippocampal BDNF Levels

Hippocampal BDNF levels were analyzed by ELISA kit 
method. Commercially available BDNF kit (Rat BDNF Elisa 
Kit, Cat. No. E0476Ra, Bioassay Technology Laboratory, 
Shanghai, China) was used for the estimation. Homogeniza-
tion and centrifugation of hippocampal tissue in PBS buffer 
(pH = 7.4) was done to separate the supernatant which was 
then used for the estimation of BDNF levels by using the 
manufacture‘s protocol. The BDNF levels were expressed 
as ng/g of hippocampal tissue.

Monoamine Estimation

For the estimation of 5-HT, dopamine (DA), and dihydroxy-
phenylacetic acid (DOPAC), the same method was used as 
described previously [33]. Frozen hippocampal tissues were 
homogenized in an extraction medium by using an electrical 
homogenizer (Polytron; Kinematica). The biogenic amines 
were estimated by reversed-phase HPLC with fluorescence 
detector (RF-10A

XL
 ). The stationary phase used for sepa-

ration is a 5-µ Shim-pack ODS column having an internal 
diameter of 4.0 mm and a length of 250 mm. The mobile 
phase (pH = 3.5) that passes through the column consisted of 
0.0025% 1-octanesulfonic acid sodium salt in acetate buffer 
having 12 mM acetic acid, 0.26 mM Na2EDTA, and 14% 
methanol. The fluorescence was observed at 279 nm excita-
tion and 320 nm emission wavelengths.

Acetylcholine (ACh) Estimation

ACh content was estimated by the method of Hestrin [34] as 
described previously [35]. Hippocampal tissue was boiled 
to set free the bounded ACh and inactivate the enzyme. 
Free ACh bound with ferric chloride and brown color was 
obtained. Samples were read at 540 nm against blank.

Statistical Analysis

The behavioral data obtained before curcumin treatment 
was analyzed by independent t-test as the data comprised of 
two groups (CONTROL and DEP). The data obtained after 
curcumin treatment comprised of four groups (CONTROL, 
CUR, DEP, DEP + CUR) was analyzed by one-way ANOVA 
followed by Bonferroni test. Two-way repeated measure 
was applied to assess data for MWM training trials. Data 
is presented as mean ± SEM, p values < 0.05 were taken 
as significant.



3277Neurochemical Research (2021) 46:3273–3285	

1 3

Results

Effects of Stress and Curcumin on Forced Swim 
Activity

In this study, depression-like behavior was monitored using 
FST paradigm. Test was conducted after 14 days of stress 
exposure. Independent t-test showed a significant increase in 
immobility time [t(22) = 4.83, p < 0.01] in depressed group as 
compared to control animals (Fig. 2a). After curcumin treat-
ment statistical analysis showed significant effect of treat-
ment [F(3, 20) = 8.69, p < 0.01] on immobility time (Fig. 2b). 
Post-hoc analysis by Bonferroni test revealed significantly 
elevated immobility time in DEP group (p < 0.05) as com-
pared to control animals. However, curcumin treatment in 
DEP + CUR group normalized the depressive symptoms and 
became comparable to controls.

Effects of Stress and Curcumin on Pattern 
Separation Test for Similar New Objects

Effects of depression on pattern separation were observed 
by PST-SNO in which discrimination index between similar 

new objects was monitored (Fig. 3). Before curcumin treat-
ment, depression significantly induced impaired pattern 
separation as evident by decreased discrimination index 
[t(22) = 5.28, p < 0.01] in DEP group as compared to con-
trols (Fig. 3a). After curcumin treatment statistical analy-
sis showed significant effect of treatment [F(3, 20) = 14.01, 
p < 0.01]. DEP group showed impaired ability of pattern 
separation (p < 0.05) as compared to controls whereas, treat-
ment with curcumin improved the discrimination of simi-
lar new objects from old object when compared with DEP 
group (p < 0.01) (Fig. 3b).

Effects of Stress and Curcumin on Pattern 
Separation Test for Different Location Object 
Locations

Pattern separation was also observed by PST-DLO para-
digm in which discrimination index for different location 
of object was monitored (Fig. 4). Depression significantly 
[t(22) = 5.50, p < 0.01] induced impairment in the ability of 
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pattern separation of DEP group as compared to control ani-
mals (Fig. 4a). Statistical analysis after curcumin treatment 
showed significant effects of treatment [F(3, 20) = 19.87, 
p < 0.01] on discrimination index. Group treated with cur-
cumin alone exhibited significantly (p < 0.05) improved dis-
crimination index as compared to controls (Fig. 4b). DEP 
group showed impaired discrimination index (p < 0.01) 
when compared with control animals whereas, treatment 
with curcumin in DEP + CUR reduced the depression-
induced impaired pattern separation as evident by signifi-
cantly increased discrimination index when compared with 
DEP group.

Effects of Stress and Curcumin on Morris Water Maze 
Test

Spatial memory of rats was evaluated by MWM test. One-
way ANOVA with repeated measure showed significant 
effect of treatment [F(1, 22) = 5.227, p < 0.05] and trials 
[F(3, 66) = 38.77, p < 0.01] on escape latency during trials. 
Bonferroni test revealed impaired learning ability in DEP 

group as evident by significantly increased escape latency 
during training trials as compared to controls (p < 0.05; 
p < 0.01) (Fig. 5a). In addition to this, DEP group also 
showed impaired memory function (p < 0.01) as these rats 
spent less time in target quadrant during probe trial as com-
pared to control animals (Fig. 5b). After curcumin adminis-
tration statistical analysis showed significant effects of treat-
ment [F(3, 20) = 55.63, p < 0.01] and trials [F(3, 60) = 36.83, 
p < 0.01] on learning ability. In comparison to control ani-
mals, DEP group showed significantly increased escape 
latency during 2nd (p < 0.05), 3rd (p < 0.01) and 4th 
(p < 0.05) training trial whereas, curcumin treatment in 
DEP + CUR group significantly reduced the escape latency 
during 3rd (p < 0.05) and 4th (p < 0.01) training trial as com-
pared to DEP group, indicating improved learning ability 
following the treatment with curcumin (Fig. 5c). Statistical 
analysis for the time spent in target quadrant also showed 
significant effects of treatment [F(3, 20) = 17.13, p < 0.01]. 
The group treated with curcumin alone showed signifi-
cantly increased (p < 0.05) time spent in target quadrant 
as compared to control animals (Fig. 5d). DEP group on 
the other hand spent significantly (p < 0.01) reduced time 
in target quadrant when compared with controls. However, 
DEP + CUR group exhibited a significant (p < 0.01) increase 
in time spent in target quadrant as compared to DEP group, 
demonstrating improved memory function by curcumin 
treatment.

Effects of Stress and Curcumin on Plasma 
Corticosterone Levels

Analysis of data by one-way ANOVA showed significant 
effects of treatment [F(3, 20) = 18.80, p < 0.01] on plasma cor-
ticosterone levels. The levels of corticosterone were signifi-
cantly increased in DEP group as compared to that of control 
group (p < 0.01). Elevated levels of corticosterone confirmed 
depression-like condition in DEP rats (Fig. 6). CUR treat-
ment, however, significantly reduced depression-induced 
increase in corticosterone levels in DEP + CUR group as 
compared to DEP (p < 0.01).

Effects of Stress and Curcumin on Hippocampal 
BDNF Levels

It was observed that there was also a significant effect of 
treatment [F(3, 20) = 38.70, p < 0.01] on hippocampal BDNF 
levels. CUR group exhibited significantly increased levels of 
BDNF as compared to that of controls (p < 0.01). DEP group 
showed significantly reduced levels of BDNF as compared 
to control rats (p < 0.01). DEP + CUR showed significantly 
increased levels of BDNF as compared to DEP and control 
groups (p < 0.01) which showed improvement in hippocam-
pal functions by curcumin treatment (Fig. 7).
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Effects of Stress and Curcumin on Hippocampal 5‑HT 
Levels

Statistical analysis showed significant effects of treatment 
[F(3, 20) = 82.78, p < 0.01] on 5-HT levels in hippocampus. 
Post-hoc analysis revealed significant reduction in 5-HT 
levels in DEP group as compared to that of control group 
(p < 0.01). This alteration in hippocampal 5-HT levels were 
not observed in DEP + CUR group which showed signifi-
cantly increased levels of 5-HT as compared to DEP group 
(p < 0.01) (Fig. 8).

Effects of Stress and Curcumin on Hippocampal DA 
Levels

Hippocampal DA was also significantly affected by the 
treatment [F(3, 20) = 2005.8, p < 0.01] Bonferroni post-hoc 
test showed increased levels of hippocampal DA in CUR 
group as compared to control animals (p < 0.01) whereas, 
DA levels were significantly reduced in DEP group as com-
pared to that of control group (p < 0.01). Curcumin treatment 
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inhibited the reduction in DA levels in DEP + CUR group as 
compared to DEP group (p < 0.01) showing beneficial effects 
of curcumin on monoamine neurotransmission (Fig. 9).

Effects of Stress and Curcumin on Hippocampal 
DOPAC Levels

One-way ANOVA showed significant effects of stress 
[F(3, 20) = 1772.4, p < 0.01] on hippocampal DOPAC lev-
els. DEP group exhibited significantly increased levels of 
DA degradative product as compared to controls (p < 0.01). 
Whereas curcumin treatment significantly protected the 

degradation of DA as evident by decreased levels of DOPAC 
in DEP + CUR as compared to DEP group (p < 0.01) 
(Fig. 10).

Effects of Stress and Curcumin on Hippocampal ACh 
Levels

Analysis of hippocampal ACh levels by one-way ANOVA 
showed significant effects of treatment [F(3, 20) = 26.41, 
p < 0.01]. CUR group exhibited significantly increased lev-
els of ACh as compared to controls (p < 0.01). DEP group 
showed a significant reduction in ACh levels when com-
pared with control group (p < 0.05). Curcumin treatment 
in DEP + CUR group, however, significantly increased the 
levels of hippocampal ACh as compared to DEP and control 
groups (p < 0.01) (Fig. 11).

Discussion

In the present study depressive-like symptoms were 
observed in FST paradigm after subjecting rats to 14 days of 
chronic restraint stress for 4 h. Immobility time was longer 
in stressed group and impairment in pattern separation and 
spatial memory function was observed in the depressed 
group. It has been reported that 2 h stress for 4–8 weeks 
induces depression-like behavior which can be observed 
by FST [36]. Another experiment showed that 2 h CRS 
stress for 14 days was valid for animal model of depression 
[37]. It has been shown previously that depressive patients 
also suffer from pseudodementia [38]. Depressive patients 
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perform abruptly in effort demanding situations. This led 
the scientists to suggest that motivation is linked with effort 
demanding activities in depressed patients which also affects 
learning ability [39]. In depression, it is difficult to recognize 
minor differences between two objects, which make the basis 
of diagnosis of dementia associated with depression [8]. In 
the present study, pseudodementia was monitored by using 
pattern separation test. The depressed rats showed impaired 
recognition to discriminate between similar objects and dif-
ferent location of objects. This indicates that depressed rats 
were unable to focus on the minute differences thus result-
ing in impairment of learning and memory and showed 

deterioration in pattern separation ability. Hence, the pre-
sent findings are consistent with the previous research that 
showed impaired memory function following depression 
[40].

Activation of hypothalamic-pituitary-adrenal (HPA) axis 
following stress has been reported earlier [41]. This leads 
to the elevation of glucocorticoids which results in hip-
pocampal atrophy and cognitive abnormalities. Increased 
cortisol levels were found in depressive patients [5]. Another 
research showed that elevated levels of glucocorticoids and 
reduced hippocampal BDNF mRNA expression are involved 
in the pathophysiology of depression [42]. The current find-
ings also showed increased corticosterone levels in depres-
sive animals. Moreover, hippocampal BDNF levels were 
also decreased in present research which is in accordance 
with the previous findings [43]. This could be the cause 
of impaired learning and memory observed in depressed 
rats. Evidence showed that animal model of depression has 
decreased levels of BDNF in hippocampus and amygdala 
resulting in impaired hippocampal dependent memory pro-
cessing (pattern separation ability) [44]. Convergent evi-
dence from studies also shows that decreased BDNF lev-
els cause hippocampal atrophy [45, 46]. Moreover, human 
postmortem studies of depressive and suicidal cases also 
indicated a reduction in BDNF [20, 47]. Impaired memory 
and pattern separation ability observed in the present study 
in depressed rats may be attributed to the decreased hip-
pocampal BDNF levels.

The role of 5-HT and DA in depression and memory 
is extensively studied. Decreased hippocampal and corti-
cal 5-HT and DA have been observed in depressive illness 
[48]. The present study also exhibited decreased levels of 
5-HT and DA in the hippocampus of depressed rats. DOPAC 
levels were significantly higher in the depressed group as 
compared to control rats. Increased DOPAC levels in the 
present study suggest increased turnover of DA resulting 
in the low levels of DA in the hippocampus. In depressive 
illness degradation of DA is increased and its neurotrans-
mission is decreased [49]. Previously alteration in DA and 
DOPAC levels has been shown in different areas of the brain 
in depressed rats [50]. It has been studied that in depres-
sive illness DA neurons are disrupted resulting in impaired 
memory, mainly affecting pattern separation ability. Pre-
sent findings are consistent with the previous findings of 
Dillon and Pizzagalli [44] that decreased DA in the hip-
pocampus is involved in impaired pattern separation. Hip-
pocampal ACh neurotransmission is also reported to decline 
in depression which further worsens the pattern separation 
in rats [51]. A study showed that initially, a chronic eleva-
tion in ACh in depression leads towards down-regulation 
of ACh receptors, hence, ACh levels ultimately decrease 
in depression [52]. Depressed rats in the present study also 
exhibited decreased levels of ACh in hippocampus. Impaired 
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memory and cognition in the present study in depressed rats 
may indeed be attributed to decreased ACh levels. Increased 
levels of ACh in the hippocampal formation are well studied 
and a decline in this neurotransmitter is related to impaired 
memory and cognitive processes [53].

It has been shown previously that curcumin treatment 
reversed depression and memory impairment [54]. Cur-
cumin in this study was used as an antidepressant and 
nootropic drug. It was previously described that it has 
profound antidepressant activity. Its antidepressant effects 
have been reported in Wistar Kyoto rat model of depression 
[55]. This putative model of depression was administered 
with curcumin at the doses of 50, 100, and 200 mg/kg for 
1–10 days and dose-dependent antidepressant effects were 
observed in FST and open field test [55]. Consistent with 
this study, present findings also showed that one-week cur-
cumin treatment significantly restored the depressive symp-
toms in rats exposed to CRS. Curcumin can help to allevi-
ate stress-induced dysfunction of HPA-axis and decreases 
the level of stress hormone such as corticosterone. Xu et al. 
examined the amelioration of depression and dysfunction of 
HPA-axis following the administration of curcumin at the 
doses of 2.5, 5, and 10 mg/kg in rats subjected to 20 days 
of stress protocol [56]. Reduced level of stress hormone is 
involved in the alleviation of depressogenic behavior which 
was also observed in this study following the treatment with 
curcumin. Neurotrophic factor expressions are also modu-
lated by curcumin treatment [56]. Curcumin treatment in 
control and depressed rats improved learning and memory 
via regulating BDNF in our study. It was described earlier 
that curcumin reversed memory impairment in stressed rats 
by regulating BDNF in the hippocampus [54].

Curcumin has a marked effect on neurotransmission in 
mental illness. In an animal study, curcumin administration 
increased 5-HT and DA levels [27]. It inhibits monoamine 
oxidase activity and hence is involved in increasing mono-
amine neurotransmission [23]. Increased hippocampal DA 

and 5-HT levels were observed in DEP rats following treat-
ment with curcumin whereas the control animals treated 
with curcumin alone also showed increased DA levels in 
hippocampus. Moreover, DEP rats treated with curcumin 
also displayed reduced depressive symptoms and improved 
learning and memory. Previous research showed that cur-
cumin increased 5-HT receptor expression and improved 
cognitive functions in depressed animals [57]. Curcumin 
is an allosteric modulator of cholinergic receptors and acts 
in positive way and hence increases the level of ACh [58]. 
Consistent with these results we also observed increased 
hippocampal ACh levels following the administration of cur-
cumin. It was shown that polyphenolic compounds like cur-
cumin can decrease the activity of AChE and combat mem-
ory decline due to reduced levels of ACh [59]. Increased 
ACh in curcumin treated rats observed in this study may 
be attributed to inhibitory activity of curcumin on AChE as 
reported earlier [60]. Here it is suggested that curcumin can 
ameliorate pseudodementia via regulating corticosterone and 
hippocampal BDNF. Further, improvement in hippocampal 
neurochemical profile may also be involved in overcoming 
pseudodementia.

Conclusions

The present findings showed that stress-induced depres-
sion results in various behavioral, and biochemical changes 
(Fig. 12). Increased levels of corticosterone and reduced 
neurotrophic factor may lead to impaired memory function 
resulting in pseudodementia. Administration of curcumin 
effectively attenuated the depressive symptoms and related 
memory impairments. Hence, it is suggested that curcumin 
can be a potent therapeutic agent in combating depression 
and associated pseudodementia.
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