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Abstract
Glutathione (GSH) is an important antioxidant found abundantly and synthesized intracellularly in the cytosol in a tightly 
regulated fashion. It has diverse physiological functions, including protection against reactive oxygen species and nitrogen 
species, antioxidant defense as well as maintenance of cellular thiol status. The human brain due to the high oxygen consump-
tion is extremely susceptible to the generation of reactive oxygen species. GSH plays a paramount role in brain antioxidant 
defense, maintaining redox homeostasis. The depletion of brain GSH has also been observed from both autopsies as well as 
in vivo MRS studies with aging and varied neurological disorders (Alzheimer’s disease, Parkinson’s disease, etc.). Therefore, 
GSH enrichment using supplementation is a promising avenue in the therapeutic development for these neurological disor-
ders. This review will enrich the information on the importance of GSH synthesis, metabolism, functions, compartmentation 
and inter-organ transport, structural conformations and its quantitation via different techniques. The transportation of GSH 
in the brain via different interventional routes and its potential role in the development of therapeutic strategies for various 
brain disorders is also addressed. Very recent study found significant improvement of behavioral deficits including cognitive 
decline, depressive-like behaviors, in APP (NL−G-F/NL−G-FG-) mice due to oral GSH administration. This animal model 
study put an emergent need to complete GSH supplementation trial in MCI and AD patients for cognitive improvement as 
proposed earlier.

Keywords Alzheimer’s disease · Clinical interventions · Conformations · Glutathione · Antioxidant · Magnetic resonance 
spectroscopy · MEGA-PRESS · Quantitation

Introduction

Glutathione (GSH, γ-glutamyl-cysteinyl-glycine) is an 
intracellular linear tripeptide comprising of glutamic acid 
(Glu), cysteine (Cys) and glycine (Gly) amino acids present 

ubiquitously in all mammalian cells [1]. The presence of 
the sulfhydryl (SH) group of Cys moiety, renders GSH a 
potent antioxidant property by interacting with reactive oxy-
gen species /reactive nitrogen species (ROS/RNS) [2, 3]. 
Upon reduction, GSH forms two molecules which dimerize 
by disulfide linkage to form oxidized glutathione disulfide 
(GSSG) [2]. The reduced (GSH) and oxidized disulfide form 
(GSSG) are interconvertible, with reduced GSH being pre-
sent as the predominant form [4]. GSH acts in coordination 
with other redox-active compounds like nicotinamide adeno-
sine diphosphate (NADPH) to regulate and maintain cellular 
redox status [5]. Glutathione’s mechanism of action involves 
enzyme glutathione peroxidase (GPx) and glutathione reduc-
tase (GR), where GPx is responsible for the conversion of 
GSH to oxidized form GSSG and GR reduces GSSG back 
to GSH [6, 7]. The GSH–GSSG cycle inside the cell is pri-
marily involved in the detoxification of hydrogen peroxide 
 (H2O2) to water and oxygen. Additional functions of GSH 
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involve (i) maintenance of antioxidant defense (ii) cellular 
redox status (iii) detoxification of xenobiotics (iv) Cys res-
ervoir (v) maturation of iron–sulfur (Fe–S) cluster proteins 
(vi) storage and transport of nitric oxide (NO) [8–10].

The profound role of GSH in the brain as a detoxifying 
agent is critically important because of its higher vulner-
ability towards oxidative stress (OS), as it utilizes 20% of 
the  O2 consumed by the body whereas constitutes only 2% 
of body weight [11]. GSH is also involved in other cellular 
processes such as neuroinflammation and ferroptosis, which 
brings the attention of pharmacologists pertaining to medi-
cal interventions for therapeutic benefits. The depleted levels 
of GSH trigger ROS generation implicated in the cell death 
causing various neurological diseases like Alzheimer’s dis-
ease (AD), Parkinson’s disease (PD) and multiple sclerosis 
(MS) [12–16].

Various autopsy as well as in vivo studies indicated that 
GSH level varies across different brain regions and also 
with different neurological diseases [14, 17–21]. Several 
autopsy studies showed that the GSH levels were found to 
be decreased in the AD brain in comparison to the healthy 
controls (HC) [17, 18]. A post-mortem analysis of Mild cog-
nitive impairment (MCI) brain samples showed a significant 
reduction in hippocampal (HP) GSH level [19]. To detect 
the brain GSH in vivo MEscher GArwood-Point RESolved 
Spectroscopy (MEGA-PRESS) technique is preferred due 
to several clinical applications [20–25]. Similarly from the 
in vivo MRS study, GSH levels were reported to be statisti-
cally significant in different brain regions like frontal cortex 
(FC) and HP among MCI and AD patients [14, 20]. The 
GSH exists in two conformations as extended and in the 
closed form [22, 23, 26]. Structural aspects of GSH have 
also clinically indicated from a very recently published 
in vivo study, which showed that closed GSH conformer was 
depleted in the anterior cingulate cortex (ACC) and posterior 
cingulate cortex (PCC) regions, therefore, suggested to be a 
potential biomarker for AD [21].

In order to replenish the brain antioxidant defense homeo-
stasis, GSH or N-acetyl cysteine (NAC) as a supplement 
were reported to be beneficial in modulating GSH levels as 
suggested in different clinical trials [27–34]. The interven-
tion of supplements to the brain were reported via different 

modes of delivery like intranasal, intravenous, sublingual 
and subcutaneous mode, in healthy as well as individuals 
suffering from neurological disorders [28, 31–33, 35–42].

Several studies were found which were focused on varied 
aspects of GSH such as structure, synthesis, functions, and 
its use in therapeutic practice. In order to accumulate all 
the information pertaining to GSH, we present this detailed 
review article with a focus on GSH biosynthesis, regulation, 
functions, and metabolism. The GSH in vivo detection and 
conformational states are also presented in this review. The 
compartmentalization, Inter-organ transfer and GSH trans-
port to the brain via blood brain barrier (BBB) and its impor-
tance in various brain disorders are also discussed. GSH 
deficiency, therefore, plays a crucial role in aging as well as 
the pathogenesis of many neurological diseases. Based on 
these mechanisms and functions mentioned, some potential 
approaches for supplementation and its therapeutic benefits 
are also discussed. The review therefore also concentrates 
on various clinical supplementation studies with the inten-
tion to enrich the master antioxidant GSH in the brain. This 
review presents a critical discussion of the applications of 
GSH and approaches toward clinical intervention studies of 
various neurological diseases.

GSH‑Biosynthesis, Regulation 
and Metabolism

GSH is found in the cytosol of all mammalian tissues 
in the range of 1 to 10 mM concentration [43]. GSH is 
synthesized using constituent amino acids i.e., Glu, Cys, 
and Gly in two steps where Glu and Cys combine to form 
γ-Glu-Cys in the presence of enzyme glutamate cysteine 
ligase (GCL, EC 6.3.2.2), which further combines with 
Gly in the presence of GS (Glutathione synthetase; EC 
6.3.2.3) to synthesize GSH (Fig. 1) [4]. GCL enzyme is a 
heterodimer composed of two subunits i.e., catalytically 
active heavy subunit as GCLC (73 kDa), and light modi-
fier subunit as GCLM (30 kDa). GCLC functions as a 
substrate-binding unit whereas the GCLM modulates the 
binding affinity of GCLC by altering the  Km value. GS is a 
homodimer (52 kDa) comprising of two identical subunits 

Fig. 1  Synthesis of GSH. GSH synthesis is a two-step process where Glu, Cys, and Gly are catalyzed in the presence of enzymes GCL and GS. 
The figure was designed using BioRender with information taken from existing literature [4]
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[44]. GSH possesses a unique peptide bond formed by the 
γ-carboxyl group of N-terminal glutamate with the Cys 
residue. This specific peptide linkage protects GSH from 
being cleaved by most peptidases which hydrolyze at the 
α-carboxyl peptide bond of N-terminal amino acids. GSH 
is cleaved only at the outer surfaces of tissues containing 
γ-glutamyl transferase (γ-GT) whereas, it remains rela-
tively stable inside the cell [45]. GSH is synthesized in 
all cell types with the maximum amount of GSH synthe-
sized and exported from the liver. The source of substrates 
required for GSH synthesis varies between different cell 
types. Thus, alterations in the GSH plasma level may not 
reflect changes in GSH synthesis in a specific cell [46]. 
The whole blood (mainly red blood cells) may contrib-
ute approximately 10% of the complete GSH synthesis in 
humans [47, 48]. A decline in the amount of GCL and GS 
has been reported to result in the reduction of GSH levels 
in red blood cells of AD patients [49].

GSH synthesis regulation occurs (a) via non-allosteric 
feedback competitive inhibition where GSH (Ki = 2.3 mM) 
binds with glutamate thus, preventing glutamate from bind-
ing to Cys, (b) via the availability of its precursor l-cysteine 
[43, 50–53]. The availability of Cys is known to be affected 
by certain factors like diet and amino acid uptake. The hepa-
tocellular level of Cys is regulated via electroneutral sodium/
amino acid co-transporters (ASC) system and cysteine glu-
tamate exchanger  (Xc

−) as well as the trans-sulfuration path-
way [52, 54]. Other major determinants in the regulation 
of the rate of GSH synthesis are enzymes GCL and GS. 
Changes in GCL subunits (GCLC and GCLM) occurring at 
the transcriptional and post-transcriptional level has been 
extensively studied [55–57]. The post-transcriptional regula-
tion of GCLC involves mRNA stabilization/destabilization 
of certain signaling molecules (PI3K/AKT/p70S6K) acti-
vated by insulin [58]. Unlike GCL, regulation by enzyme 
GS has been unexplored and overlooked and requires further 
research to reach conclusive inference.

GSH acts as an antioxidant in two ways as (i) it directly 
reacts non-enzymatically with free radicals such as super-
oxide radical  (O2

.−), NO, or hydroxyl ion  (OH−) [59–62] 
and (ii) indirectly functions as a reducing agent by donat-
ing an electron to  H2O2 for its reduction to water and  O2 in 
the presence of GPx enzyme [63, 64]. GPx (EC 1.11.1.9) 
exists in two forms i.e., selenium-dependent and selenium 
independent. Four seleno-cysteine-containing isozymes 
of GPx reported to date are GPx 1, 2, 3 and 4 [65]. Now, 
GSH is reported to be extensively used as a co-substrate by 
GPx reducing  H2O2 to water and  O2 molecules and conver-
sion of lipid hydroperoxides (LOOH) into organic perox-
ides (ROOH) producing GSSG [7]. GSSG formed further 
follows two fate (i) gets reduced back to GSH by GR [6] 
(ii) excreted outside the cell. GR (EC 1.8.1.7) functions as 
dimeric disulfide oxidoreductase which acts by transferring 

an electron from NADPH to GSSG, thereby regenerating 
GSH [66].

Functions of GSH

The OS in the biological process occurs as a result of the 
excessive production of free radicals. Oxidative stressors 
such as ROS are derived from a series of univalent reduction 
of  O2 molecules produced as a result of aerobic respiration 
and substrate oxidation. ROS are involved in various biologi-
cal processes such as cell growth, cell signaling, immune 
responses [67–69]. Excessive ROS production is known to 
damage the cellular system by oxidation of major biomol-
ecules (lipids, proteins, and nucleic acids) [70–73]. Mito-
chondria being the most redox-active cell organelle produces 
mitochondrial ROS in the form of  O2

.−, hydroxyl radical 
(·OH) and  H2O2 [74–77].

Mitochondrial complex I (∼ 1 MDa), comprising of 45 
polypeptides in mammals, is the entry point of electrons 
from NADH into the electron transport chain (ETC). Elec-
trons released from NADH are accepted by the flavin mon-
onucleotide (FMN) cofactor, which then passes the elec-
trons through a chain of Fe–S clusters to the ubiquinone 
(Q) reduction site. During these events, NADH is oxidized 
to  NAD+, FMN is reduced to  FMNH2 and Q is reduced to 
ubiquinol  (QH2) [78, 79]. Large amounts of  O2

.− (by uni-
valent reduction of  O2) generation have been reported in 
isolated mitochondria via two modes of operations: mode 
1, when NADH is abundantly present (high NADH/NAD+ 
ratio) and mode 2, when there is a large proton-motive force 
(∆p) and reduced Q pool. Thus, the kinetics and thermody-
namics factors favoring the interaction of potent one-elec-
tron donors with  O2 controls the mitochondrial ROS produc-
tion [80]. The predominant site of  O2

.− production in both 
the modes is in complex I, thus making it a major source 
of  O2

.− production within the mitochondria [81–84]. The 
mechanism of  O2

.− production in two modes are different as 
the production of  O2

.− in mode 1 occurs during the reduc-
tion of FMN to  FMNH2 in the presence of abundant NADH 
whereas, the mode 2 involves  O2

.− production via reverse 
ETC where electrons are forced back from  QH2 to complex 
I [85]. Under some conditions, when the build-up of NADH 
and Q coincides with a large ∆p, both modes operate simul-
taneously. Mitochondrial complex III (∼ 240 kDa monomer) 
accepts electrons from Q pool and reduces cytochrome-c. 
The complex III has been regarded as a source of  O2

.− within 
mitochondria for a long period of time [86, 87]

The superoxide dismutase (SOD) neutralizes  O2
.− into 

 H2O2 which follows three fates (i) it is reduced by  Fe2+ (nor-
mally present in cells) which donates an electron to pro-
duce ·OH,  OH− and  Fe3+ in Fenton’s reaction. An ·OH is 
a highly reactive molecule with high oxidizing ability. It 
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oxidizes cellular components such as proteins, lipids and 
DNA by removal of an electron (associated with H atom) (ii) 
it combines with  O2

.− to generate  OH−, ·OH and  O2 in Haber 
Weiss’s reaction, (iii)  H2O2 is neutralized to  H2O and  O2 in a 
reaction catalyzed by inter-conversion of GSH to GSSG via 
GPx. The ROS production within the mitochondria results 
in oxidative damage to mitochondrial lipid membrane, pro-
teins, DNA and ATP synthesizing ability. The mitochondrial 
ROS also causes derangement in the majority of cellular 
metabolic functions including the citric acid cycle, urea 
cycle, amino acid metabolism, haem synthesis, Fe–S center 
assembly and fatty acid oxidation. The mitochondrial oxida-
tive damage may also result in the release of intermembrane 
space proteins such as cytochrome-c in cytosol leading to 
activation of the cellular apoptotic machinery. Consequently, 
mitochondrial oxidative damage contributes to a wide vari-
ety of pathologies [88]. The detailed mechanism of free 
radical generation and fate of  H2O2 are illustrated in Fig. 2.

To maintain redox homeostasis, the cellular system pos-
sesses an antioxidant defense system as a counteractive 
mechanism which includes various antioxidants such as 
SOD, catalase, vitamin C, vitamin E, and GSH. Catalase is 
predominantly found in peroxisomes but its mitochondrial 
expression shows antioxidative effectiveness to be depend-
ent upon the oxidant and the site of ROS production. The 
absence of catalase inside the mitochondria increases its vul-
nerability towards OS generation [90, 91]. GSH is mainly 
responsible for protection against ROS and RNS however 
other important functions include maintenance of redox 
status, detoxification of xenobiotics, regulation of cellular 
events including gene expression, DNA and protein synthe-
sis, apoptosis, signal transduction, protein glutathionylation, 
cytokine production and immune response [8–10]. The spe-
cialized structural, biochemical and biophysical properties 
and its ability to synthesize independently determine its 
potential functions as a primary antioxidant [92, 93].

Fig. 2  Schematic view of ROS production and antioxidant defense 
system in mitochondria. NADH generated by the citric acid cycle 
inside the cell serves as an electron donor. During electron transport 
chain (ETC), electrons are passed through mitochondrial complexes 
“down the line”. Two electrons removed from NADH are accepted 
by an FMN cofactor in Complex I. During this phase, NADH+ H+ 
is oxidized to  NAD+ by reducing FMN to  FMNH2. The electrons 
from  FMNH2 are passed further through Fe–S clusters to Q reduction 
site where Q is reduced to  QH2. Complex II catalyzes the oxidation 
of succinate to fumarate and electrons gained during this reaction are 
accepted by FAD and passed further via a chain of Fe–S clusters to 
Q. During these chains of events FAD is reduced to  FADH2 and Q is 
reduced to  QH2. Complex III accepts electrons from  QH2 which are 
transferred one by one in a complex process called the Q-cycle onto 

another electron carrier, cytochrome-c. Reduced cytochrome-c fur-
ther gets oxidized by complex IV i.e. cytochrome-c oxidase to reduce 
oxygen to water. The proton-motive force (∆p) generated in the form 
of  H+ ions finally leads to ATP synthesis via complex V i.e. ATP 
synthase, thereby completing the electron transport chain. However, 
some electrons can escape the respiratory chain (complex I and com-
plex III processes) and combine with  O2 to form  O2

.−. The superoxide 
dismutase (SOD) present inside mitochondria reduces  O2

.− to  H2O2 
which follows three fates where, (i) it is reduced by  Fe2+ to produce 
·OH,  OH− and  Fe3+ in Fenton’s reaction. (ii) it combines with  O2

.− to 
generate  OH−, ·OH, and  O2 in Haber Weiss’s reaction, (iii) it is con-
verted to  H2O and  O2, catalyzed by inter-conversion of GSH to GSSG 
via GPx. The figure was designed using BioRender with information 
taken from existing literature [64, 74, 76, 77, 88, 89]
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GSH donates an electron to form two glutathione-thiyl 
radicals (GS*), which further combine to form GSSG. The 
antioxidant function of GSH involves catalytic oxidation of 
thiol group of its Cys moiety in the presence of GPx to pro-
duce GSSG which in turn is reduced to GSH in the presence 
of GR. The detoxification of  H2O2 to water and  O2 mol-
ecules is catalyzed by the conversion of GSH to GSSG via 
GPx [64, 94]. NO produced from l-arginine by nitric oxide 
synthase (NOS), is a reactive gaseous free radical known to 
react with  O2

.− and cause nitrosative stress inside the cell by 
forming nitroxyl radicals (HNO), nitric oxides  (NO2,  N2O4, 
 N2O3), peroxynitrite  (ONOO−) and S-nitrosothiols (RSNO) 
[95]. These nitric oxide radicals generated are neutralized 
to S-nitroso glutathione (GSNO) by GSH thereby reduc-
ing nitrosative stress [96, 97]. GSH is also involved in the 
conversion of LOOH into lipid hydroxides (LOH), protein 
oxidant (P-SOH) into glutathionylated protein, and also 
helps in DNA repair (Fig. 3) [10, 94, 98, 99]. GSH also aids 
in the storage of Cys molecules as reactive Cys undergoes 
rapid autoxidation to form Cystine. Cystine produces toxic 
 O2 radicals, therefore GSH act as a carrier and scavenger for 
the transport of Cys molecule [100].

Studies have also reported that GSH is primarily respon-
sible for detoxification of xenobiotics, either directly by con-
jugating or acting as a substrate in conjugation reactions. 
Total antioxidant capacity levels were decreased on chronic 
exposure to xenobiotics like alcohol, explicating the fact 
that chronic exposure to xenobiotics leads to lipid peroxida-
tion, depletion of cytosolic GSH stores and mitochondrial 
damage [101]. The transcriptional control involved behind 
the detoxification of xenobiotics is nuclear factor erythroid 
2-related factor 2 (Nrf2)/Kelch like ECH associated protein 
1 (Keap1) system [102]. GSH, being involved in detoxifica-
tion could be an effective therapeutic strategy to decrease the 
toxic effects of xenobiotics inside the body.

GSH plays another important function, where it is 
involved in the maintenance of metal homeostasis. The 
redox-active metals like iron, copper, and chromium, 

undergo redox cycling and cause OS directly via Fenton’s 
reaction. Redox-inactive metals such as lead, cadmium, mer-
cury, cobalt, and arsenic exhaust cell’s SH reserves and are 
indirectly involved in ROS formation [103, 104]. Redox-
active metals cause cellular damage via production of ROS 
i.e., ·OH,  O2

.− and  H2O2 (Fig. 2). The mechanism of redox-
active metal-induced oxidative damage is extensively stud-
ied whereas the mechanism of redox inactive metals remains 
elusive and feasibly involves increased lipid peroxidation, 
alteration in thiol status and DNA damage [105, 106]. Metal 
induced toxicity and interactions with cellular aggregates 
have also been associated with neurodegenerative disorders 
such as AD [107, 108]. The role of GSH in the neutrali-
zation of redox-active metal like copper and iron is well 
documented where GSH is believed to be responsible for 
their mobilization, transport, and delivery to specific target 
molecules [109, 110]. The involvement of GSH in the matu-
ration of Fe–S cluster proteins is also reported [111, 112].

GSH is also known to be involved in the maintenance 
of optimal cytokine levels. Pro-inflammatory cytokines i.e., 
tumor necrosis factor-α (TNF-α), Interleukin-1β (IL-1β) and 
IL-6 gene expression were increased due to GSH depletion, 
which further led to check the expression of anti-inflam-
matory cytokines i.e., IL-10. The levels of IL-10 remained 
unaltered elucidating the fact that GSH depletion leads to 
stimulation of pro-inflammatory cytokines and not anti-
inflammatory cytokines [113, 114]. This GSH homeostasis 
alteration is resulted due to upregulation in nuclear factor 
kappa light chain enhancer of activated B cells (NFκβ) and 
c-Jun N-terminal kinase (JNK) signaling pathway which 
could be the plausible apoptotic pathway towards neuronal 
cell death [115, 116].

The balance of the GSH/GSSG ratio is crucial for the 
maintenance of redox status and cell survival [117, 118]. 
Starvation induced OS resulted in decreased GSH and shift 
towards more oxidizing conditions which further potentiated 
autophagy [119]. GSH reduction was observed in response 
to the treatment of tetrahydrobiopterin (BH4; an OS inducer) 

Fig. 3  Involvement of GSH in 
cellular detoxification. GSH 
conversion to GSSH releases 
an  H+ moiety which is utilized 
for neutralization of oxidants 
such as (i)  H2O2, (ii) NO·, (iii) 
LOOH and (iv) P-SOH into 
their less toxic forms i.e.  H2O, 
GSNO, LOH, PS-SG respec-
tively, (v) GSH is also involved 
in nucleic acid repair. The figure 
was designed using BioRender 
with information taken from 
existing literature [10, 94, 
96–99]
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via activation of  p38MAPK/p53 signaling cascade of apoptosis 
[120]. GSH depletion due to increased OS resulted in GPx4 
inhibition that potentiated iron-induced cell death (ferrop-
tosis) [121–123]. Overall the above-reported evidences sug-
gest the involvement of GSH in various cell death pathways 
i.e. autophagy, apoptosis, and ferroptosis. Autophagy and 
apoptosis involve common inducing conditions (starvation) 
with autophagy underlying the first cell response (survival) 
before proceeding to apoptosis. GSH function in cellular 
detoxification is illustrated in Fig. 3.

Compartmentalization and Inter‑Organ 
Transport of GSH

GSH pool is compartmentalized in different intracellular 
organelles like cytoplasm, mitochondria, endoplasmic retic-
ulum (ER), and nucleus. GSH synthesized in the cytosol, 
is transported and distributed for its utilization in different 
organelles where it is involved in the regulation of cellular 
redox status. The reduced form of GSH is prominent in all 
the organelles except ER. In ER, GSSG serves as an oxidiz-
ing equivalent for the production of nascent polypeptides 
conformation by intramolecular disulfide bond formation 
between Cys residues [124–127]. In the nucleus, GSH plays 
a crucial role in maintaining the redox status of sulphydryl 
groups of proteins involved in DNA synthesis and repair. In 
addition, GSH also reduces ribonucleotides to give deoxyri-
bonucleotides [125]. Due to the fact that mitochondria have 
a pivotal role in programmed cell death (apoptosis) and are 
the site of extensive ROS production, it constitutes 10–15% 
of total cellular GSH [128]. The inner mitochondrial mem-
brane is rich in a specific phospholipid, cardiolipin which 
provides stability and fluidity to the membrane. Cardiolipin 
is associated with cytochrome-c at the inner mitochondrial 
membrane. The mitochondrial GSH (mGSH) protects cardi-
olipin from oxidative damage thus prevents the inner mem-
brane from destabilization and dissociation of cytochrome-c. 
ROS generation results in an increase in internal membrane 
permeability for calcium ions which triggers apoptosis [45]. 
Thus, mGSH plays an important role here by preventing 
apoptosis which is triggered by the release of cytochrome-c 
from the inner mitochondrial membrane. Hence, reduction 
in mGSH has been associated with various diseases such as 
diabetes mellitus, liver cirrhosis, neurological diseases like 
AD and PD [17, 129–131].

GSH is secreted in high concentrations which are trans-
located from hepatocytes into bile canalicular spaces and 
plasma [132, 133]. It is hydrolyzed into its constituent 
amino acids (i.e. Glu, Cys and Gly) in bile spaces where it 
is captured by hepatocytes to resynthesize GSH. The plasma 
GSH level is relatively low (22–27 µM), apparently due to 
its fast utilization by tissues having γ-GT enzyme located 

on the external surface of some tissues [134]. The high-
est amount of γ-GT activity is found in the kidney thus, 
kidney is the major organ for the extraction of GSH from 
plasma. The GSH translocation to extracellular spaces is 
an important factor for cellular GSH turnover. GSH from 
plasma is extracted by kidneys where it is hydrolyzed into 
its constituent amino acids by membranous enzymes (γ-GT) 
and peptidases. Renal tubular cells also secrete GSH into 
the tubular lumen where it is hydrolyzed into its constituent 
amino acids. These amino acids are taken up by renal tubular 
cells to resynthesize GSH. These constituent amino acids are 
also transferred to plasma from where they are translocated 
to the liver and small intestine through Na-dependent amino 
acid transporters for GSH synthesis. The GSH synthesized 
in intestinal epithelial cells is degraded and the constituents 
amino acids are taken up by the liver to restore GSH [135, 
136]. While in the brain, the GSH is translocated from the 
plasma via the BBB [137]. The concentration of GSH varies 
in different tissues. Liver and small intestine contain high-
est concentration of GSH in body ranging from 1 to 6 mM 
[43], followed by kidney (2–5 mM) [138], brain (2–3 mM) 
[139], blood (~ 1 mM) [140, 141], and lung epithelial cells 
(0.42 mM) [142]. The combination of secretion, hydrolysis, 
and restoration of GSH and translocation of its constituent 
amino acids constitutes (i) Hepato-renal cycle (ii) Entero-
hepatic cycle (iii) Intra-renal cycle and (iv) Intra-hepatic 
cycle, as illustrated in Fig. 4.

GSH in the Brain

Biosynthesis

The brain constitutes only 2% of the bodyweight but uti-
lizes 20% of the  O2 used by the whole body. Due to the 
high  O2 utilization and poor antioxidant status, the brain is 
highly susceptible to OS [11]. Amongst the major central 
nervous system (CNS) cells, the concentration of GSH is 
highest in astrocytes followed by neurons [143–146]. GSH 
is synthesized as de novo in astrocyte using its constituent 
amino acids Glu, Cys and Gly. The GSH synthesized in an 
astrocyte is transported to extracellular space via multiple 
drug resistance protein 1 (MRP1) where it is hydrolyzed into 
CysGly and γ-GluX moieties by enzyme γ-GT [147–149]. 
The CysGly moiety is cleaved into Cys and Gly via neuronal 
ectopeptidase aminopeptidase which is transported to neuron 
via excitatory amino acid carrier 1 (EAAC1) and glycine 
transporter (GlyT2) respectively [149–155]. The Cys and 
Gly combine with Glu (provided by glutamate-glutamine 
cycle operating between astrocytes and neurons) to synthe-
size GSH [156] (Fig. 5). Due to the major role played in the 
synthesis and transport of GSH precursors, astrocyte act as 
a neuroprotector against OS and neurodegeneration [157].
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Route and Transport Across BBB

BBB formed by the blood vascular endothelial cell lines the 
cerebral microvessels and is required to control the brain 
microenvironment by separating the blood from the brain. 
Various molecules are transported through BBB via different 
routes [158, 159]. Paracellular transport through tight junc-
tions is responsible for the transport of simple water-soluble 
molecules, while other lipid-soluble substances like steroids 
and alcohol are transported passively via diffusion. Other 
molecules such as amino acids and glucose are transported 

via solute carrier-mediated transport based on concentration 
gradient with the use of ATP as an energy source. GSH is a 
tripeptide known to cross the BBB through Na-dependent 
GSH transporter, which belongs to the solute carrier fam-
ily [137]. Other routes like receptor-mediated transcytosis, 
adsorptive-mediated transcytosis are responsible for the 
transport of macromolecules and charged molecules with 
characteristic receptor-ligand interaction and electrostatic 
properties respectively (Fig. 6) [160]. The efflux transport-
ers are also present for the extrusion of drugs outside the 
brain [161].

Fig. 4  Inter-organ GSH trans-
port. GSH is secreted from 
hepatocytes into empty spaces 
and bile canalicular spaces. This 
GSH is degraded in kidneys 
by membranous γ-GT and 
other peptidases. GSH from 
the liver is also transferred to 
the small intestine where it is 
hydrolyzed to its constituent 
amino acids on the brush border 
membrane. The resulting amino 
acids are taken up by intestinal 
epithelial cells by Na depend-
ent transporters and transferred 
to plasma from where they are 
transferred back to the liver for 
its regeneration. GSH is translo-
cated from plasma to the brain 
via the BBB. The figure was 
designed using BioRender with 
information  taken from existing 
literature [136]

Fig. 5  GSH synthesis in CNS. 
GSH is exported from the astro-
cyte through MRP1 and is cat-
abolized by the ectozyme γ-GT 
to provide CysGly and γ-GluX. 
The resulting amino acids are 
further catabolized by amin-
opeptidase into Cys and Gly and 
are taken up by the neuron via 
EAAC1 and GlyT2 respectively. 
In the neuron, Cys and Gly are 
combined with Glu (provided 
by glutamate-glutamine cycle) 
to synthesize GSH. The figure 
was designed using BioRender 
with information taken from 
existing literature [149, 153]
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Based on the previous studies on GSH uptake by endothe-
lial cells in rat and bovine brain led to experiments of GSH 
uptake in human cerebrovascular endothelial cells and fetal 
human embryonic cells. Na dependent GSH transporters are 
reported to be localized in the lumen of endothelial cells 
[162–164]. This Na-dependent GSH transporter was shown 
to be bidirectional. Uptake of GSH by astrocytes was also 
checked which elucidated the presence of Na dependent 
GSH transporters in both astrocytes and brain endothelial 
cells. Once it reaches to astrocytes, GSH takes its path until 
it reaches neuron via carrier-mediated transporters (Fig. 7) 
[137].

Biophysical, Chemical and Conformational 
Characteristics of GSH

The physical and chemical properties of GSH are enlisted 
as—molecular weight 307 g/mol, intermediate molecu-
lar flexibility with nine rotatable bonds, the lipophilicity 
of—6.4; and molecular topological surface area of 160 Å 
[93]. Nuclear magnetic resonance (NMR) and molecular 

dynamic studies have reported that GSH exists in two inter-
convertible conformations “extended” and “folded” (closed) 
forms, though in aqueous solution it remains typically in 
“extended” form [26]. Under physiological conditions, the 
conformational distribution and hydrogen-bonding network 
plays a crucial role in GSH functioning. Due to the presence 
of Cys molecule, the GSH is considered to be very sensi-
tive to the surrounding environment. The analysis of NMR 
spectra obtained in the inert environment reported that GSH 
exists mainly in closed conformation which is identified by 
the presence of Cys  Hβ peak at 2.79 ppm while the GSH also 
exists as extended conformation, identified by the presence 
of Cys  Hβ peak at 2.95 ppm [22, 23, 26]. Very recently, 
for the first time, study reported alterations of in vivo GSH 
closed conformers among normal, MCI and AD brain using 
the MEGA-PRESS pulse sequence [21] (Fig. 8).

Brain GSH Quantification

Differences in GSH content between brain regions may 
reflect variations in the availability of GSH for vital cellular 

Fig. 6  Routes of transport across the blood brain barrier (BBB): (i) 
Several simple water molecules pass the BBB through paracellular 
transport (ii) Certain other compounds like lipid molecules pass pas-
sively via diffusion. (iii) Solute carrier transporters are involved in 
energy mediated active transport of certain molecules like glucose, 
amino acids, and nucleosides. (iv) Receptor-mediated transcyto-
sis requires the receptor binding of ligand and can transport various 

molecules like peptides and proteins across the BBB. (v) Adsorptive-
mediated transcytosis involves the transfer of charged molecules like 
cationic peptide to cross the barrier via electrostatic interactions. (vi) 
Efflux transporter is responsible for the extrusion of drugs out of the 
brain. The figure was designed using BioRender with information 
taken from existing literature [158]
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functions. The highest concentration of GSH is observed in 
the cortex followed by HP, cerebellum, striatum and substan-
tia nigra (SN) [168, 169]. GSH metabolism-related disorders 
in the brain are highly correlated with an increased level of 
OS due to ROS generation [170]. Thus, to develop a clear 
understanding, accurate estimation of GSH content in the 
brain is necessary with clinical significance. GSH measure-
ment in autopsy brain was performed by various methods 
such as high-performance liquid chromatography with UV 
detection and spectroscopic technique for evaluation of the 
oxidative product of 5,5′-Dithio-bis (2-nitrobenzoic acid) 
[171, 172]. However, the in vivo detection of GSH in the 
human brain is performed by proton magnetic resonance 
spectroscopy (1H MRS).

Autopsy Studies

GSH levels in the cingulate cortex region of autopsy brain 
samples (N = 10) were found to be decreased in the AD brain 
in comparison to the HC, whereas no significant changes in 
GSH levels were observed in the PD brain [17]. In another 
study, prefrontal cortex regions obtained from autopsy brain 
tissues of non-cognitively impaired (N = 10), MCI (N = 8), 
mild/moderate AD (N = 4), and late-stage AD (N = 9) 
patients were assessed for GSH levels and significantly 
decreased GSH levels were reported in post mitochondrial 
supernatant, mitochondria, and synaptosomal fractions in 
MCI, AD and late AD samples in comparison to controls 
[18]. A study investigated GSH in HP (N = 6), from post-
mortem autopsy brain of MCI patients, showed that GSH 

was significantly decreased in HP in comparison to HC sam-
ples [19].

In Vivo Studies Using MRS

In order to detect the GSH in vivo in various brain regions, 
special pulse sequence MEGA-PRESS is considered as a 
selective and confirmatory method of choice [14, 23, 32, 
173]. This technique has several clinical applications, as it 
is useful in understanding various neurological disease pro-
cesses [20–25]. The multi-centric study from our laboratory 
confirmed the existence of two GSH conformers (extended 
and closed) as illustrated in (Fig. 9a) [23]. Additionally, a 
very recent study from our laboratory also for the first time 
showed the clinical importance of GSH and reported that the 
closed GSH conformer is depleted in ACC and PCC regions 
and therefore suggested to be a potential biomarker for AD 
[21]. In our earlier in vivo MRS study, the GSH levels were 
reported to be statistically significant in the right and left 
FC region among AD female and male (F/M-7/7) patients 
as compared to healthy young female and male (F/M-20/25) 
controls respectively [20]. Another study conducted to 
detect GSH concentrations in different brain regions like 
the HP (right and left regions) suggested that MCI (N = 22) 
and AD (N = 21) patients had significantly decreased GSH 
levels when compared to healthy old control (N = 21) [14] 
(Fig. 9b).

Apart from neurodegenerative diseases, in vivo detec-
tion was also proven to be beneficial in epilepsy, schizo-
phrenia, and MS [24, 25, 174]. A study conducted with 

Fig. 7  GSH transport across 
the blood brain barrier (BBB): 
GSH uptake from the blood 
(luminal side) to the brain 
(abluminal side) is mediated 
via Na dependent GSH trans-
porter localized at the luminal 
membrane. This GSH from 
abluminal side en-route astro-
cyte via Na dependent GSH 
transporter, which is effluxed 
through carrier-mediated trans-
porter to neuron. The figure was 
designed using BioRender with 
information taken from existing 
literature [137]
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the objective to measure GSH level in the parieto-occip-
ital region in epilepsy patients showed that GSH/water 
ratio was significantly reduced as compared to HC [174, 
175]. GSH levels quantified in the posterior medial FC 

of patients with schizophrenia (N = 20) showed a sig-
nificant negative correlation between GSH levels and 
scale for assessment of negative symptoms total scores 

Fig. 8  Structure of GSH and its conformations: a GSH structure and 
its two confirmations i.e., closed and extended. b NMR experiment 
results depicting the Cys-Hβ peak of GSH at 2.79 ppm for closed and 
2.95 ppm for extended conformer. NMR spectra of GSH within two 
different environments (i) without oxygenated environment and (ii) 
completely oxygenated environment. c In  vivo (human brain) MRS 

data were processed using in-house developed MATLAB based MRS 
signal processing and analysis toolbox, KALPANA. [165]. Necessary 
permissions were taken to reproduce GSH structure and the NMR 
spectra from the publishers—Elsevier [14], IOS Press [23] FEBS 
[166], Springer [26] and Frontiers [167]
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(r =  − 0.68) and negative symptom subscore on Brief Psy-
chiatric Rating Scale (r =  − 0.60) [24]. Similar studies for 
GSH detection were conducted in the grey matter region 
in MS patients where a significant decrease in GSH con-
centration (2.4 ± 0.5 mM) was observed as compared to 
control (3.3 ± 0.1 mM). However, no significant difference 
in white matter was observed [25].

Supplementation for GSH Enrichment

To maintain the disturbed antioxidant defense homeosta-
sis in the brain, certain antioxidants such as GSH, vitamin 
C, vitamin E, and NAC were provided as a supplement to 
healthy as well as patients with various neurological dis-
orders [27–30, 34, 39, 176–181]. However, it has been 
reported that vitamin C and E are dependent on GSH for 

Fig. 9  GSH detection via MRS. 
a Quantitation of GSH peaks 
using MRS from healthy sub-
jects (voxel size = 3.5 × 3.5 × 3.5 
 cm3 on the left parietal cortex). 
The MEGA-ON and MEGA-
OFF excitation pulse positions 
are (I) 4.40 ppm and 5.00 ppm, 
(II) 4.56 ppm and 5.00 ppm, 
respectively. These were pro-
cessed using in-house developed 
MATLAB based MRS signal 
processing and analysis toolbox, 
KALPANA [165] to get Cys  Hβ 
peak of extended (2.95 ppm) 
and closed form (2.80 ppm) of 
GSH. The figure reproduced 
with permission from IOS Press 
[23]. b Box plot representation 
of GSH concentrations in the 
right hippocampus (RH) and 
left hippocampus (LH) regions 
among HC (green), MCI (blue) 
and AD (red) subjects. A signif-
icant reduction was observed in 
the RH and LH regions of AD 
and MCI patients in comparison 
with HC. All significant values 
were set at p < 0.05 (*p < 0.05, 
**p < 0.01, ***p < 0.001). Nec-
essary permissions were taken 
to reproduce the figure from the 
publisher—Elsevier [14] (Color 
figure online)
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their regeneration [92]. Therefore, GSH and its precursors 
like NAC could be the potential therapeutic strategy in the 
form of supplements. NAC is a precursor to the amino acid 
L-cysteine and consequently the antioxidant GSH. NAC is 
also reported to be effective in crossing the BBB [182, 183]. 
The GSH level is replenished intracellularly by the interven-
tion of Cys prodrug—NAC therefore is considered as a well-
tolerated antidote for Cys/GSH deficiency [184]. The NAC 
promotes GSH biosynthesis, scavenges ROS, and upholds 
detoxification consequently effective in treating disease-
associated OS [34, 178, 180, 185]. The reduced GSH levels 
were also responsible for increased OS in various neuro-
degenerative disorders like AD, PD, and ALS which fur-
ther led to cellular death as reported in several studies [116, 
129, 186, 187]. To prevent this pathology, exogenous GSH 
was delivered and the progression of disease was evaluated 
[31–33, 35]. This delivery of GSH or NAC for therapeutic 
application is accomplished via different modes of delivery 
which are discussed further in detail.

Modes of Delivery for GSH and NAC 
Supplementation to the Brain

The modes of GSH or NAC delivery to the brain are similar 
to any other drug such as oral, intravenous, intranasal, sub-
lingual and intramuscular. Orally administered drugs are the 
most common which undergo the first-pass metabolism i.e., 
drugs are first absorbed in the gut, reach the liver via the 
hepatic portal vein and then enter the systemic circulation. 
The intestinal wall and liver consist of enzyme γ-GT which 
metabolizes GSH into its constituent amino acids thereby 
decreasing the systemic bioavailability of drugs [181]. There 
are different studies conducted with oral GSH supplementa-
tion in different doses and conditions [27, 29, 181, 188–191]. 
Similarly, the oral formulation for NAC was also evaluated 
[30, 34, 178–180]. While the intravenously administered 
drug is directly provided in the veins to reach the blood-
stream [192]. Likewise, the administration of intranasal drug 
travels through fast axonal transport along with the perinu-
clear space surrounding the nerve cell via trigeminal and 
olfactory nerves to reach into the cerebrospinal fluid (CSF)/
brain interstitial fluid through a transcellular pathway. This 
mode of transfer allows the direct transfer of drugs from 
an intranasal cavity to the brain by circumventing the BBB 
[193, 194]. Sublingually administered drug is absorbed in 
oral mucosa and reaches directly to the bloodstream through 
the ventral surface of the tongue [195]. Similarly, the intra-
muscularly administered drug is injected into the muscles 
from where it reaches the blood [196]. Several studies of 
GSH, as well as NAC supplementation in healthy as well as 
various disorders such as PD, amyotrophic lateral sclerosis 
(ALS), MS and autism spectrum disorder (ASD) through 

intranasal, intravenous, sublingual and subcutaneous mode, 
were also reported [28, 31–33, 35–42].

Clinical Trials Involving GSH and NAC 
Supplementation in Healthy Individuals

The supplementation of GSH or NAC was found to be 
beneficial among HC as evidenced in several clinical tri-
als conducted with different outcome measures [27–29, 42, 
181, 197]. A pilot randomized trial with oral liposomal GSH 
(500 and 1000 mg for 1 month) in HC (N = 12) has been 
reported to be effective in elevating GSH levels and improv-
ing the immune function and OS [29]. A trial conducted to 
determine the long-term effectiveness of oral GSH (250 and 
1000 mg/day, 6 months) on body stores in healthy adults 
(N = 54), showed increased GSH levels in the blood after 1, 
3 and 6 months vs baseline [27]. Another study conducted 
to compare the bioavailability, effect on OS markers and 
the safety of a sublingual form of GSH with two commonly 
used dietary supplements, NAC and oral GSH, where sub-
lingual GSH (450 mg), Oral (450 mg) and NAC (200 mg) 
were provided for 3 weeks to 20 normal volunteers. Signifi-
cant superiority of the sublingual form of GSH over the oral 
form, both in terms of bioavailability and positive effects 
on OS was observed [28]. In a randomized, double-blind, 
placebo-controlled clinical trial investigating effects of oral 
GSH supplementation (500 mg, for 4 weeks) on biomarkers 
of systemic OS in human volunteers (N = 40), no signifi-
cant changes in total GSH and measures of GSH/GSSG ratio 
were observed [181].

Evidence of GSH and NAC Supplementation Trials 
in Various Neurological Disorders

Disturbance in the level of GSH or associated enzymes 
(GPx) are observed in different neurological disorders such 
as AD [14, 198], PD [15, 199], MS [200, 201], ASD [202], 
and ALS [203]. Therefore, providing GSH or NAC as a sup-
plement reported being beneficial in modulating the brain 
GSH level as suggested in different clinical trials [30–32, 39, 
42, 180, 197, 204, 205]. Different clinical trials involving 
GSH or NAC as an intervention are discussed further for 
AD, PD, MS, ASD and ALS diseases.

Alzheimer’s and Parkinson’s Disease

AD is a neurodegenerative disorder characterized by pro-
gressive memory loss, disorientation and pathological 
markers (senile plaques and neurofibrillary tangles) [206]. 
Similarly, PD is also a neurodegenerative disorder character-
ized by the loss of dopaminergic neurons affecting mobil-
ity and muscle control [207]. The increased OS and GSH 
reduction have been well found to be associated with these 
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neurodegenerative disorders [208, 209]. Reduced levels of 
GSH was observed in regions susceptible to AD and PD like 
the HP, FC and SN [14, 15, 198, 199]. The study was per-
formed to evaluate the intranasal GSH uptake in PD where 
15 participants were involved in self-administration of GSH 
and results were observed after different time-periods. A 
significant increase in GSH concentration was observed after 
45 min of GSH administration. This result demonstrates the 
plausible role of GSH in the therapeutics of PD [32]. To the 
best of our knowledge, no clinical trial was found to assess 
brain GSH levels in AD patients with the intervention of 
GSH.

Several trials with NAC supplements were reported in 
AD and PD patients. A double-blinded, multi-site, phase 
II study was conducted in 106 AD individuals randomized 
to oral nutraceutical formulation (folate, alpha-tocopherol, 
B12, S-adenosyl methionine, NAC, acetyl-l-carnitine) 
or placebo for 3 or 6 months. The active control showed 
significant improvement in cognitive performance and the 
Dementia Rating Scale [34]. Similarly, a placebo-controlled 
trial of 34 MCI patients, 600 mg of oral NAC (along with 
folate, alpha-tocopherol, vitamin B12, S-adenosyl methio-
nine, and acetyl-l-carnitine) for 6 months was associated 
with improvement in dementia rating scale and preserva-
tion of executive function [40]. Another clinical trial specifi-
cally testing NAC in probable AD (N = 43) reported that oral 
NAC (50 mg/kg/day) failed to significantly improve MMSE 
scores in 6 months duration [179]. In another open-label 
4-week prospective study with an oral NAC in PD (N = 5) 
and HC (N = 3), where brain GSH in the occipital cortex 
was measured using 1H MRS (3 and 7 T) before and after 
28 days of 6000 mg NAC/day. Although peripheral antioxi-
dant measures (catalase and GSH/GSSG) increased signifi-
cantly, no significant increases in brain GSH were observed 
for the healthy and PD groups [180]. Another study with 
3 PD, 3 Gaucher disease (GD) patients and 3 HC subjects 
observed that a single intravenous dose of NAC resulted in 
an increase of the blood GSH/GSSG ratio which was fol-
lowed by an increase in brain GSH concentrations in all 
those subjects. No conclusive outcome was inferred due to 
the small sample size and study duration [39].

Multiple Sclerosis

MS is a chronic autoimmune, inflammatory neurological 
disease of CNS attacking myelinated axons (white matter) 
[210]. Enzymes like GPx and selenium were reported to be 
reduced in MS patients [200, 201]. Therefore, supplemen-
tation with selenium salts is being tested in a patient along 
with GSH, to check whether selenium treatment helps in 
the treatment of pathology. In a study, 18 MS patients were 
provided with 6 tablets of selenium (equivalent to 6 mg) for 
five weeks and GPx levels were monitored and quantified. 

GPx levels were increased significantly in the treatment 
group (10.4 ± 4.5 micro katal per gram (µkat/g) protein) as 
compared to control group (3.97 ± 2.09 µkat/g protein) [31].

Autism Spectrum Disorder

ASD is a set of neurodevelopmental disorders characterized 
by behavioral deficits and non-verbal interactions such as 
reduced eye contact, facial expression, and body gestures 
[211]. Children with autism were reported to be diagnosed 
with lower plasma GSH levels, therefore, the study was 
designed to check whether GSH supplementation increases 
the plasma GSH levels in autistic children [202]. The study 
was an eight-week, open-label trial using oral lipoceuti-
cal GSH (N = 13) or trans-dermal GSH (N = 13) in ASD 
children of 3 to 13 years of age. The oral treatment group 
showed significant increases in plasma reduced GSH, but not 
whole-blood GSH levels post supplementation [33].

Similarly, in a 12-week, double-blind, randomized, pla-
cebo-controlled study, autistic children (N = 33) were initi-
ated 900 mg oral NAC daily for 4 weeks, then 900 mg twice 
daily for 4 weeks and 900 mg three times daily for 4 weeks. 
Significant improvements on the Aberrant Behavior Check-
list irritability subscale, Repetitive Behavior Scale-Revised 
stereotypies measure, and Social Responsiveness Scale 
mannerisms scores. While no significant improvement in 
other subscales were reported [178]. Another 12-week ran-
domized, double-blind, placebo-controlled trial of oral NAC 
with the target dose of 60 mg/kg/day in three divided doses 
in ASD youth (N = 31) found no statistically significant dif-
ference in Clinical Global Impression—Improvement scale 
but the GSH level in blood was significantly higher in the 
NAC group (p < 0.05). However, no significant difference in 
the GSH/GSSG ratio was observed [30].

Amyotrophic Lateral Sclerosis

ALS is a fatal motor neuron disorder characterized by pro-
gressive loss of the upper and lower motor neurons at the 
spinal or bulbar level [212]. Impairment of the antioxidant 
defense system could be the potential reason for the etiology, 
supported by the studies of the lowered activity of enzymes 
like GPx in blood and CSF of ALS patients [203]. Due to 
the reported observations of the lowering of antioxidant 
enzymes, GSH supplementation could be beneficial for the 
treatment of disease. A pilot trial of reduced GSH was con-
ducted in 32 ALS patients for 6 months, where 600 mg dose 
of GSH was provided intramuscularly each day. No signifi-
cant difference was observed between the treated ALS and 
control groups after GSH treatment [35].

Similar to GSH, a randomized, double-blind, placebo-
controlled clinical trial to assess the effect of treatment with 
NAC was also conducted in ALS patients. A dose of 50 mg/
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kg per day subcutaneously for 12 months was provided and 
observed that NAC did not result in a major increase in 
12-month survival or a reduction in disease progression [41].

Conclusion

GSH being a master antioxidant displays a remarkable meta-
bolic and regulatory versatility. GSH plays a crucial role in 
various cellular processes including cell signaling, balance 
of thiol redox status and detoxification of xenobiotic. Moreo-
ver, studies so far elucidate the fact that dysregulation of 
GSH homeostasis due to increased OS, is involved in various 
neurological disorders like AD, PD, MS, autism, and ALS, 
etc. In this review article, we have addressed how GSH acts 
as a master antioxidant by casing all aspects like function, 
metabolism, compartmentalization, transport, and synthesis 
of tripeptide inside the cellular system. We also discussed 
GSH in vivo detection using advanced spectroscopy tech-
niques. Delineating the therapeutic effectiveness of GSH and 
NAC as a supplement through various clinical trials will 
augment the understanding of the treatment of various neu-
rological diseases. Upcoming GSH supplementation stud-
ies will be an important step towards clinical neuroscience 
research which in turn will be beneficial for a wide range of 
patients suffering from neurological illnesses.

Future Perspectives

GSH is a master antioxidant as it has a beneficial impact 
on substantially all organs of the living body including 
the brain. To the best of our knowledge, no phase III rand-
omized controlled trial is existing for MCI or AD patients, 
wherein brain GSH level is monitored non-invasively with 
the GSH supplementation. Recent mouse model studies 
have concluded that behavioral deficits including cogni-
tive decline, depressive-like behaviors, and anxiety-related 
behaviors observed in APP (NL−G-F/NL−G-FG-) mice 
were significantly improved by oral GSH administration 
[213]. This study has validated our ongoing work [14, 20, 
21] and hypothesis that oral GSH supplementation [204] will 
like to have huge impact for possible cognitive improvement 
in MCI and AD patients subject to verification through an 
urgent clinical trail.
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