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Abstract
The concept of exosomes has been progressively changed from the status of cellular trashcans to multitasking organelles 
involved in many processes, including internalization, transport and transfer of macromolecules such as proteins, lipids and 
nucleic acids. While underpinning the mechanisms behind neurodegeneration and neuronal loss, exosomes were shown to 
be involved in carrying pathological misfolded proteins, propagation of β-amyloid protein and hyper-phosphorylated tau 
proteins across the brain that ultimately leads to the onset of Alzheimer’s disease (AD), the most prevailing multifactorial 
neurodegenerative disorder. A potential novel therapeutic role of exosomes in AD intervention is suggested by their ability 
to increase Aβ clearance. This review aims to highlight the important pathological mechanisms as well as therapeutic strate-
gies involving exosomes towards AD prevention.
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Background

Alzheimer’s disease (AD) is the common cause of demen-
tia. It is life threatening for elderly population as well as 
economic and social burden for the families and health-
care system [1]. Clinically, AD is a late-onset condition in 
which subjects, generally above the age of 65 years pre-
sent themselves with progressive deterioration in cognition 
including impairment in memory [2, 3]. Besides the two 
key pathological features, i.e., senile plaques of amyloid- 
β (Aβ) peptide and neurofibrillary tangles triggered by 

hyper-phosphorylated tau proteins, cholinergic dysfunctions, 
vascular, inflammatory and degenerative pathways have been 
shown to play roles in the etiology of AD [2, 4, 5].

Extracellular vesicles (EVs) represent a heterogeneous 
group of membrane-bound vesicles containing proteins, 
nucleic acids, and lipids. Studies suggest that EVs are an 
essential part of the intercellular communication system and 
possess critical roles in both physiological and pathological 
mechanisms [6–8]. EVs are categorized into 3 main groups- 
exosomes, micro-vesicles and apoptotic bodies. Three dec-
ades ago, exosomes were first reported in reticulocytes func-
tioning in the disposal of cellular waste components [9]. 
Exosomes are small lipid bilayer nano-vesicles of 30-100 nm 
diameters, secreted by almost all cell types, including neu-
rons [10, 11]. The inward budding of endosomes forms 
multi-vesicular bodies (MVBs) containing intraluminal vesi-
cles (ILVs) [12]. MVBs can either fuse with lysosomes for 
cargo degradation or with plasma membrane releasing ILVs 
to the extracellular space as exosomes [13]. Thus, exosomes, 
depending on their contents, can exert positive or negative 
effects on a cell upon binding to its cell membrane [14, 15]. 
This supports the role of exosomes as extracellular transport-
ers- once released they fuse with the membrane of another 
cell and expel their contents [16]. Exosomes could represent, 
a good vehicle for drug delivery since they are non-toxic and 
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stable in the circulatory system [17], and may even be able 
to deliver drugs across the blood brain barrier (BBB) and 
subsequently into the brain. For example, exosomal siRNA, 
when intravenously administered to mice, crossed the BBB 
and entered brain tissue, suggesting a highly potent drug 
delivery system [18, 19].

Exosomes and Neurodegeneration

Neurodegeneration is a complex biological mechanism often 
initiated by both hereditary and sporadic factors that trig-
ger dysfunctions of the nervous system. Parkinson’s disease 
(PD), Alzheimer’s disease (AD), Huntington’s disease (HD) 
and Amyotrophic lateral sclerosis (ALS) are the most com-
mon neurodegenerative conditions [20]. Their pathogen-
esis involves the aggregation and propagation of respective 
misfolded proteins, which are subjected to either refolding 
or degradation followed by proteolytic clearance [21, 22]. 
Defects or mutations in the proteolytic clearance system lead 
to the aggregation of misfolded proteins, whose crosstalk 
with normal neuronal or glial cells causes them to undergo 
pathogenesis [23, 24]. The spread of EVs and communica-
tion between glial cells and nerves mediated by EVs stay as 
the main cause of neurodegenerative diseases [25]. Major 
causative proteins for neurodegenerative diseases are found 
to be enclosed in CSF-derived EVs [26]. Exosomes derived 
from neurons, microglia, astrocytes, or oligodendrocytes are 
known to facilitate synaptic plasticity and tissue regenera-
tion and thereby believed to confer neuroprotection [27]. 
However, in pathological conditions, exosomes can become 
active mediators in the progression of neurological diseases, 
by promoting pathological aggregations and spreading of 
characteristic misfolded proteins such as β-amyloid and 
tau proteins in AD, α-synuclein in PD, mutant Huntingtin 

(mtHtt) in HD and superoxide dismutase (SOD 1) in ALS 
[28–32] (Fig. 1).

Role of Exosomes in Alzheimer’s Disease

AD is the main cause of dementia and is mounting as a 
socio-economic hurdle to the health care system around 
the world, owing to two main facts: the difficulty in early 
intervention, and lack of therapeutic strategies that reverse 
or prevent the disease [33, 34]. Pertaining to the group of 
proteinopathies, AD is characterized by accumulation of Aβ 
peptide and hyper-phosphorylated tau proteins resulting in 
neuritic plaques and neurofibrillary tangles respectively, in 
the memory- associated regions of the brains in AD patients 
[35]. These proteins aggregate as the disease progresses and 
evolve as key pathological hallmarks by the later stages of 
AD [33]. The presence of Aβ peptide and Tau in cerebro-
spinal fluid and blood of living AD patients expend wide 
applications in number of clinical studies. However, lack of 
significant change in both the proteins among healthy and 
AD patients make them simple but no specific biomarker 
towards an early asymptomatic stage of AD [34]. This 
resulted in extended research to identify novel biomarkers. 
Besides intercellular transmission, cellular communication 
as well as clearance mediated by exosomes is pivotal in AD 
[36]. Exosomes represent the leading and the most interest-
ing candidate biomarkers currently under investigation.

Amyloid Pathology and Role of Exosomes

Alzheimer’s disease is the most prominent neurological 
disorder chiefly characterized by progressive deprivation 
in cognition including memory [33, 37]. An in vitro study 

Fig. 1   Schematic representa-
tion of major neurodegenerative 
disorders and respective causa-
tive proteins whose misfolding 
and aggregation results in the 
neurodegeneration
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suggested a role of exosomes in propagation of Aβ proteins 
to extracellular space via exosomes, after the cleavage from 
amyloid precursor protein (APP) in early endosomes. Exces-
sive accumulation of Alix, a specific marker for exosomes, 
was found within amyloid plaques of AD brain sections sug-
gesting a role of exosomes in the pathogenesis of AD. The 
brain of a healthy control was observed negative for plaques 
as well as Alix [38]. APP undergoes enzymatic cleavage by 
β and γ secretases to generate Aβ peptide, which is released 
into the extracellular space. Because its clearance from the 
brain slows with aging, Aβ peptide gradualy accumulates 
and ultimately results in the characteristic amyloid plaque 
formation observed in AD patients [39]. The Aβ1-42 peptide 
is found predominantly in these plaques. Aβ protein genera-
tion and degradation can be controlled by endosome/lyso-
some activity, but dysfunction of this system elicits early 
symptoms associated with AD-related neuropathology [40]. 
Studies have also shown the presence of APP C-terminal 
fragment in exosomes in cell lines that overexpress APP [41, 
42]. Exosomes are involved in the transport of full-length 
amyloid precursor protein (flAPP), APP metabolites and 
enzymes cleaving flAPP and C-terminal fragment of APP 
(APP-CTF) to extracellular space in neuronal cell cultures 

[41]. More specifically Gonzales et al. (2012) confirmed that 
amount of flAPP and APP-CTFs secreted out of neuronal 
cells by exosomes are directly proportional to their amount 
in the brain. Also brain exosomes have high levels of APP 
CTFs when compared to flAPP [43]. Moreover, exosomes 
lacking the tetraspanin protein CD63 with APP and its C-ter-
minal fragments indicate that exosomes secreted from the 
neuroblastoma cells differ in their cargoes as well as target 
cell types [44].

Exosomes in the brains of patients with AD possess 
high quantity of Aβ-oligomers, which act as neuron-neuron 
transfer vectors. This reinforces the correlation between 
exosomal neuron-to-neuron transfer of intercellular Aβ 
peptides and progressive extracellular accumulation of Aβ 
peptides (Fig. 2). Conversely, it was observed that down 
regulation of TSG101 (Tumor susceptibility gene 101) 
and VPS4A (Vacuolar protein sorting –associated protein 
4A), proteins responsible for the formation and secretion of 
exosomes respectively, resulted in inhibition of formation 
of exosomes. As a result, transfer of Aβ-oligomer gets com-
pletely blocked among neurons and the associated toxicity 
was reduced. These findings strongly demonstrate a central 
role for exosomes in the etiology of AD [45].

Fig. 2   Biogenesis (a) and role of exosomes in AD (b). Early 
endosomes enclosing cytoplasmic cargo convert into multivesicular 
bodies (MVBs) filled with many intraluminal vesicles (ILVs). MVBs 
mature into late MVBs which either undergo lysosomal degradation 
or fuse with plasma membrane and ILVs as exosomes. MVB associ-
ated Aβ peptide formed from amyloid precursor protein (APP) in a 

neuron enter the adjacent neuron via exosomes and starts propagat-
ing there. On the other hand, exosomes involved in transfer of hyper-
phosphorylated Tau (p-Tau) from microglia to neurons. Conjointly, 
role of exosomes is highlighted in dissemination of key pathological 
protein aggregates across the neurons. (References:- Lee JY and Kim 
HS, 2017 [27]; Sarko DK and McKinney CE, 2017 [65]
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Exosomes on Tau Pathology

Tau is a microtubule associated protein encoded by MAPT 
(Microtubule-associated protein Tau) gene and is strongly 
involved in regulation of cytoskeleton. Neurofibrillary tan-
gles (NFTs) elicited from the aggregates of excessively 
phosphorylated tau considered to be one of the major neu-
ropathological lesions in AD and other tauopathies [2]. 
According to previous studies blood and CSF samples of AD 
patients revealed the presence of exosomes associated with 
phosphorylated tau [46]. Exosome-mediated trans-synaptic 
transmission of tau through extracellular space suggests a 
progressive spreading of tauopathy in AD patients’ brain 
[47]. A recent study indicated that microglia spread mutant 
tau in brain via their exosomes and inhibition of exosomal 
secretory pathways and/or depletion of microglia reduce the 
tau propagation under in vitro and in vivo conditions. Human 
CSF was also identified for exosome associated tau phos-
phorylation at Thr-181 [48]. Winston et al. (2016) reported 
that plasma neuronal derived exosomes (NDEs) with p-tau 
leads to the generation of highly pathogenic tau aggrega-
tion. Brains of normal mice were marked with induced tau 
pathology when injected with plasma NDEs from patients 
with Mild Cognitive Impairment (MCI) and MCI convert-
ing to AD (ADC). Mice injected with plasma NDEs from 
ADC patients displayed high concentrations of p-tau suggest 
the role of tau itself as the spreading agents. The study also 
points that high expression of p-tau and Aβ1-42 can be use-
ful for predicting the conversion of MCI to AD [49]. Crotti 
et al. (2019) showed that Bridging Integrator 1 (BiN1) con-
tribute Tau pathology in AD by altering Tau clearance and 
promote the release of Tau- enriched extracellular vesicles 
by microglia [50].

Apart from associating with the signatures of AD- 
Aβ-protein and tau- exosomes could be one of the media-
tors of neuroinflammation and oxidative stress accompanied 
with AD. Exosomes being the cargo of inflammatory mol-
ecules, they serve as key players in exchanging inflammatory 
agents between glia and neurons and thereby enhance the 
neuroinflammation [51]. At the same time, it was reported 
that MVB release of exosome could be accelerated by oxi-
dative stress, supported by the fact that exosomes released 
by MVBs are believed to be associated with diseases like, 
cancer, cerebral ischemia, cardiovascular diseases, multiple 
sclerosis etc. [52].

Exosomes as Diagnostic and Therapeutic 
Tools for Alzheimer’s Disease

Brain diseases are generally strenuous to diagnose as well 
as to treat. Until now, none of the treatment practices have 
been reported to either prevent or reverse the progression 
of AD. The global dissemination of AD has created an 
even larger need for detection, prevention, and/or curative 
strategies. Bioactive herbal and marine compounds may 
provide useful in therapeutic interventions via a variety of 
cellular mechanisms. Since exosomes have been identified 
as a part of spreading or transporting neurodegenerative 
disease-related proteins, they may furnish appropriate bio-
markers for detecting and diagnosing neurological diseases 
[53].

AD generally progresses through 3 stages- (1) a pre-
symptomatic stage- generally an asymptomatic interval 
between the onset of neuronal dysfunction and appear-
ance of impaired cognition; (2) a prodromal stage with 
mild cognitive aberrations and finally (3) a symptomatic 
stage where patients suffer from dementia [54]. Finding 
new biomarkers may allow the diagnosis of AD at an ear-
lier stage, which is highly demanding for preventing or 
delaying progression of the disease. Several appreciable 
approaches in unveiling the possibilities to identify blood-
based biomarkers were on board to open up prospective 
studies. Fiandaca et al. (2015) reported that P-S396-tau, 
P-T181-tau and Aβ1-42 in extracts of neural-derived blood 
exosomes predict development of AD up to 10 years before 
clinical onset [55].

According to Goetzl et al. (2015) early appearance of 
neuronal lysosomal dysfunctions in living patients with 
AD resulted from elevated levels of autolysosomal pro-
teins like cathepsin D, lysosome-associated membrane 
protein 1 (LAMP-1), and ubiquitinylated proteins, in 
exosomes than controls, suggested that these proteins can 
be useful biomarkers to detect AD at an early stage [56]. 
Decreased levels of transcription factors in plasma neural-
derived exosomes of AD patients 2–10 years before the 
clinical diagnosis of AD was also observed [57]. Immu-
nochemical analysis of neurally derived plasma exosomes 
also showed altered levels of phosphorylated form of insu-
lin receptor proximal signaling protein, insulin receptor 
substrate (IRS) in AD in contrast to controls [58]. The 
cargo components in neurally derived exosomes versus 
other exosomes put an impact on neuropathogenesis and 
disease progression.

The results of recent studies suggest that presence of 
Aβ1-42 or tau in the CSF may act as a diagnostic biomarker 
for the early diagnosis of AD. CSF and plasma exosomes 
from AD patients have full-length tau, which is absent 
in healthy people. Therefore, the presence of exosomes 



2557Neurochemical Research (2020) 45:2553–2559	

1 3

present in the CSF may provide a useful biomarker for 
the diagnosis of AD [59]. Likewise, detection of Aβ1-42 in 
CSF exosomes could be a sensitive measure for diagnos-
ing AD. The combined detection of tau and Aβ 1–42 in CSF 
may help in the diagnosis of AD 10 years prior to clinical 
onset [60]. Researchers refer to exosomes as “brain fluid 
biopsy” since they can be easily isolated from CSF [61]. 
In a recent study by Jia et al. (2019) found highest levels 
of Aβ42, total tau, and pT181-tau in neuronal exosomes 
of AD patients when compared to patients with amnestic 
MCI (aMCI) and healthy controls. Interstingly a strong 
correlation was observed among the level of each exoso-
mal biomarker with the respective CSF biomarker [62].

High levels of neprilysin, an endopeptidase related to 
degradation of Aβ, were detected in human adipose tissue 
derived mesenchymal stem cells (ADSCS) when compared 
to neuronal cells. Exosomal delivery of neprilysin from mes-
enchymal stem cell derived from adipose tissues provided a 
therapeutic tool to reduce Aβ accumulation [63]. Other stud-
ies also confirm that exosomes may be able to deliver drugs 
and nucleic acid fragments (siRNA and miRNA) across the 
BBB [19, 64]. Erivity AL et al. (2011) demonstrated that 
siRNA delivered by exosomes relieved some symptoms 
related to AD pathogenesis [19]. Dendritic cell derived 
exosomes with siRNA were injected into transgenic AD 
mouse brains through electroporation. The exosomes were 
able to cross the BBB and siRNA, which reduced the Aβ 
expression and deposition. The siRNA caused dose-depend-
ent knockdown of mRNA and protein levels for BACE-1 
(Beta-secretase 1), a protease leading to the N-cleavage of 
APP to release Aβ [19]. Delivery of exosomal miR-124a 
enhanced GLT-1 (Glutamate transporter 1) on astrocytes 
resulting in improved synaptic activity, which may alleviate 
neuronal apoptosis in AD [64] (Fig. 3).

Conclusion

Scientific research over the last decade has progressively 
changed the view of exosomes from cellular trashcans to 
potential therapeutic delivery vehicles for broad spectrum 
of diseases since they are known to carry molecular mark-
ers of many diseases. Currently exosomes perform a part 
of the intercellular communication chain that can carry, 
transport and transfer biomolecules. Exosomes are consid-
ered to be the secure and selective vehicles for delivering 
therapeutic molecules to the brain and stay as an integral 
part of drug delivery system. Exosomes in neurodegenera-
tive conditions like AD could participate in aggregation, 
transmission and effective clearance of pathogenic pro-
teins. Exosomes are evolved as attractive candidates for 
therapeutic drug delivery in neurodegenerative diseases 
owing to their natural, non-synthetic origin, stability in 
circulation and low immunogenicity in the host. Yet, fur-
ther studies are essential to make long-term safe and per-
sistent application of exosomes in target-specific treatment 
practises to address the broad range of neurodegenerative 
conditions such as Alzheimer’s disease.
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