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Abstract
Dopamine (DA) is critical for motivation, reward, movement initiation, and learning. Mechanisms that control DA signal-
ing have a profound impact on these important behaviors, and additionally play a role in DA-related neuropathologies. The 
presynaptic SLC6 DA transporter (DAT) limits extracellular DA levels by clearing released DA, and is potently inhibited 
by addictive and therapeutic psychostimulants. Decades of evidence support that the DAT is subject to acute regulation by 
a number of signaling pathways, and that endocytic trafficking strongly regulates DAT availability and function. DAT traf-
ficking studies have been performed in a variety of model systems, including both in vitro and ex vivo preparations. In this 
review, we focus on the breadth of DAT trafficking studies, with specific attention to, and comparison of, how context may 
influence DAT’s response to different stimuli. In particular, this overview highlights that stimulated DAT trafficking not only 
differs between in vitro and ex vivo environments, but also is influenced by both sex and anatomical subregions.
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Introduction

Dopamine (DA) is a modulatory neurotransmitter that 
plays a central role in a variety of complex, evolutionar-
ily conserved behaviors. Midbrain DA neurons in the sub-
stantia nigra project to the dorsal striatum (DS), where DA 
is required for motor control and habit formation. DAergic 
neurons in the ventral tegmental area (VTA) project pri-
marily to the prefrontal cortex and ventral striatum (VS), 
where DA critically influences reward, motivation, anxi-
ety, and predictive cue conditioning [1, 2]. DA neurons fire 
tonically with phasic bursting, and rewarding stimuli drive 
enhanced bursting [3]. Once released, DA’s extracellular 
half-life is strictly limited by presynaptic reuptake, medi-
ated by the  Na+/Cl−-dependent DA transporter (DAT). DAT 
is potently inhibited by addictive and therapeutic psycho-
stimulants, such as cocaine, methylphenidate (Ritalin), and 

amphetamines, which are competitive antagonists (cocaine, 
methylphenidate) and substrates (amphetamines), and their 
binding to DAT is requisite to elicit rewarding behaviors 
[4–6]. Multiple DAT coding variants have been identified 
in patients with attention-deficit/hyperactivity disorder, 
ADHD [7–10], autism spectrum disorder, ASD [9, 11, 12], 
and Parkinson’s-like neurodegenerative disorders [13–15], 
illustrating that DAT dysfunction has a marked impact on 
DAergic homeostasis.

Decades of effort from multiple investigators support that 
DAT is not static in the plasma membrane, but is dynami-
cally regulated by endocytic trafficking. Multiple signal-
ing pathways modulate DAT endocytic trafficking, which 
ultimately impacts DAT surface expression. Given the pro-
found impact that DAT dysfunction imparts on baseline 
DAergic tone and function, regulated DAT surface expres-
sion is mechanistically well poised to likewise influence 
DA signaling and DA-dependent behaviors. The majority 
of investigations into the individual mechanisms that medi-
ate regulated DAT trafficking, and their potential impact on 
DAergic function, have primarily been conducted outside the 
context of DAergic terminals. Recent technical advances in 
conditional gene expression and delivery, as well as in opti-
cal and ex vivo approaches, have facilitated examining DAT 
regulation and trafficking in its appropriate context, and have 
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raised the possibility that the complex circuitry inherent to 
DAergic terminal regions may converge to dynamically reg-
ulate DAT. Here, we review regulated DAT trafficking stud-
ies to date, with an emphasis on how context may influence 
DAT trafficking. It is our hope that viewing DAT trafficking 
studies in this light may set the stage for where future DAT 
regulatory studies may be aimed.

DRD2‑ and Gi‑Mediated DAT Plasma Membrane 
Delivery

The D2 DA receptor subtype (DRD2) is a  Gi-coupled 
receptor expressed widely throughout the striatum. Presyn-
aptically, DRD2 is an autoreceptor on DAergic terminals. 
Post-synaptically, DRD2 is expressed in striatal gluta-
matergic terminals, cholinergic interneurons, and GABAe-
rgic medium spiny neurons of the indirect pathway, which 
project either (1) from the dorsal striatum to the globus 
pallidus, or (2) from the nucleus accumbens to the ventral 
pallidum [16]. DRD2 is a member of the DRD2-like recep-
tor subfamily, which is comprised of DRD2, DRD3, and 
DRD4. Multiple lines of evidence, both from ex vivo and 
transfected cell line studies, support that DRD2 activation 
increases DAT function and plasma membrane expression. 
Initial studies in rat striatal synaptosomes revealed that 
the DRD2-like agonist, quinpirole, increased DA uptake 
as measured by rotating disk voltammetry [17]. Moreo-
ver, in vivo chronoamperometry demonstrated that DA 
clearance decreased following systemic injection with the 
broad-spectrum DRD antagonist, haloperidol [17]. Sub-
sequent kinetic studies in Xenopus oocytes co-expressing 
DAT and DRD2 observed both increased DA uptake  Vmax 
and  [3H]WIN35,428 whole cell binding  Bmax, suggest-
ing that DRD2 activation may increase DAT activity via 
enhanced surface expression [18]. DRD2-mediated DAT 
functional upregulation was further confirmed by Liu 
and colleagues [19], who reported that DRD2 associates 
with DAT in isolated protein complexes from rat striatal 
lysates, and that DAT residues 1–26 were sufficient to 
recover DRD2 in vitro. One potential confound in stud-
ies using  [3H]DA uptake to measure how DRD2 activa-
tion impacts DAT function, is that the inherent addition 
of DA to the assay will also activate DRD2. To eliminate 
this potential pitfall, Shippenberg and colleagues lever-
aged the fluorescent DAT substrate, 4-[4-(diethylamino)-
styryl]-N-methylpyridinium iodide  (ASP+), which is taken 
up by DAT, but does not activate DRD2 [20]. Using  ASP+ 
uptake, these studies found that DRD2-mediated increases 
in DAT function required ERK1/2, but not PI3-kinase, 
activity [20] in HEK and N2a cells. Further, using BRET 
they confirmed the DRD2-DAT association, but found 
that DAT N-terminal residues 1–55 were not required for 
the DRD2-DAT association by co-immunoprecipitation. 

Taken together, these initial studies clearly demonstrated 
that DRD2 increases DAT activity, and were consistent 
with the hypothesis DRD2-mediated DAT upregulation 
was likely due to enhanced surface expression.

DRD2-mediated DAT surface delivery was first directly 
demonstrated by Gnegy and colleagues, using a surface 
biotinylation approach in ex vivo mouse striatal synapto-
somes, prepared from total striatum that included both DS 
and VS [21]. Moreover, using both PKCβ-specific inhibitors 
and PKCβ−/− mice, they found that DRD2-mediated DAT 
surface delivery requires PKCβ [21, 22]. These landmark 
results have opened the door to a variety of new potential 
questions regarding DRD2-mediated DAT trafficking: Is 
DRD2-activated DAT trafficking mediated by DRD2 auto-
receptors, or is there a retrograde signaling contribution via 
DRD2 receptors expressed throughout the striatum? Are 
there regional differences in DRD2-mediated DAT surface 
delivery? Blakely and colleagues recently reported that 
DRD2-dependent DAT trafficking differs between DS and 
VS in ex vivo slices, where the DRD2 agonist, quinpirole, 
significantly increased DAT surface expression in DS, but 
had no effect on DAT surface levels in VS [23]. The mecha-
nisms governing these regional differences remain unknown. 
However, it should be noted that quinpirole can activate all 
D2-like receptors (i.e. DRD2, DRD3, DRD4; Ki ~ 4.8, 24, 
and 30 nM, respectively), as well as DRD1 (1.9 µM). Since 
their study used 1 µM quinpirole, there is a possibility that 
region-specific effects reported may reflect a net integrated 
signal from multiple DRDs, which would be equally inter-
esting to discern. Alternatively, region-specific, DRD2-
mediated DAT trafficking could arise from distinct DRD2 
signaling, which is differentially sensitive to DA in the DS 
vs. VS [24].

Does DRD2-dependent DAT trafficking occur in vivo? 
In vivo chronoamperometric studies revealed that hypoinsu-
linemic rats exhibit reduced DA clearance, due to decreased 
insulin receptor-mediated PI3K/Akt signaling [25]. Interest-
ingly, DAT activity in hypoinsulinemic rats was restored in 
a DRD2-dependent manner by treating with AMPH [26], 
which drives DA efflux through the DAT [27, 28]. These 
results strongly suggest that DRD2-mediated DAT mem-
brane insertion occurs in vivo, in response to elevated extra-
cellular DA.

Do other  Gi-coupled GPCRs promote DAT surface 
expression? Studies from Shippenberg and colleagues found 
that kappa opiate receptor (KOR) activation increased DA 
uptake and DAT surface expression in cell lines and synap-
tosomes, and likewise found that KOR activation increased 
DA uptake in minced striatal preparations, using rotating 
disk voltammetry [29]. Given that KOR activation has aver-
sive properties, KOR-mediated DAT trafficking is poised as 
a pivotal interaction point between the opiate and reward 
circuitry, and may have future therapeutic potential [30].
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DAT PDZ Domain‑Dependent Surface Expression

Multiple DAT domains have been identified that are 
required either (1) to maintain DAT surface expression, 
or (2) to promote biosynthetic (i.e. “forward”) DAT 
trafficking. The final carboxy terminal amino acids of 
DAT, “LKV”, constitute a PDZ-binding domain, and are 
required for DAT binding to the PDZ protein, PICK1 (pro-
tein interacting with C kinase 1) [31]. Initial studies in 
HEK293 cells and cultured DA neurons found that PICK1 
potentiated DAT function in an LKV-dependent manner. 
Moreover, truncating the LKV residues from the DAT 
carboxy terminus substantially reduced DA uptake and 
DAT axonal targeting, suggesting that the PDZ domain, 
possibly through the PICK1 association, is required for 
DAT surface delivery [31]. A subsequent study by Gether 
and colleagues confirmed that truncating the LKV motif 
indeed resulted in DAT retention in the endoplasmic 
reticulum (ER). They further found that replacing the 
LKV motif with the β2-adrenergic receptor PDZ domain 
(SLL) sufficed to rescue DAT surface targeting, but not 
PICK1 binding, indicating that PDZ-dependent plasma 
membrane targeting may not be solely dependent upon the 
DAT-PICK1 interaction [32]. Moreover, using an alanine 
substitution mutant (DAT-AAA), our laboratory recently 
found that the LKV PDZ domain is required for retromer-
dependent, DAT endosomal surface delivery in the rat 
mesencephalic cell line, AN27 [33]. However, DAT-AAA 
relative surface levels were comparable to wildtype DAT, 
indicating that the DAT LKV motif, per se, might not be 
required for DAT biosynthesis and forward trafficking in 
AN27 cells [33].

In order to address the role of the LKV motif in situ, 
Gether and colleagues generated a knock-in mouse 
expressing DAT-AAA, which had significantly reduced 
affinity for purified PICK1 protein [34]. The DAT-AAA 
mouse had a striking loss in striatal DAT protein. Further-
more, DAT-AAA was not retained in the ER in neuronal 
cultures made from the knock-in mouse, in agreement 
with their previous cell line report [32]. However, PICK1 
was not required in vivo for proper DAT protein levels or 
axonal targeting, as demonstrated by the PICK1 knockout 
mouse [34]. In summary, these data indicate that (1) the 
DAT PDZ domain is required in vivo for DAT protein 
expression, but not for DAT’s overall surface: intracel-
lular distribution, and (2) PICK1, though initially thought 
to be required for PDZ-dependent DAT plasma membrane 
targeting, is not required in vivo for DAT protein expres-
sion. Together, these reports highlight the importance of 
investigating DAT trafficking mechanisms in DAergic 
neurons, especially if there are contradictory findings 
among various expression systems.

Constitutive DAT Endocytosis

Constitutive DAT internalization and recycling has been 
reported in a variety of heterologous expression systems 
[33, 35–40], as well as in primary DAergic neuronal cul-
tures [38, 41], as measured using biochemical and imaging 
approaches [35, 36, 38–44]. Constitutively internalized DAT 
can reportedly target to several endocytic compartments, 
including those positive for EEA1, rab4, rab5, and the Vps35 
retromer complex component. DAT also targets, albeit to a 
lesser extent, to rab11- and rab7-positive loci [33, 38, 41].

Despite these findings, constitutive DAT trafficking in 
intact DA terminals has proven difficult to assess. In cell 
lines, basal DAT endocytic trafficking can be readily meas-
ured using reversible biotinylation assays [45]. However, 
the rapid and dramatic temperature shifts required for this 
approach are not optimal for acute brain slice viability, creat-
ing a sizable obstacle in measuring DAT internalization in 
bona fide DAergic terminals. Using cultured rat midbrain 
DA neurons and the fluorescent cocaine analog JHC 1-64, 
which selectively labels DAT [46], Gether and colleagues 
found that native DAT indeed constitutively internalizes 
[38]. Hong and Amara further confirmed this finding, and 
found that internalized DAT co-localizes with  Rab11+ recy-
cling endosomes in rat embryonic mesencephalic primary 
cultured neurons [41]. To track DAT internalization in DAer-
gic terminals in situ, Sorkin and colleagues generated a DAT 
knock-in mouse, in which an HA epitope was engineered 
into the DAT extracellular loop 2 (HA-EL2-DAT), and used 
this mouse to monitor DAT internalization by tracking anti-
HA antibody internalization in ex vivo striatal slices. They 
found only sparse intracellular HA immunoreactivity via 
electron microscopy [47], and therefore concluded that DAT 
undergoes little, if any, constitutive or regulated endocytosis 
in axon terminals. This result is in contrast to biochemical 
studies that demonstrate that various stimuli can modulate 
DAT surface expression in ex vivo striatal slices (elaborated 
below), and raises the possibility that technical obstacles 
may have impacted their study. For example, studies were 
performed in 800 µm brain slices, which are relatively thick 
in comparison to the standard 250–400 µm thickness typi-
cally prepared, which maximizes tissue oxygenation for 
ex vivo studies. Moreover, several recent reports demon-
strated that large immunoglobulins cannot efficiently pen-
etrate thick tissue slices beyond 50–100 µm [48, 49]. Simi-
larly, our laboratory recently reported that although PRIME 
(PRobe Incorporation Mediated by Enzyme) labeling can 
efficaciously label surface DAT and track its internalization 
in monolayer culture, it cannot be used to successfully label 
DAT in 300 µm acute brain slices, presumably due to an 
inability of the lipoic acid ligase (LpIA) enzyme to effec-
tively penetrate the slice [33]. Given that the HA-EL2-DAT 
mouse study did not present controls for either slice viability 
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or antibody access to deep tissue loci, it is not clear whether 
the approach used was able to accurately measure endog-
enous DAT trafficking events.

Recent studies using super-resolution microscopy tech-
niques such as PALM (photoactivated localization micros-
copy) and STORM (stochastic optical reconstruction micros-
copy) have allowed researchers to more precisely measure 
DAT surface dynamics in cultured DA neurons [50], how-
ever this type of high-resolution approach has not yet been 
employed to study basal or stimulated DAT trafficking in DA 
terminals. Thus, it remains unclear whether DAT undergoes 
constitutive internalization in the striatum.

PKC‑Stimulated DAT Endocytosis

Early studies in Xenopus oocytes, COS cells, and striatal 
synaptosomes demonstrated that the  Vmax of DA uptake rap-
idly decreases in response to acute protein kinase C (PKC) 
activation with phorbol esters [51–53], suggesting that DAT 
may be subject to either PKC-mediated catalytic inactiva-
tion, decreased surface expression, or both. Subsequent stud-
ies in heterologous expression systems demonstrated that 
acute PKC activation decreases DAT surface expression [54, 
55], and that the shift in DAT from the cell surface to endo-
somal loci is mediated by increased DAT internalization 
combined with decreased plasma membrane delivery [35, 
41, 53]. PKC-stimulated DAT surface downregulation has 
been demonstrated in both neuronal and non-neuronal cell 
culture models (for review see: [56]). We further reported 
that PKC activation decreases DAT surface expression in 
ex vivo acute (total) striatal slices, demonstrating that PKC 
activation impacts DAT surface expression in bona fide 
DAergic terminals [40]. More recently, we further explored 
whether there are region-specific differences in the ability 
of PKC to drive DAT internalization. Surprisingly, PKC 
activation in DS had no effect on DAT surface expression, 
whereas in the VS, PKC activation significantly decreased 
DAT surface levels in male and female mice [57]. Given that 
PKC activation decreases surface DAT in total striatal slices 
(i.e. that include both DS and VS) [40], these results suggest 
that any PKC-mediated effects on DAT trafficking observed 
in total striatum were driven solely from VS.

We recently reported that in vivo, conditional Rit2 (AKA: 
Rin) knockdown (Rit2-KD) in DAergic neurons decreased 
DAT protein levels in total striatum of male mice [58]. Given 
that Rit2 is required for PKC-stimulated DAT internaliza-
tion in cell lines [43], we subsequently leveraged shRNA-
mediated DAergic Rit2-KD to directly test whether Rit2 is 
required for the PKC-mediated DAT surface loss in DAer-
gic terminals [57]. In male and female VS, Rit2 was indeed 
required for PKC-mediated DAT internalization. Surpris-
ingly, following Rit2-KD, PKC activation increased DAT 
surface expression in male DS and had no effect on DAT 

surface expression in female DS. The mechanism(s) through 
which PKC increases DAT surface expression in the absence 
of Rit2 in male DS are not yet known. These results empha-
size the importance of studying DAT endocytic mechanisms 
not only the specific context where DAT is endogenously 
expressed, but also in both male and female subjects, as the 
mechanisms are not necessarily the same, and should not be 
assumed to be so.

As described above, PKCβ is required for D2-dependent 
DAT insertion (see “DRD2- and Gi-Mediated DAT Plasma 
Membrane Delivery”), however it remains unknown which 
PKC isoform(s) are required for PKC-stimulated DAT 
internalization in response to phorbol ester treatment. PMA 
activates two diacylglycerol (DAG)-sensitive PKC isozyme 
subtypes: classical (DAG- and  Ca2+-dependent) and novel 
(DAG-dependent,  Ca2+-independent) PKCs [59]. Candidate 
PKCs can be further narrowed, as PMA-stimulated DAT 
internalization is blocked by the PKC inhibitor, bisindolyl-
maleimide (BIM I, GF 109203X, Gö 6850) [54, 60, 61], 
which is selective for α, βI, δ, ε, and ζ PKC isozymes. How-
ever, PKCζ is not DAG-dependent, and therefore not acti-
vated by PMA. Thus, PKC-stimulated DAT internalization 
likely requires either PKCα, βI, δ, or ε.

What are the physiological means that drive PKC-stim-
ulated DAT internalization? Conventional and novel PKCs 
are typically activated in response to stimulating Gq-cou-
pled GPCRs (G-protein-coupled receptors), which activate 
PKC and release  Ca2+ from intracellular stores, in parallel, 
downstream of phospholipase C activation. However, it still 
not clear whether activating endogenously expressed, Gq-
coupled GPCRs stimulates DAT internalization in intact 
DA terminals. Studies in transfected HEK293 and N2a 
cells demonstrated that activating the Gq-coupled receptor 
neurokinin (NK)-1 with its endogenous ligand, substance P, 
reduced DAT surface expression in a PKC-dependent man-
ner [62], providing a possible candidate for endogenous 
PKC-dependent DAT endocytosis. However, substance 
P-dependent DAT internalization has not yet been reported 
in DAergic terminals. The Gq-coupled, Group I metabo-
tropic glutamate receptor 5 (mGluR5) has also been impli-
cated in DAT functional downregulation. DHPG, a Group 
I selective mGluR agonist, decreased DAT function in rat 
striatal synaptosomes, which was blocked by the mGluR5-
specific antagonist, MPEP, as well as the PKC inhibitor, 
Ro-31–8220 [63]. However, Ro-21-8220 was used at a rela-
tively high concentration that can also inhibit other kinases 
(e.g. GSK3β, MAPKAP-K1β), raising the possibility that 
mGluR5-mediated DAT downregulation may be mediated 
via signaling pathways other than PKC. Fast-scan cyclic 
voltammetry studies from Alvarez and colleagues recently 
found that activating the muscarinic receptor M5, a Gq-cou-
pled GPCR selectively expressed in DA neurons [64, 65], 
significantly decreased DA clearance rates in VS [66]. Given 
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that mGluR5, and possibly M5, receptors are expressed on 
other cell types throughout the striatum, such as choliner-
gic interneurons and medium spiny neurons, it is unclear 
whether or not mGluR5 and M5-mediated DAT downregu-
lation occur cell autonomously. Thus, whether activating a 
Gq-coupled GPCR expressed on DA terminals can stimu-
late PKC-dependent DAT internalization, and whether this 
mechanism is subject to regional differences, remains to be 
tested.

Amphetamine‑Stimulated DAT Endocytosis

Amphetamine (AMPH) is an addictive psychostimulant 
that increases extracellular DA concentrations via multiple 
actions at the DA terminal. AMPH is a competitive substrate 
for DAT, thus increases DA by blocking reuptake through 
DAT [67]. AMPH also depletes vesicular DA content and 
induces DA efflux through DAT, further enhancing DA lev-
els at the synapse [27, 67–71]. Moreover, AMPH exposure 
induces DAT internalization from the plasma membrane, 
thus decreasing surface DAT availability [41, 61, 72–78].

AMPH-stimulated DAT surface loss was originally char-
acterized in HEK293 cells treated with AMPH [72]. This 
result was later replicated in synaptosomes made from 
whole rat striatum [75] and in primary DA neuronal cul-
tures [77]. AMPH-induced DAT internalization was further 
demonstrated in ex vivo mouse midbrain slices, and was 
shown to be dependent on Rho GTPase activity downstream 
of the trace amine-associated receptor (TAAR) 1 [77, 78]. 
However, it is still unknown whether AMPH stimulates 

DAT internalization in bona fide DA terminals. Using the 
HA-αEL2-DAT and electron microscopy techniques, Block 
and colleagues found that i.p. AMPH injection did not sub-
sequently affect DAT surface distribution in axon terminals 
or DA cell bodies, however it is unclear whether the DAT 
labeling method employed was sufficient to detect drug-
induced changes (see “Constitutive DAT Endocytosis”) [47]. 
To directly test this possibility, we performed ex vivo striatal 
slice biotinylation (as previously described [40, 44, 58], and 
found that AMPH treatment (10 µM, 30 min, 37 °C) induced 
significant DAT surface loss, both in DS and VS (Fig. 1). 
These results confirm that AMPH drives DAT surface loss 
in DAergic terminals. However, whether the mechanisms 
required for AMPH-stimulated endocytosis in DAergic 
terminals are similar to those in somatodendritic regions 
remains to be tested.

Receptor Tyrosine Kinase‑Mediated DAT Trafficking

DAT surface expression is also regulated by receptor tyros-
ine kinases (RTKs). Broad-spectrum tyrosine kinase inhib-
itors, such as genistein, tyrphostin 23, and tyrphostin 25, 
significantly decreased DAT function in DS synaptosomes 
and Xenopus oocytes [79, 80]. Additional studies indicate 
that direct RTK activation modulates DAT surface expres-
sion [81–84]. Insulin-like growth factor receptor (IGFR-1) 
activation increased DAT function and surface expression 
in transfected cell lines, and was dependent on PI3-kinase 
and Akt activity, as defined with PI3-kinase and Akt inhibi-
tors [81, 82]. Moreover, hypoinsulinemia induced either by 

Fig. 1  AMPH stimulates DAT internalization in mouse dorsal and 
ventral striatum. Ex  vivo striatal slice biotinylation. Acute striatal 
slices were prepared and treated ± 10  µM AMPH, 30  min, 37  °C. 
Surface proteins were biotinylated and isolated by streptavidin pull-
down, and DAT was detected by immunoblot using rat αDAT (Mill-
pore MAB369), as previously described [40, 58]; Wu, 2015 #35}. a 
Striatal slice subdissection. Slices including VS were identified by 

presence of the anterior commissure (AC). Prior to lysis, slices were 
subdissected to enrich for dorsal and ventral striatum, by cutting from 
the lateral ventricle (LV) to the olfactory tract (OT). b Top represent-
ative blots of surface and total (input) DAT following the indicated 
treatment(s). Bottom average DAT surface levels, expressed as %total 
DAT input. *Significantly less than vehicle-treated control, p < 0.05, 
one-tailed Student’s t test, n = 6–9
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streptozotocin treatment or high fat diet significantly reduced 
DA clearance rates, DA reuptake, and DAT surface expres-
sion compared to controls, as measured in rat striatal syn-
aptosomes [25, 85, 86], consistent with the results obtained 
in cell lines.

Glial cell line-derived neurotrophic factor (GDNF) also 
regulates DAT surface expression through receptor Ret 
activation and downstream signaling [84]. GDNF+/− mice 
exhibited increased DA uptake in the VS, but not DS, as 
measured via in vivo chronoamperometry, and reduced 
striatal DA tissue content in both VS and DS [87]. Fur-
thermore, a similar, regional-specific increase in DA levels 
and DAT function was observed in synaptosomes prepared 
from Ret+/− DS and VS [84]. GDNF/Ret-dependent negative 
regulation of DAT surface expression was demonstrated to 
require Vav2, a guanine exchange factor (GEF) that acti-
vates Rho and Rac GTPases [84]. In striatal synaptosomes 
prepared from Vav2−/− mice, DAT exhibited enhanced DA 
uptake and surface expression specifically in the VS, but not 
DS. Moreover, GDNF-dependent Ret activation increased 
Vav2 phosphorylation, and Ret co-expression increased the 
DAT-Vav2 interaction, suggesting that Ret RTK signaling 
may negatively regulate DAT surface expression through 
Vav2 activation [84].

In summary, regulated DAT trafficking occurs in response 
to multiple cellular signaling pathways, and is poised to 
significantly impact DAergic signaling, as well as DA-
dependent behaviors and neuropathologies. The recent 
increase in DAT trafficking studies, carried out both in vivo 
and in ex vivo preparations, will undoubtedly glean mecha-
nisms that impact DAT surface presentation, as well as how 
converging signaling pathways within DAergic terminal 
regions are integrated to impact DAT surface availability 
and function.
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