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Abstract
  Cholestasis is a bile flow reduction that is induced following Bile Duct Ligation (BDL). Cholestasis impairs memory 
and induces apoptosis. Apoptosis consists of two pathways: intrinsic and extrinsic. The intrinsic pathway is modulated by 
BCL-2 (B cell lymphoma-2) family proteins. BCL-2 (a pro-survival BCL-2 protein) has anti-apoptotic effect, while BAD 
(BCL-2-associated death) and BAX (BCL-2-associated X), the other members of BCL-2 family have pro-apoptotic effect. 
Furthermore, TFAM (mitochondrial transcriptional factor A) is involved in transcription and maintenance of mitochondrial 
DNA and PGC-1α (peroxisome proliferator-activated receptor γ coactivator-1α) is a master regulator of mitochondrial bio-
genesis. On the other hand, NeuroAid is a Traditional Chinese Medicine with neuroprotective and anti-apoptosis effects. In 
this study, we evaluated the effect of cholestasis on spatial memory and expression of BCL-2, BAD, BAX, TFAM, and PGC-1α 
in the hippocampus of rats. Additionally, we assessed the effect of NeuroAid on cholestasis-induced cognitive and genetic 
alterations. Cholestasis was induced by BDL surgery and NeuroAid was injected intraperitoneal at the dose of 0.4 mg/kg. 
Furthermore, spatial memory was evaluated using Morris Water Maze (MWM) apparatus. The results showed cholestasis 
impaired spatial memory, increased the expression of BAD and BAX, decreased the expression of TFAM and PGC-1α, and 
did not alter the expression of BCL-2. Also, NeuroAid decreased the expression of BAD and BAX and increased the expres-
sion of TFAM, PGC-1α, and BCL-2. In conclusion, cholestasis impaired spatial memory and increased the expression of 
pro-apoptotic genes. Also, cholestasis decreased the expression of TFAM and PGC-1α. Interestingly, NeuroAid restored the 
effects of cholestasis.
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Introduction

Bile formation is a special function of liver that is crucial 
for liver health [1]. Bile Duct Ligation (BDL) disrupts bile 
secretion and induces liver damage [2]. BDL also induces 
hepatic fibrosis, necrosis, and apoptosis [3, 4]. Furthermore, 

BDL induces cholestasis [2, 5]. Cholestasis reduces the 
bile flow and induces liver damage [6–8]. Cholestasis also 
impairs learning and memory in different cognitive tasks 
[9, 10]. It has been revealed that cholestasis disrupts mem-
ory retrieval in one-trial step-down memory task in mice 
[11]. Cholestasis also impairs spatial recognition memory 
in Y-maze task [12]. Furthermore, mild BDL can impair 
learning in Y-maze task in rats [13]. Interestingly, human 
studies have shown that biliary cirrhosis and liver diseases 
can induce cognitive impairments and dementia [14, 15]. 
It should be noted that molecular mechanisms of cholesta-
sis involved in cognitive impairments are largely unknown. 
However, it has been suggested that BDL-induced hyperam-
monia may be a main factor for cognitive and neurological 
impairments [16, 17]. In addition, disruptions in neurotrans-
mitter systems including glutamatergic, cholinergic, dopa-
minergic, opioidergic, GABAergic, and serotonergic have 
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been observed following BDL or liver diseases [18–20]. 
Further, as mentioned before, BDL plays an important role 
in the induction of necrosis and apoptosis [21–23].

Apoptosis is a form of programmed cell death. The inap-
propriate form of apoptosis (too little or too much) induces 
neurodegenerative and autoimmune diseases, and various 
types of cancer [24]. Apoptosis occurs via two pathways: the 
extrinsic and the intrinsic [25]. The intrinsic pathway (also 
called mitochondria-dependent) is modulated by BCL-2 (B 
cell lymphoma-2) family of proteins [26, 27]. BCL-2 pro-
teins integrate both death and survival signals, and based on 
the composition of typical BH domains are divided into anti-
apoptotic and pro-apoptotic groups [28, 29]. The integrity of 
the Outer Mitochondrial Membrane (OMM) is regulated by 
anti-apoptotic BCL-2 proteins including BCL-2 (a pro-sur-
vival BCL-2 protein) [30, 31]. Furthermore, pro-apoptotic 
BCL-2 proteins such as BAD (BCL-2-associated death) and 
BAX (BCL-2-associated X) activate caspases and promote 
cell death via releasing mitochondrial Inter-Membrane 
Space (IMS) proteins [32, 33].

TFAM (mitochondrial transcriptional factor A) has a criti-
cal role in transcription and maintenance of mitochondrial 
DNA (mtDNA) [34, 35]. TFAM also protects mtDNA from 
free radicals [36]. Abnormal function of mtDNA can lead 
to severe disorders. For example, decrease in functional 
mtDNA abundance may induce Parkinson’s disease, Alz-
heimer’s disease (AD), and Amyotrophic lateral sclerosis 
(ALS) [37, 38]. On the other hand, PGC-1α (peroxisome 
proliferator-activated receptor γ coactivator-1α) is a master 
regulator of mitochondrial biogenesis and regulates energy 
metabolism and antioxidant pathways [39, 40]. PGC-1α has 
a critical role in the pathogenesis of various diseases such 
as AD [41].

The hippocampus has high expression of BCL-2 proteins 
family including BAX and BAD [42]. It has been revealed 
that stress upregulates the expression of BAX and BAD [42]. 
Stress damages the neurons probably via induction of pro-
apoptotic factors, while upregulation of anti-apoptotic BCL-
2 proteins may be a compensatory response [43, 44]. Fur-
thermore, the hippocampus has high expression of PGC-1α 
and TFAM [40]. The expression of PGC-1α and TFAM is 
downregulated following dementia and AD in memory-
related brain regions especially hippocampus [45].

NeuroAid (as a Traditional Chinese Medicine) has anti-
apoptotic and neuroprotective effects [46, 47]. NeuroAid 
(MLC901) has nine herbal components per each capsule 
including 0.80 g Radix astragali, 0.16 g Radix salvia milti-
orrhizae, 0.16 g Radix paeoniae rubra, 0.16 g Rhizoma 
chuanxiong, 0.16 g Radix angelicae sinensis, 0.16 g Car-tha-
mus tinctorius, 0.16 g Prunus persica, 0.16 g Radix polyg-
alae, and 0.16 g Rhizoma acori tatarinowii [48]. NeuroAid 
inhibits necrosis and apoptosis of neurons in ischemic rats 
[49]. Also, NeuroAid plays an important role in the repair of 

neurovascular unit after ischemic stroke [50]. Recent phar-
macological studies have shown that NeuroAid protects the 
brain from ischemic injury, decreases functional deficits in 
animal models of stroke, and prevents neural death in in-
vitro models of excitotoxicity [51]. NeuroAid also induces 
synaptogenesis, promotes cell proliferation, and stimulates 
the development of dense axonal and dendritic networks 
[51]. In addition, BDNF (brain-derived neurotrophic fac-
tor) and VEGF (vascular endothelial growth factor), the key 
mediators of adaptive remodeling of surviving neurons and 
neural networks [52] are upregulated following NeuroAid 
treatment [51, 53].

According to the mentioned findings, the goal of this 
research is to investigate the effect of NeuroAid on choles-
tasis-induced spatial memory impairment with respect to the 
expression of BAX, BCL-2, BAD, PGC-1α, and TFAM in the 
hippocampus of male Wistar rats.

Material and Method

Animals

In the present study, male Wistar rats (220-240 g, 11–12 
weeks old) bred at Iranian National Center for Addiction 
Studies (INCAS), Tehran, Iran were used. Rats were kept 
in the lab with a 12/12 h light-dark cycle and standard tem-
perature (22 ± 2 °C). Rats were placed in Plexiglas cages in 
groups of 4 and free access to food and water was provided 
except during the experiments. Each experimental group 
consisted of eight rats. Furthermore, the behavioral experi-
ments were done only during the light phase.  All the experi-
ments were done in accordance with the guidelines of NIH 
(NIH Guide for the Care and Use of Laboratory Animals) 
and the guidelines of Institute for Cognitive Science Studies 
(ICSS), Tehran, Iran.

Bile Duct Ligation (BDL) Surgery

Rats were anesthetized by intraperitoneal injection of keta-
mine hydrochloride (50 mg/kg) plus xylazine (5 mg/kg). 
During surgery, the common bile duct was located and 
ligated using 4 − 0 silk at two points anterior to the pan-
creas and posterior to the hilum of the liver. One ligation 
was made just above the duodenum; the second ligation 
was made approximately 2 mm above the first ligation and 
then transected at the midpoint between the two ligatures 
[11, 54]. Sham-ligation surgery was performed by locating 
and manipulating the common bile duct. Sterile 0.9% NaCl 
solution (1 mL/rat) was injected intraperitoneal immediately 
after the surgery. All surgeries were performed using asep-
tic technique. After the operation, each rat was placed in a 
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cage by itself to prevent wound dehiscence and 4 h later was 
transferred to its original cage [11, 55].

Drug

NeuroAid (MLC901) (Moleac, Singapore) including 9 
herbal components per each capsule: 0.80g Radix astragali, 
0.16g Radix salvia miltiorrhizae, 0.16g Radix paeoniae 
rubra, 0.16g Rhizoma chuanxiong, 0.16g Radix angelicae 
sinensis, 0.16g Car-thamus tinctorius, 0.16g Prunus persica, 
0.16 g Radix polygalae, and 0.16g Rhizoma acori tatarinowii 
[48] was injected intraperitoneal at the dose of 0.4 mg/kg.

Experimental Groups

This study consisted of four experimental groups includ-
ing: Sham of BDL with saline (1 mL/kg), Sham of BDL 
with NeuroAid (0.4 mg/kg), BDL with saline (1 mL/kg), 
and BDL with NeuroAid (0.4 mg/kg). NeuroAid (Moleac, 
Singapore) was diluted in saline (used as a vehicle) at con-
centration of 0.4 mg/mL (stock solution) and incubated 
under agitation for 1 h at 37 °C. The solution was strained 
using a 0.22-µm filter. One day after BDL surgery, NeuroAid 
(0.4 mg/kg) was injected intraperitoneal; and then, was 
injected every other day up to 28 days [46]. After 28 days, 
spatial memory was assessed. 28-day period was selected 
because BDL induces a strong fibrotic response after 21 to 
28 days [56]. Additionally, many studies have used a 28-day 
period to evaluate the effect of BDL on cognitive and non-
cognitive functions [10, 57–59]. We designed sham of BDL 
with saline group to assess the effect of both injection stress 
and surgery stress on memory performance.

Morris Water Maze

Morris Water Maze (MWM) is a valid test to assess spatial 
learning and memory [60, 61]. MWM is a circular black tank 
(150 cm in diameter and 60 cm depth) filled with water to a 
depth of 30 cm. The water temperature in the tank was about 
22° C. The visual signs were placed on the walls around the 
tank. The maze was divided into four quadrants and each 
quadrant had a starting location: north (N), south (S), west 
(W), and east (E). The hidden platform (10 cm in diameter) 
was submerged 1 cm beneath the surface of the water in the 
center of the target quadrant (the north-west quadrant) [62]. 
All rats had to find the hidden platform by referring to the 
visual cues. The test began after a 4-week treatment. One 
day before the start of learning trials, the rats were familiar-
ized with the apparatus. The learning session consisted of 
eight trials with four different starting positions. The hidden 
platform was in the north-west quadrant (the target quad-
rant). A camera was located above the tank and attached 
to a computer. The performance of each rat was recorded 

by a smart video tracking software (BorjSanatAzma). Dur-
ing learning trials, the escape latency, the traveled distance, 
and the mean velocity of each rat to find the hidden plat-
form were measured. After finding the platform, each rat 
was allowed to remain on the platform for 20s (to memorize 
visual cues). In learning trials, more time spent or longer 
distance traveled means poor spatial learning. 24h after 
learning trials, the probe test was performed. In the probe 
test rats were placed in the tank for 1 min, while the hid-
den platform was removed. The escape latency, the traveled 
distance, and the mean velocity of the rats only in the target 
quadrant were measured. In probe trial, more time spent or 
longer distance traveled in the target quadrant means better 
spatial memory. After the probe test, we performed visible 
test with the visible platform to ensure that motor functions, 
visuo–motor abilities, or motivation of the rats to escape 
water or anything else did not influence the results.

Statistical Analysis for Spatial Memory

Statistical analyses were performed using SPSS software (V. 
26). Given the normality of distribution and the homogene-
ity of data variance, the results were statistically evaluated 
using two-way ANOVA. Further analyses for individual 
“between-group” comparisons were done using post hoc 
Tukey test. In all comparisons, P < 0.05 was considered as 
statistical significance.

Hippocampus Sample Preparation

After performing the tests, rats were placed in a special 
chamber and killed with CO2 gas. The rat’s brain was 
removed. After a brief wash with normal saline, the brain 
was placed inside a coronal section matrix suitable for the 
brain of rat weighing 200 to 250 g; and then, the hippocam-
pus was separated and placed into the nitrogen tank. (Note: 
all stages of tissue extraction should not last longer than 
2 min). After 24 h, fifty milligrams of hippocampus sam-
ples were diluted in 10 ng phosphate-buffered saline (PBS) 
(PH = 7.4) and homogenized by a homogenizer. The sam-
ples were centrifuged at 2000–3000 RPM for 20 min and 
the supernatants were collected carefully for measuring the 
expression level of BCL-2, BAX, BAD, PGC-1α, and TFAM 
genes. All samples were kept at −80 °C [63, 64].

Real‑time PCR

  In order to measure BCL-2, BAX, BAD, PGC-1α, and 
TFAM genes’ mRNA expression, complementary DNA 
(cDNA) was prepared from the whole cellular RNA. The 
total RNA was extracted using BioFACT™ Total RNA 
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Prep Kit. The RNA was quantified by Picodrop Micro-
liter Spectrometer. cDNA was prepared using BioFACT™ 
OneStep RT-PCR Kit according to the manufacturer’s 
method in a final volume of 40 µl. Finally, the cDNA was 
stored at −20 °C [35].

In order to normalize target gene expression, GAPDH 
was used as the housekeeping gene. The primers used for 
the real-time PCR were BCL-2, BAX, BAD, PGC-1α, and 
TFAM.

After preparing hippocampus samples, the extracted 
RNA was purified and the high quality RNAs were 
selected and kept at − 80 °C until using for cDNA syn-
thesis. Up to 1 µg RNA was converted to cDNA using 
Quantitect reverse transcription kit (Qiagen). The prim-
ers for Real-time PCR were designed and underwent an 
extensive search using BLAST tool. The characteristics 
of the primers used in this study have been summarized in 
Table 1. Real-time PCR was carried out using the follow-
ing cycling conditions: 95 °C for 10 min, and 40 cycles 
at 95 °C for 15 s, and 60 °C for 1 min. Each complete 
amplification stage was followed by a dissociation stage: 
at 95 °C for 15 s, 60 °C for 30 s, then temperature was 
ramped up from 60 to 95 °C (at the rate of 0.03 °C/s). 
Melting curve analysis was performed according to the 
dissociation stage data and reactions.

Genetic Data Analysis

Quantitative analysis was performed by the measurement 
of Ct values during the exponential phase of amplification. 
Relative quantity of genes was determined using compara-
tive Ct method and ΔCt was calculated as the difference 
between the Ct values of the target gene and the Ct value of 
GAPDH gene. The results were analyzed using this formula: 
Gene dosage ratio =  2−ΔΔCt. Statistical significance of differ-
ence was calculated using t-test.

Results

BDL Impaired Spatial Memory and NeuroAid 
Restored this Effect

Trials- The results of two-way ANOVA showed that the 
effect of BDL surgery, drug, and the interaction effect for 
traveled distance, escape latency, and mean velocity in both 
Sec. Introduction (the average data of trials 1 to 4) & 2 (the 
average data of trials 5 to 8) was not significant (Fig. 1). 
Thus, our data showed that spatial learning was not altered 
following BDL surgery or NeuroAid administration.

Probe- The results of two-way ANOVA for escape 
latency showed that the effect of BDL surgery  (F1, 28 = 
4.32, P < 0.05), drug  (F1, 28 = 12.90, P < 0.001), and the Ta
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interaction effect  (F1, 28 = 4.86, P < 0.05) was significant. 
The results of two-way ANOVA for traveled distance 
showed that the effect of drug  (F1, 28 = 11.70, P < 0.01), and 
the interaction effect  (F1, 28 = 8.90, P < 0.01) was significant, 
while the effect of BDL surgery  (F1, 28 = 1.70, P > 0.05) was 
not significant. The results of post hoc Tukey’s showed that 
there is a significant difference between sham + saline and 
BDL + saline groups for traveled distance (P < 0.001) and 
escape latency (P < 0.001). The BDL rats could not distin-
guish the target quadrant. Therefore, the results showed that 
BDL decreased the traveled distance and the escape latency 
in the target quadrant, meaning impaired spatial memory 
consolidation. Also, post hoc Tukey’s showed that there is a 
significant difference between BDL + saline and BDL-Neu-
roAid groups for traveled distance (P < 0.001) and escape 
latency (P < 0.001). Administration of NeuroAid in BDL 
group increased the traveled distance and the escape latency 
in the target quadrant, meaning that NeuroAid restored the 
impairment effect of cholestasis on spatial memory consoli-
dation. Furthermore, the results of two-way ANOVA for the 
mean velocity were not significant (Fig. 2). Also, the results 
of the visible tests were not significant, meaning that motor 
functions, visuo–motor abilities, or motivation of the rats to 
escape water or anything else did not influence the results 
(data not shown).

Real Time PCR Analysis Shows Increased Expression 
of BAD and BAX in BDL Rats

BAX- The results of two-way ANOVA showed that the effect 
of BDL surgery  (F1, 28 = 149.75, P < 0.001), drug  (F1, 28 
= 231.25, P < 0.001), and the interaction effect  (F1, 28 = 
146.20, P < 0.001) was significant. The results of post hoc 
Tukey’s showed that the expression of BAX (P < 0.001) was 
increased in the BDL group, while NeuroAid reversed this 
effect (P < 0.001).

BAD- The results of two-way ANOVA showed that the 
effect of BDL surgery  (F1, 28 = 85.54, P < 0.001), drug  (F1, 28 
= 144.39, P < 0.001), and the interaction effect  (F1, 28 = 
86.19, P < 0.001) was significant. The results of post hoc 
Tukey’s showed that the expression of BAD (P < 0.001) was 
increased in the BDL group, while NeuroAid reversed this 
effect (P < 0.001).

BCL-2- The results of two-way ANOVA showed that 
the effect of BDL surgery  (F1, 28 = 752.24, P < 0.001), drug 
 (F1, 28 = 898.33, P < 0.001), and the interaction effect  (F1, 28 

Fig. 1  Shows the effects of bile duct ligation surgery and NeuroAid 
injection on traveled distance (a), escape latency (b), and swim-
ming speed (c) in the Morris Water Maze apparatus in two sections 
(Sec.  Introduction: average data of trials 1 to 4, Sec.  Material and 
Method: average data of trials 5 to 8), showing spatial learning per-
formance. Two-way ANOVA and post hoc Tukey’s were used to ana-
lyze data (n = 8)

▸
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= 1139.92 P < 0.001) was significant. The results of post hoc 
Tukey’s showed that the expression of BCL-2 (P < 0.001) 
was increased in the BDL-NeuroAid group.

PGC-1α- The results of two-way ANOVA showed that 
the effect of BDL surgery  (F1, 28 = 633.65, P < 0.001), drug 
 (F1, 28 = 782.39, P < 0.001), and the interaction effect  (F1, 28 
= 733.40, P < 0.001) was significant. The results of post hoc 
Tukey’s showed that the expression of PGC-1α (P < 0.05) 
was decreased in the BDL group, while NeuroAid reversed 
this effect (P < 0.001).

TFAM- The results of two-way ANOVA showed that 
the effect of BDL surgery  (F1, 28 = 3.73, P > 0.05), and the 
interaction effect  (F1, 28 = 2.12, P > 0.05) was not signifi-
cant, while the effect of drug  (F1, 28 = 21.76, P < 0.001) was 
significant. The results of post hoc Tukey’s showed that 
the expression of TFAM (P < 0.05) was decreased in the 
BDL group, while NeuroAid reversed this effect (P < 0.05) 
(Fig. 3).

Discussion

Impairment Effect of BDL on Spatial Memory

Our results showed that spatial learning was not altered fol-
lowing BDL surgery or NeuroAid administration (Fig. 1 a 
and b). Furthermore, our data showed that BDL decreased 
the traveled distance and the escape latency in the target 
quadrant in the probe test meaning the impairment of spa-
tial memory consolidation (Fig. 2a and b). Previous studies 
have shown the impairment effect of BDL on learning and 
memory. BDL impairs spatial performance in MWM appa-
ratus and impairs learning in passive avoidance task [65]. 
It has been revealed that BDL impairs spatial memory con-
solidation in MWM apparatus [66]. Furthermore, BDL dis-
rupts learning and memory retrieval in step-through passive 
avoidance task in rats [67]. BDL is a chronic liver injury that 
impairs learning and memory. It has been reported that acute 
or chronic liver injury impairs cognitive functions [68, 69]. 
Note that, the molecular mechanism of BDL involved in cog-
nitive impairments is still unknown. In this research, BDL 
impaired spatial memory in MWM apparatus. It has been 
suggested that hyperammonia induced by the liver disease 
is one of the main factors responsible for cognitive impair-
ments following BDL [16, 17]. Furthermore, disruptions in 
many neurotransmitter systems have been observed in liver 

Fig. 2  Shows the effects of bile duct ligation surgery and NeuroAid 
injection on traveled distance (a), escape latency (b) and swimming 
speed (c) in the target quadrant of the Morris Water Maze appara-
tus, showing spatial memory consolidation. ***P < 0.001 differ-
ent from sham + saline group, and ###P < 0.001 different from the 
BDL + saline group. Two-way ANOVA and post hoc Tukey’s were 
used to analyze data (n = 8)

▸



2160 Neurochemical Research (2021) 46:2154–2166

1 3

Fig. 3  Shows the results of Real-time PCR analyses for the expres-
sion of BAX, BCL-2, BAD, PGC-1α, and TFAM. Sham-NeuroAid and 
BDL groups were compared with the sham group. P < 0.001*P < 0.05 

and ***P < 0.001 different from the sham-saline group, #P < 0.05 and 
###P < 0.001 different from the BDL-saline group. Two-way ANOVA 
and post hoc Tukey’s were used to analyze data (n = 8)
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diseases [18–20]. Previous study has shown that cholestasis-
induced glutamatergic disruption impairs memory formation 
in different brain regions especially the dorsal region of the 
hippocampus [11]. Previous reports have also suggested that 
cholestasis changes nitric oxide (NO) level, increases oxida-
tive stress, disrupts calcium homeostasis, and induces cell 
death; all these mechanisms are involved in memory impair-
ment [70–73]. Additionally, it seems that disruption in the 
release of corticotrophin-releasing hormone and homeosta-
sis of manganese following cholestasis has a critical role in 
the induction of cognitive impairments [74–76].

NeuroAid Restored the Impairment Effect of BDL 
on Spatial Memory

The results showed that NeuroAid restored the impairment 
effect of BDL on spatial memory (Fig. 2). Previous stud-
ies have shown the neuroprotective effects of NeuroAid 
on memory function. For example, NeuroAid restores fear 
memory impairment induced by sleep deprivation [77]. Neu-
roAid also improves cognitive dysfunctions in AD patients 
[78]. Furthermore, NeuroAid reduces tau phosphorylation 
[79]. NeuroAid improves performance in novel object rec-
ognition, MWM apparatus, and passive avoidance learning 
task [48]. Interestingly, NeuroAid attenuates hippocampal 
oxidative stress induced by ROS (reactive oxygen species) 
accumulation [80]. Also, NeuroAid has neuro-restorative 
effect that stimulates brain neuro-repair processes includ-
ing neuroplasticity and neurogenesis [53]. It’s important to 
note that the beneficial effects of NeuroAid may be related 
to multi-target effects [77]. For example, NeuroAid acts as 
an activator of  KATP channels [81]. Furthermore, NeuroAid 
activates the serine/threonine kinase Akt (protein kinase B) 
pathway in global ischemia model [82]. NeuroAid increases 
hippocampal neurogenesis via promoting proliferation, neu-
ral differentiation, and survival of young neurons [48]. On 
the other hand, BDNF (brain-derived neurotrophic factor) 
and VEGF (vascular endothelial growth factor) are criti-
cally involved in neuronal repair [83]. BDNF and VEGF 
are also involved in learning and memory processing [84, 
85]. Interestingly, NeuroAid stimulates the expression of 
BDNF in brain tissue after focal and global ischemia [51]. 
Furthermore, NeuroAid enhances the expression of VEGF in 
the hippocampus and cortex of TBI (traumatic brain injury) 
rats [53]. All these findings show that NeuroAid induces 
peripheral and central neuroprotective effects in the body, 
promotes endogenous neural repair processes in the brain, 
and reverses the impairment effect of BDL on memory.

Increase in BAD and BAX Expression and Decrease 
in TFAM and PGC‑1α Expression Following BDL

The results showed that the expression of BAD and BAX was 
increased following BDL (Fig. 3). As mentioned, BCL-2 fam-
ily proteins have a crucial role in modulating apoptosis [86]. 
BAD (BCL-2-associated death) and BAX (BCL-2-associated 
X) are pro-apoptotic proteins that activate caspases via releas-
ing IMS proteins [32]. As the data showed, BDL increased 
the expression of these genes. BDL accumulates P53 (a gene 
involved in regulating cell cycle) in the nucleus; while the 
overexpression of P53 increases the expression of BAX and 
induces apoptosis [87]. Furthermore, maternal obstructive 
cholestasis during pregnancy (OCP) increases the expres-
sion of BAX via increase in apoptosis in the OCP placentas 
[88]. Our previous study has shown that BDL increases BAX 
expression in the striatum of rats [89]. In another study, a 
dramatic increase in BAX expression was observed following 
BDL [90]. BDL also translocates the cytoplasmic BAX to the 
mitochondria and induces apoptosis via releasing Cytochrome 
c (Cyt c) into the cytoplasm [91]. Thus, increase in the expres-
sion of BAX and BAD may be related to BDL-induced apopto-
sis. Additionally, BDL-induced P53 overexpression may lead 
to the increase in BAX expression and apoptosis.

On the other hand, the results showed that the expression 
of TFAM and PGC-1α was decreased following BDL (Fig. 3). 
Previous research has revealed that TFAM downregulation 
following BDL reduces mtDNA copy number in rats [92]. It 
has been also revealed that long-term cholestasis induces a 
significant decrease in TFAM level [93]. Furthermore, long-
term cholestasis decreases PGC-1α expression via induc-
tion of mitochondrial oxidative stress [94]. In this study, the 
expression of TFAM and PGC-1α was decreased following 
BDL. TFAM has a main role in mtDNA maintenance and sta-
bilization [95]. Also, it protects mtDNA from ROS [96]. Note 
that, activation of TFAM is modulated by PGC-1α in response 
to various conditions such as oxidative stress, liver injuries, 
and BDL [97, 98]. As mentioned before, PGC-1α is a master 
regulator of mitochondrial biogenesis and involved in energy 
homeostasis [99, 100]. Also, PGC-1α has an important role 
in oxidative stress [101]. We suggest that decrease in TFAM 
level may be related to BDL-induced oxidative stress. TFAM 
is crucial to protect mtDNA from ROS and if the level of ROS 
gets too high, the function of TFAM may be suppressed. Fur-
thermore, the failure of mitochondrial biogenesis following 
cholestasis may downregulate the expression of TFAM. On 
the other hand, it can be suggested that failure of mitochon-
drial biogenesis following TFAM downregulation [92] reduces 
PGC-1α [102]. Also, decrease of mitochondrial biogenesis 
and increase of oxidative stress following BDL may suppress 
the expression of PGC-1α [94].
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NeuroAid Reversed the Effects of BDL on Genes 
Expression

Our data showed that NeuroAid reversed all the effects of 
BDL on the expression of genes (Fig. 3). NeuroAid has neu-
roprotective properties in rodent models of focal and global 
ischemia [103]. Previous reports have demonstrated that Neu-
roAid prevents the death of threatened neuronal tissues [49]. 
Interestingly, NeuroAid decreases the activity of apoptotic 
pathways via reducing BAX activity in the CA1 pyramidal 
neurons [49]. NeuroAid also decreases BAX expression in 
the hippocampus [77]. In addition, NeuroAid restores BDL-
induced BAX upregulation in the striatum of rats [104]. In this 
research, NeuroAid decreased the expression of pro-apoptotic 
genes (BAX and BAD). The limitation of the present study is 
the lack of immunohistochemical studies to show the exact 
location of apoptosis within the hippocampus and the exact 
location of protection. However, we refer to an interesting 
study. Previous study has reported that NeuroAid decreases 
the number of injured neurons in the ipsilateral hippocampal 
CA3 substructure, dentate gyrus, and thalamus following TBI 
in rats [53]. Furthermore, TBI-induced necrotic and apoptotic 
neuronal death is significantly reduced after treatment with 
NeuroAid [53]. GFAP (glial fibrillary acidic protein) is the 
cell-specific intermediate filament in astrocytes and its upregu-
lation is considered as a definite feature of activated astrocytes 
[105]. It has been shown that NeuroAid can strongly reduce 
GFAP expression in both injured cortex and dentate gyrus 
neurons of TBI rats [53]. Therefore, it seems that NeuroAid 
induces a neuroprotective effect in both mature neurons and 
the dentate gyrus (and its subgranular cell layer). Thus, we can 
suggest that the neuroprotective effect of NeuroAid may also 
occur in the other important regions of the brain. Additionally, 
this mentioned study has reported that at 4 h following TBI, 
the expression of MAP2 (microtubule-associated protein 2) in 
the CA3 region and dentate gyrus is decreased [53]. MAP2 is 
expressed in the soma and dendrites of neuronal cells and is 
critical for microtubule stability and neuroplasticity. Changes 
in the expression of MAP2 can induce neuronal degeneration 
following brain injury [106]. Interestingly, NeuroAid prevents 
MAP2 changes in TBI rats [53]. It has been revealed that Neu-
roAid can also increase the number of axons of newly gener-
ated cells to the CA3 region [53]. We suggest that the decrease 
in BAX and BAD expression may be related to the repressive 
effect of NeuroAid on apoptosis pathways. In addition, Neu-
roAid via reducing susceptibility of mitochondrial pathways 
may decrease the expression of BAX and BAD. On the other 
hand, the expression of TFAM and PGC-1α was increased 
following NeuroAid treatment. NeuroAid by decrease in ROS 
accumulation attenuates BDL-induced oxidative stress. Thus, 
we can suggest that NeuroAid increases the expression of 
TFAM via reducing ROS. In addition, it seems that NeuroAid 
enhances mitochondrial biogenesis. Thus, NeuroAid may 

increase the expression of TFAM via attenuating mitochon-
drial biogenesis failure. Furthermore, NeuroAid via decrease 
of oxidative stress and improvement of mitochondrial biogen-
esis upregulates PGC-1α. It can be also suggested that activa-
tion of PGC-1α plays an important role in the modulation of 
TFAM level.

Conclusions

In conclusion, the results of the present study showed that 
BDL impaired spatial memory in rats. Furthermore, NeuroAid 
restored BDL-induced spatial memory impairment. In addition, 
BDL increased the expression of pro-apoptotic genes (BAD and 
BAX) and decreased the expression of TFAM and PGC-1α. 
While, NeuroAid reversed all the effects of BDL on genes 
expression. Note that, our data only shows mRNA and genetic 
changes but not changes in protein expression. Often, changes 
in genetic and mRNA levels do not lead to changes in protein 
levels. Thus, conducting studies using other methods such as 
western blotting is necessary to complete our conclusions.
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