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Abstract
The widespread nature of nucleocytoplasmic trafficking defects and protein accumulation suggests distinct yet overlap-
ping mechanisms in a variety of neurodegenerative diseases. Detailed understanding of the cellular pathways involved in 
nucleocytoplasmic transport and its dysregulation are essential for elucidating neurodegenerative pathogenesis and pin-
pointing potential areas for therapeutic intervention. The transport of cargos from the nucleus to the cytoplasm is generally 
regulated by the structure and function of the nuclear pore as well as the karyopherin α/β, importin, exportin, and mRNA 
export mechanisms. The disruption of these crucial transport mechanisms has been extensively described in the context of 
neurodegenerative diseases. One common theme in neurodegeneration is the cytoplasmic aggregation of proteins, includ-
ing nuclear RNA binding proteins, repeat expansion associated gene products, and tau. These cytoplasmic aggregations are 
partly a consequence of failed nucleocytoplasmic transport machinery, but can also further disrupt transport, creating cycli-
cal feed-forward mechanisms that exacerbate neurodegeneration. Here we describe the canonical mechanisms that regulate 
nucleocytoplasmic trafficking as well as how these mechanisms falter in neurodegenerative diseases.
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Introduction

Neurodegenerative diseases describe a highly heteroge-
neous set of disorders where progressive and irreversible 
neuronal death leads to detrimental symptoms dependent 
upon the subset of neurons that are impacted. While patients 
will exhibit various degrees of heterogeneity in regard to 
the specific brain regions involved in their disease as well 
as the severity of symptom onset and progression, for most 
patient populations, the progression of these diseases will 
slowly cost patients their independence and ultimately their 
lives. While promising clinical trials appear to be on the 

horizon, very few existing therapeutics have disease modi-
fying effects. A substantial hurdle to developing effective 
therapeutics is the lack of causative and targetable cellular 
pathways that directly lead to neurodegenerative phenotypes. 
Therefore, comprehensive understanding of the pathogenesis 
of neurodegenerative diseases is critical for finding success-
ful therapies. Here we review the possible mechanisms lead-
ing to neurodegeneration in the context of altered nucleocy-
toplasmic transport.

The movement of proteins, RNA and other cargos 
between the nucleus and the cytoplasm broadly encompass 
the cellular mechanisms controlled by nucleocytoplasmic 
transport machinery. There is substantial evidence to sug-
gest an association of nucleocytoplasmic trafficking deficits 
with neurodegeneration [1–5]. Furthermore, an overarching 
theme that has emerged in recent years is that the failure of 
cargo transport across the nuclear envelope is not unique to 
a single neurodegenerative disease, nor one genetic insult 
[1–5]. However, more work remains to be completed to 
determine, precisely, how nucleocytoplasmic trafficking 
deficits may cause neurodegeneration. To properly survey 
the disrupted landscape of nucleocytoplasmic trafficking 
in neurodegeneration, it is essential to understand how a 
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healthy cell manages nucleocytoplasmic transport. Thus, 
we first review the principles and components of canonical 
nucleocytoplasmic transport, and then follow with how these 
highly regulated transport mechanisms are proposed to be 
disrupted in several neurodegenerative diseases.

Canonical Nucleocytoplasmic Transport

Structure and Architecture of the Nuclear Pore

The nuclear membrane acts as a critical divide between the 
nuclear and cytoplasmic compartments of all eukaryotic 
cells [6, 7]. Its structural architecture provides a semi-per-
meable separation between the nucleus and the cytoplasm, 
which allows cytoplasmic access to genetic material, creat-
ing opportunities for complex gene regulation responses to 
stimuli outside of the nucleus. Unknown structures identified 
on the nuclear envelope using electron microscopy in the 
1950s were first hypothesized to be regularly interspaced 
fusions of the inner and outer nuclear membrane and were 
later termed “nuclear pores” [8, 9]. These highly conserved 
structures are present in all eukaryotes, and are likely the 
result of early evolutionary events [10]. At the center of 
each nuclear pore is the massive, ~ 125,000 kDa nuclear pore 
complex (NPC) [8, 10–12]. The NPC displays eight-fold 
symmetry around a central channel, and additionally exhibits 

symmetry on an axis perpendicular to the central channel; 
where there exists a symmetrical nuclear and cytoplasmic 
ring on either side of the inner ring complex [12–14]. Addi-
tionally, asymmetric components of the NPC, the nuclear 
basket and cytoplasmic filaments, extend processes out from 
the NPC [14].

Each NPC consists of ~ 500–1000 proteins, which—due 
to the symmetry of the NPC—are comprised of multiple 
copies of only about 30 unique proteins known as nucleo-
porins (Nups) [14–16]. These ~ 30 unique Nups can be cat-
egorized into 5 groups, based on their structural role in the 
NPC: the coat nucleoporins, inner ring nucleoporins, trans-
membrane nucleoporins, cytoplasmic filament nucleoporins, 
and the nuclear basket nucleoporins (Fig. 1). Although the 
structure of nucleoporins and NPCs are highly conserved, 
they display poor genetic conservation, suggesting that broad 
structures not conserved by genetic sequence still perform 
similar functions across species [17, 18]. Figure 1 provides 
the human nomenclature, structural component, and the 
potential role in disease for each Nup [14, 19–24].

Coat Nucleoporins

This subset of Nups dictates the structure of the nuclear 
and cytoplasmic rings (Fig. 1a). In humans this “Y” shaped 
structure is composed of: Sec13, Seh1, Nup96, Nup75, 
Nup107, Nup160, Nup133, Nup37, Nup43, and ELYS [25, 

Fig. 1   The structure and architecture of the nuclear pore complex. 
The structure of the human nuclear pore complex is comprised of 
5 major groups. Coat nucleoporins (a), inner ring nucleoporins (b), 
transmembrane nucleoporins (c), cytoplasmic filaments (d), and the 

nuclear basket (e). Right panel: structural grouping of the human 
nucleoporins and the associations with ALS, AD, HD, and other non-
neurological diseases
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26]. 16 coat nucleoporin complexes make up each of the 
nuclear and cytoplasmic rings by intricate interlocking of the 
upper arm with the center stalk of the “Y” region [12, 27]. 
The topographical structure of these complexes has been 
somewhat conserved, but species divergence does exist [25, 
27].

Inner Ring Nucleoporins

Forming the central channel of the NPC, the inner ring struc-
ture contains Nup205, Nup188, Nup93, Nup155, Nup53, 
Nup54, Nup58, Nup62, Nup98 (Fig. 1b) [15, 28]. These 
Nups crystal structures have revealed that flexible link-
ers mediate the interaction of this complex, allowing for 
the flexibility of the inner ring [29]. The flexibility of these 
Nups and their ability to interact with cargos play crucial 
roles in proper trafficking through the nuclear pore [12].

Transmembrane Nucleoporins

The pore membrane proteins (POMs) act as anchors to 
secure the NPC in position by utilizing a transmembrane 
domain to interact with the nuclear envelope (Fig.  1c). 
The human nuclear pore contains NDC1, POM210, and 
POM121 [12, 15, 30]. These components are some of the 
most poorly characterized features of the NPC with regard 
to their structure and function [12, 30]. While the sequence 
conservation of POMs is particularly poor, it is likely that 
the function of transmembrane nucleoporins is conserved 
[12, 30]. POMs contain large often unstructured regions that 
have been hypothesized to interact either with the nuclear 
envelope or with the soluble components of the NPC [30]. 
While little is known about the function and regulation of 
human transmembrane nucleoporins, deletion of POMs in 
fungi produces no overt survival phenotype and they have 
been shown to be nonessential for cellular function [31, 32]. 
However, some studies indicate that these proteins play an 
important role in NPC assembly and nuclear membrane 
structure. Indeed, evidence suggests POM121 and NDC1 
are important during NPC biogenesis and nuclear membrane 
homeostasis [33, 34].

Cytoplasmic Filaments and the Nuclear Basket

These two components of the nuclear pore are considered 
asymmetric because they have rotational symmetry like the 
components above, but not symmetry across the nuclear 
envelope. The cytoplasmic filaments are long projections 
that reach into the cytoplasm from the NPC (Fig. 1d) [35]. 
They consist of the following nucleoporins: Rae1, Nu42, 
Nup88, Nup214, DDX19, Gle1, and RanBP2 (also com-
monly referred to as Nup358) [12]. A principal role of these 
Nups is the spatial restriction of DDX19 and RanBP2, which 

are utilized for bulk mRNA and protein export, respectively, 
across the NPC to the cytoplasm [12, 36–38]. On the oppo-
site side of the nuclear membrane, the human nuclear basket 
nucleoporins (Nup153, Nup50, and Tpr) also play roles in 
the organization of transport machinery across the nuclear 
pore by facilitating the recognition and binding of nuclear 
import and export factors in the nucleus (Fig. 1e) [12, 36].

Passive Diffusion Through the Nuclear Pore

The NPC regulates trafficking through many mechanisms. 
The first degree of regulation of transport through the 
nuclear pore is the diffusion barrier created by the intrinsi-
cally disordered phenylalanine—glycine (FG)-rich repeats 
[10, 12]. FG-repeats are common structural components of 
different nucleoporins spanning different structural regions 
and play multiple roles in regulating trafficking through the 
NPC. These FG-repeats form an intrinsically disordered 
domain in the central channel of the NPC that allows for the 
passive diffusion of small molecules (< 40 kDa) but creates 
an energetically inefficient method of transport for larger 
molecules [39]. It is interesting to note that the majority 
of the FG-repeat Nups are not essential, except for Nup98 
which constitutes the largest contribution to the diffusion 
barrier [40, 41].

Facilitated Transport Through the Nuclear Pore

The Ran Gradient

The direction of—and energy for—cargo transport through 
the NPC is regulated by the gradient of Ras-related nuclear 
protein (Ran) [42]. This small GTPase adopts different 
conformations in its GTP or GDP bound state, modulating 
its affinity for transport factors [42]. The concentration of 
RanGTP, with higher levels in the nucleus, and RanGDP, 
with higher levels in the cytoplasm, is a tightly regulated, 
cyclical process resulting in an actively maintained Ran gra-
dient in which the concentration of RanGTP to RanGDP 
mediates nucleocytoplasmic transport [42]. Cytoplasmic lev-
els of RanGDP are maintained by the strictly cytoplasmic 
localization of Ran GTPase-activating protein (RanGAP) 
and Ran binding proteins (RanBPs) [43–45]. RanGAP 
together with RanBPs contribute to higher cytoplasmic lev-
els of RanGDP by facilitating the hydrolysis of RanGTP that 
enters the cytoplasm (Fig. 2e, l, and q) [43–45]. Cytoplasmic 
RanGDP is shuttled into the nucleus by a dedicated trans-
porter, nuclear transport factor 2 (NTF2) (Fig. 2f, m) [46]. 
Once in the nucleus, Ran’s chromatin-associated guanine 
nucleotide exchange factor (RCC1) promotes the exchange 
of GDP for GTP on Ran, increasing the concentration of 
nuclear RanGTP and completing the cyclical mechanism for 
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Fig. 2   Canonical nucleocytoplasmic trafficking mechanisms. Top 
left: Karyopherin α/β mediated import. KPNA binding NLS contain-
ing cargo with KPNB binding (a). The tripartite complex is translo-
cated through the NPC (b) and dissociated by RanGTP binding to 
KPNB1 (c). KPNA recycling to the cytoplasm by XPO2 bound to 
RanGTP, while KPNB1 recycling is facilitated by its direct binding 
to RanGTP (d). On the cytoplasmic side of the NPC, the hydrolysis 
of RanGTP via RanGAP and RanBP dissociates KPNB1 and KPNA 
export complexes, producing RanGDP and releasing the karyo-
pherins in the cytoplasm (e). RanGDP is shuttled to the nucleus by 
NTF2 (f), where RCC1 exchanges Ran’s GDP for GTP (g). Top right: 
Transportin. Cargo with a PY-NLS requires TNPO binding (h) and 
is transported through the NPC (i). Cargo is released after RanGTP 
binds TNPO (j). TNPO is recycled to the nucleus bound to RanGTP 
(k). TNPO and RanGTP dissociation is facilitated by RanGAP and 
RanBP (l), and the Ran gradient is maintained with NFT2 and RCC1 
(m, n). Bottom left: Exportin. In the presence of RanGTP, exportins 

bind tRNA, miRNA, rRNA or NES containing protein as cargo (o). 
The resulting RanGTP and cargo bound exportin (p) is translocated 
through the NPC and dissociates after hydrolysis of RanGTP (q). 
Bottom right: Bulk mRNA transport. RNA export to the cytoplasm 
begins during transcription as the nascent strand emerges from 
RNA Pol II where the TREX complex and ALYREF bind the RNA 
between the EJC and the 5′ end of the pre-mRNA (r). This promotes 
the recruitment and conformational change of NXF1-NXT1, essential 
to the hand-off of RNA (r). After the dissociation of RNA Pol II and 
the binding of PABP to the 3′ polyA tail, the mRNP proceeds to the 
NPC (s). Releasing TREX and ALYREF, the mRNP is drawn through 
the NPC where NXF1 may interact with TREX2 as it enters the chan-
nel (t). On the cytoplasmic side of the NPC, DDX19, powered by 
ATP hydrolysis and stimulated by GLE1 bound to Ins6P, promotes the 
dissociation of the mRNP into its mRNA and export factor compo-
nents (u). NXF1-NXT1 is recycled to the nucleus by either the TNPO 
or the KPNA/KPNB1 import pathways (v)
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the maintenance of the Ran gradient, essential for nuclear 
import and export (Fig. 2g, n) [47, 48].

Karyopherin α/β Transport

Large protein complexes destined for the nucleus that strug-
gle to passively diffuse across the FG-repeat domain of the 
NPC typically contain a nuclear localization signal (NLS) 
or a nuclear export signal (NES) [49–51]. These specific 
nuclear transport peptide sequences facilitate the binding of 
nuclear transport factors which promote transport through 
the NPC. In what is considered the “classical” transport 
pathway, karyopherin α (KPNA) binds directly to cargo 
containing a classical NLS [52]. Seven KPNA isoforms 
are thought to exist in humans and while there is some 
interesting specificity of the different isoforms, KPNA2 is 
considered to be the primary import protein for cargo with 
a classic NLS [53]. KPNA interacts directly with karyo-
pherin β (KPNB1) through KPNA’s potent NLS domain, 
creating a tripartite cargo-KPNA-KPNB1 nuclear import 
complex (Fig. 2a) [16, 53]. Additionally, KPNB1 can also 
bind directly to some NLS sequences without the KPNA 
adaptor protein [16]. Once a cargo is bound to a nuclear 
import complex, the entire complex is guided through the 
NPC by KPNB1 due to its interactions with the intrinsi-
cally disordered FG-repeat domain of the central channel 
Nups (Fig. 2b) [54, 55]. After successful passage across 
the nuclear pore and into the nucleus, the import complex 
dissociates when RanGTP binds KPNB1 (Fig. 2c). KPNB1 
recycling and return to the cytoplasm requires binding of 
RanGTP, while KPNA recycling requires RanGTP depend-
ent nuclear export factor, exportin-2 (XPO2) (Fig. 2d) [56]. 
Immediately following translocation through the intrinsi-
cally disordered FG-repeats, the coordination of RanGAP 
with RanBPs promotes the innate GTPase activity of Ran, 
leading to hydrolysis of RanGTP, and disassembly of the 
karyopherin export complex, thereby releasing the export 
cargo (Fig. 2e) [57, 58].

Transportin Transport

A different nuclear transport mechanism was discovered 
by the identification of a new type of NLS, the PY-NLS, 
which is not recognized by the classical karyopherin α/β 
machinery, but instead by another group of nuclear trans-
port receptors called transportins (TNPO) [59–62]. Con-
sisting of Transportin1, 2A, and 2B, this transport family 
functions in a similar manner to the classical transport 
machinery described above, in which transportin binds to 
its cargo (Fig. 2h), mediates the interaction with FG-repeat 
Nups to allow for translocation through the NPC (Fig. 2i), 
dissociates from its cargo in a RanGTP dependent manner 
(Fig. 2j), is exported back to the cytoplasm in complex with 

RanGTP (Fig. 2k) and freed to bind new cargo following 
hydrolysis of RanGTP by RanGAP (Fig. 2l) [63, 64]. The 
difference in cargo recognition appears to be largely medi-
ated by transportins’ recognition of cargo with the PY-NLS, 
unique from the classical NLS [65]. However, experimen-
tal evidence suggests that there are transportin dependent 
cargos that do not contain a PY-NLS, suggesting multiple 
recognition motifs for transportin mediated nuclear import 
[63, 66]. Additionally, post-translational modifications near 
the PY-NLS can alter transportin mediated transport [63].

Exportin Transport

Export of proteins and certain types of RNA from the 
nucleus, is mediated by seven exportin proteins in humans 
[67]. Exportins load their cargo in a RanGTP dependent 
manner, whereby the RanGTP binding increases exportins 
affinity for its cargo (Fig. 2o) [42]. Translocation of the 
exportin-cargo-RanGTP complex (Fig. 2p) through the NPC 
is mediated by exportin’s interactions with the FG-repeat 
Nups of the central channel. Once in the cytoplasm disso-
lution of the export complex and unloading of the cargo 
occurs through the hydrolysis of RanGTP via RanGAP, thus 
decreasing exportin’s affinity for its cargo (Fig. 2q) [57, 58]. 
Exportin 1 (XPO1) is the most prevalent and heavily utilized 
export receptor, which recognizes protein cargo with an NES 
[42]. Interestingly, XPO1 can also mediate rRNA, snRNA, 
and some mRNA export by binding to adaptor RNA bind-
ing proteins [42]. Different exportin isoforms have different 
targets. For example, XPOt is responsible for nuclear export 
of tRNA, and XPO5 is responsible for miRNA and rRNA 
export (Fig. 2o) [68, 69].

mRNA Transport

mRNA transport through the nuclear pore occurs through a 
different mechanism from the Ran mediated nucleocytoplas-
mic transport mechanism described above [69, 70]. Nuclear 
export of mRNA is a dynamic process where messenger 
ribonucleoprotein (mRNP) undergo various remodeling 
events from biogenesis to maturation and export [69]. The 
transcription and export (TREX) complex is a key player 
that initially associates with nascent RNA from transcrib-
ing RNA Pol II (Fig. 2r) [71–73]. During mRNA process-
ing, recruitment of a TREX subunit, the RNA export factor 
ALYREF, is essential for nuclear export after RNA matura-
tion (Fig. 2r) [74]. TREX and ALYREF contain binding sites 
that mediate the binding of the nuclear RNA export factor 
1 (NXF1)—nuclear transport factor 2 like export factor 1 
(NXT1) heterodimer [75, 76]. The NXF1-NXT1 interaction 
with ALYREF triggers the transfer of RNA from ALYREF 
to NXF1 (Fig. 2r) [77]. This hand-off of RNA is essential 
because NXF1 has the ability to drive the translocation 
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through the FG-repeats of the nuclear pore [77]. These 
binding events signal the maturation of pre-mRNA into an 
NXF1-NXT1-mRNP complex (Fig. 2s), which then translo-
cates to the nuclear basket, a process that may be conducted 
by TREX2 whose scaffolding component has been shown 
to directly interact with NXF1 (Fig. 2t) [78–80]. Once at 
the nuclear basket, recognition, docking, and subsequent 
translocation of the mRNP proceeds through interactions 
between FG-repeat Nups and NXF1 (Fig. 2u) [81]. As an 
mRNP passes through the NPC and enters the cytoplasm, its 
cargo mRNA and receptor complexes are dissociated via the 
ATP-dependent RNA helicase activity of DDX19 (human 
ortholog of Dbp5), in association with Nup214 stimulated 
by GLE1, which is bound to its co-factor inositol hexaphos-
phate (IP6) (Fig. 2u) [82]. The remodeling concludes when 
the cap-binding protein, eukaryotic translation initiation fac-
tor 4E (eIF4E), replaces the cap binding complex (CBC) 
added during the pre-mRNA stage, preparing the transcript 
for translation [83]. NXF1-NXT1 can be recycled to the 
nucleus by either the TNPO or the KPNA/KPNB1 pathway 
(Fig. 2v). Nuclear export of mRNA appears to be a relatively 
inefficient process. Studies have indicated that only about 
30% of mRNPs that interact with the NPC are successfully 
passed through the diffusion barrier [84, 85]. While still 
unclear, it is postulated that the export receptor’s capacity for 
hydrophobic FG-repeat interactions is tempered by the size 
and composition of the mRNP, a balance that determines 
the solubility of the cargo-receptor complex in the hydrogel 
meshwork and, thus, its propensity to translocate through 
the nuclear pore [39, 86].

A Delicate Relationship Between 
Neurodegenerative Diseases 
and Nucleocytoplasmic Transport

The cytoplasmic aggregation of nuclear RNA binding pro-
teins (RBPs), repeat expansion associated gene products, 
tau, and other proteins is often a common hallmark of neu-
rodegenerative diseases. Emerging evidence indicates that 
the dysfunction of the dynamic and structural components of 
nucleocytoplasmic transport may be intricately tied to patho-
logical protein aggregation [1, 87–90]. However, the exact 
mechanisms underlying this relationship and its implications 
on neurodegeneration are not fully understood. Disrupted 
RNA metabolism, as a downstream effect of aberrant RBP 
localization and aggregation, has become a widely accepted 
and commonly observed disease phenotype of ALS/FTD, 
although there has been limited evidence to support the idea 
that it directly leads to neuronal degeneration [1, 87, 91–93]. 
Similarly, although evidence suggests that aggregates of tau 
and repeat expanded gene products in Alzheimer’s Disease 
(AD) and Huntington’s Disease (HD), respectively, may 

directly impede nucleocytoplasmic transport and damage 
NPC machinery, it is not clear whether their presence is a 
driving force or a downstream by-product of disease pro-
gression. Here we will review proposed nucleocytoplasmic 
trafficking abnormalities across different neurodegenerative 
diseases, their relationship to aberrant protein aggregation, 
and how this complex dynamic may contribute to neuronal 
cell death.

Amyotrophic Lateral Sclerosis

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegen-
erative disease that leads to the progressive loss of motor 
function [94]. Due to overlapping symptoms and genetics 
ALS is now commonly accepted as a spectrum disorder with 
frontotemporal dementia (FTD), where patients experience 
cognitive impairment due to the degeneration of the frontal 
and temporal lobes leading to social and behavioral changes 
[95–97]. The exact mechanisms leading to ALS/FTD remain 
unclear but nucleocytoplasmic trafficking abnormalities 
appear to play a central role in disease pathogenesis.

Chromosome 9 Open Reading Frame 72 (C9orf72)

The etiology of ALS/FTD is diverse and growing with over 
40 genetic abnormalities currently associated with ALS [98, 
99]. One of the most well characterized genetic abnormali-
ties associated with the ALS/FTD spectrum to date is the 
chromosome 9 open reading frame 72 (C9orf72) repeat 
expansion [95–97]. First identified in 2011 the GGG​GCC​ 
(G4C2) hexanucleotide repeat expansion in the first intron 
of the C9orf72 gene is responsible for ~ 50% of all famil-
ial ALS and ~ 20% of sporadic ALS cases [95–97]. Healthy 
individuals have less than 23 repeats of the intronic G4C2 
sequence of C9orf72, while patients with C9orf72-mediated 
ALS/FTD can exhibit anywhere from 30 to several hundred 
repeats [95–97]. Three commonly accepted but not mutu-
ally exclusive hypotheses exist to explain the neurodegen-
erative phenotype introduced by C9orf72 repeat expansion: 
1) C9orf72 haploinsufficiency, 2) accumulation of G4C2 
sense and C4G2 antisense RNA-foci, and 3) the production 
of dipeptide repeats (DPRs) via repeat-associated non-AUG 
(RAN) translation (Fig. 3b) [100–112]. The direct mecha-
nism for how the C9orf72 repeat expansion causes ALS/
FTD pathogenesis remains elusive but is currently being 
extensively investigated.

Early genetic screens in S. cerevisiae and D. melanogaster 
identified crucial components of the nucleocytoplasmic 
transport machinery as modifiers of C9orf72 disease mod-
els [113–115]. Specifically, in regards to the NPC, the coat 
nucleoporins, Nup107 and Nup160, the nuclear basket com-
ponent, Nup50, as well as inner ring components, Nup155 
and Nup98, were found to be suppressors of C9orf72 
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phenotype (Fig. 1) [113, 114]. In contrast, coat nucleop-
orin, Seh1, inner ring components, Nup62 and Nup93, 
nuclear basket components, Nup50, Nup153 and Tpr, the 
cytoplasmic filament component, GLE1, and the transmem-
brane nucleoporin, NDC1, were found to be enhancers of 
the observed C9orf72 phenotype (Fig. 1) [113–115]. Addi-
tionally, components central to nucleocytoplasmic transport, 

such as protein transport factors, Ran, RanGAP, RCC1, 
transportins, exportins, and karyopherin α and β, and RNA 
export factors, NXF1, GLE1, and ALYREF, were shown to 
be modifiers of C9orf72-phenotypes [113, 115].

In agreement with the idea that nucleocytoplasmic 
transport is altered in C9orf72-mediated ALS/FTD, Ran-
GAP1, was shown to directly bind to the C9orf72 repeat 

Fig. 3   Nucleocytoplasmic trafficking deficits caused by the C9orf72 
repeat expansion. The sense and antisense transcription of the (G4C2) 
expansion of the C9orf72 gene between exon 1a and 1b leads the 
formation of sense and antisense RNA foci found to sequester Pur 
ɑ, RanGAP1, ADAR3, SRs, hnRNPs, and other proteins not shown 
(a). Expanded C9orf72 RNA results in cytoplasmic/perinuclear RNA 
foci, which colocalize with RanGAP1 and Nup205, and produce 
DPRs via RAN translation (b). DPRs aggregate in the cytoplasm and 
nucleus, where polyGA aggregates may cause the mislocalization of 
POM121 and RanGAP1 (c). PolyPR clogs the NPC due to strong 
interactions with the FG-repeats of the central channel nucleoporins, 

Nup54 and Nup98, whereby it may promote the conversion of the FG 
hydrogel sieve to a more solid, fibrillar state (d). Impaired import and 
subsequent accumulation of soluble RBPs (e) coupled with factors 
like stress, aging, and DPR interaction (f) leads to the formation of 
insoluble protein aggregates that further disrupt nucleocytoplasmic 
transport (g), resulting in a feed forward mechanism of toxicity. In 
addition, the depletion of RBPs from the nucleus has a detrimental 
effect on RNA metabolism (h). PolyA RNA retention in the nucleus 
(i) is another common feature of C9orf72 ALS/FTD models and may 
be a result of disrupted RNA metabolism and NPC defects
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expansion (Fig. 3a), and was later shown to form intra-
nuclear inclusions [89, 116]. These findings suggest that 
RanGAP1′s ability to regulate the Ran gradient is altered 
in C9orf72-mediated ALS/FTD [89, 116]. Not surpris-
ingly, disruptions of the Ran gradient have been observed 
in the presence of the C9orf72 repeat expansion, a pheno-
type that is rescued with overexpression of RanGAP1 [89]. 
Further evidence of disrupted nucleocytoplasmic transport 
components has been shown in mice overexpressing the 
GA dipeptide repeat, which form cytoplasmic and intra-
nuclear aggregates that colocalize with RanGAP1 and 
POM121 (Fig. 3c) [117].

In addition to RNA-foci interaction with RanGAP1, 
evidence also suggests that C9orf72 RNA-foci sequester 
RNA-binding proteins, including ALYREF, Adenosine 
Deaminase Acting on RNA (ADAR3), heterogeneous 
nuclear ribonucleoproteins (hnRNPs), Pur-alpha, and ser-
ine arginine (SR) proteins (Fig. 3a) [116, 118, 119]. Addi-
tionally, the disruption of proper RBP function may be 
exacerbated by DPRs. GR and PR overexpression models 
in HEK293T cells identified over a hundred interactors of 
the arginine containing DPRs, including disease causing 
RBPs with low-complexity domains (LCD) [120, 121]. 
DPR interaction with LCD containing proteins reduces 
the capacity of membrane-less organelles for liquid–liquid 
phase separation (LLPS), a characteristic essential for the 
dynamic nature of RBPs, stress granules, nucleoli, and 
the diffusion barrier of the nuclear pore complex [120, 
121]. The LLPS of proteins, a normally reversible process 
whereby proteins shift from a soluble or “de-mixed” state 
to liquid droplet state, can be a seeding point for the depo-
sition of protein aggregates—commonly seen in ALS/FTD 
pathology—when aging, stress, and DPR interaction are 
in play (Fig. 3f) [122, 123]. Through similar mechanisms, 
PR repeat proteins have been shown to promote the fibrilli-
zation of the FG-repeats on Nup98 and Nup54, thereby 
clogging the NPC and reducing nuclear transport of RNA 
and proteins (Fig. 3d, i) [120, 124]. However, a recent 
study from Vanneste and colleagues provides evidence that 
these arginine containing DPRs do not directly interfere 
with nucleocytoplasmic transport and highlights a need 
for additional studies clarifying the role DPRs may play 
in the pathogenesis of C9orf72-mediated ALS/FTD [125].

Taken altogether, it is clear that nucleocytoplasmic 
transport can be disrupted in C9orf72 mediated ALS/
FTD, through mechanisms leading to the sequestration of 
transport machinery and aberrant cytoplasmic RBP accu-
mulation and aggregation (Fig. 3e–g). Aside from direct 
impairment of nuclear import and export, the nuclear 
depletion of RBPs causes a widespread disruption of RNA 
metabolism (Fig. 3h) that will be described in the context 
of TDP-43 and FUS below.

Transactive Response DNA Binding Protein (TARDBP)

Considering the diversity in the etiology and patient pres-
entation within the ALS/FTD disease spectrum, it is sur-
prising that there may be shared mechanisms leading to 
neurodegeneration in many patient subgroups [126–128]. 
Indeed, cytoplasmic accumulation and nuclear depletion of 
the RNA binding protein, encoded by the TARDBP gene, 
TAR-DNA binding protein-43 (TDP-43) is found in ~ 95% 
of all ALS cases and ~ 45% of FTD cases (FTD-TDP), irre-
spective of etiology [126, 127, 129, 130]. Notably, TDP-
43 proteinopathies are not limited to ALS and FTD with 
TDP-43 pathology. In fact, TDP-43 positive inclusions are 
also a characteristic of certain cases of HD, AD, Parkinson’s 
disease, chronic traumatic encephalopathy, and certain inclu-
sion body myopathies [126, 130–133]. Despite extensive 
research, it is unclear whether cytoplasmic TDP-43 accu-
mulation leads to a nuclear loss of function or a cytoplasmic 
toxic gain of function, or a combination of both [93, 129, 
134, 135]. Whether wild-type TDP-43 inclusions are drivers 
of disease progression, or simply a by-product of a degen-
erating neuron, remains to be seen. Considering that aber-
rant TDP-43 inclusions are a shared occurrence in multiple 
diseases we will discuss TDP-43′s functional role in cellular 
homeostasis and its potential contribution to neurodegenera-
tive disease pathogenesis in more detail below.

TDP-43 is an essential RNA binding protein involved 
in many steps of RNA metabolism, including: transcrip-
tion, splicing, maturation, stability, transport, translation, 
and micro and long non-coding RNA processing [134]. It 
has further been proposed to be involved in the formation 
and maintenance of stress granules, and the regulation of 
stress granule nucleating protein expression [136]. TDP-43 
binds to RNA with high specificity via its two RNA recogni-
tion motifs (RRMs). Containing both an NLS and an NES, 
TDP-43 plays roles in both the nucleus and the cytoplasm 
and, therefore, its trafficking across the nuclear membrane 
is essential for its proper function. Nuclear import of TDP-
43 is facilitated by the classical KPNA/KPNB1 pathway 
(Fig. 2a–e) [137]. Interestingly, expression of the nuclear 
export factor XPO2, which is required for KPNA recycling 
(Fig. 2d), is reduced in the brains of FTD-TDP patients, 
potentially contributing to the cytoplasmic accumulation 
of TDP-43 in these patients [137]. The nuclear export of 
TDP-43 has been predicted to be recognized as an NES-
containing cargo by XPO1. Indeed TDP-43 contains two 
NES sequences that have been predicted to interact with 
XPO1 [138]. However, recent studies have suggested these 
two NES sequences are neither necessary nor sufficient for 
nuclear export, indicating they may be nonfunctional and 
that TDP-43 may not be actively transported out of the 
nucleus [138]. In support of this hypothesis, pharmaco-
logical and genetic disruption of facilitated nuclear export 
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pathways (Fig. 2o–q), suggest that TDP-43 is not exported 
by any of the major export pathways (XPO1, XPO5 or with 
mRNA through bulk RNA export) [138, 139]. Instead, 
export of TDP-43 is thought to be mediated through pas-
sive diffusion [138].

Considering the prevalence of TDP-43 mislocalization 
it is essential to understand how the aberrant cytoplasmic 
accumulations (Fig. 4l) form and how these accumulations 
are involved in nucleocytoplasmic trafficking defects. The 
aggregation of TDP-43 is most commonly attributed to its 
LCD, housed within the C-terminus of the protein. The LCD 
is home to the majority of ALS associated TARDBP muta-
tions [140]. In addition to being unusually disordered and 
aggregation prone, the C-terminus of TDP-43, in fragmented 
form, is a highly toxic and prevalent component of the cyto-
plasmic inclusions seen in ALS pathology [141, 142]. It 
seems possible that the ability of TDP-43 to undergo LLPS, 
may create opportunities for TDP-43 to form insoluble 
aggregates (Fig. 4n) [123, 143, 144]. Indeed, under stress, 
with age, and in mutated forms, cytoplasmic TDP-43 drop-
lets become more solid and gel like, facilitating aggregation 
(Fig. 4p) [123, 144–146]. The specific mechanism detailing 
how endogenous TDP-43 aggregations form in neurode-
generative diseases remains unknown. Artificial introduc-
tion of TDP-43 inclusions recruit pathogenic species that 
mimic the TDP-43 inclusions observed in patients [147]. 
The low complexity domain on TDP-43 drives the formation 
of these neurotoxic TDP-43 inclusions and promotes fur-
ther recruitment of nuclear TDP-43 to such inclusions [147]. 
Interestingly, aberrant TDP-43 liquid–liquid phase separa-
tion can be rescued by enhancing TDP-43 interaction with 
RNA [147], suggesting that the aggregation of TDP-43 in 
the cytoplasm may be the result of impaired mRNA export 
from the nucleus [147]. Mann et. al suggest the possibility 
that increased nuclear retention of RNA renders cytoplasmic 
TDP-43 more aggregation prone due to reduced cytoplasmic 
RNA [147].

TDP-43 aggregation may contribute to neurodegeneration 
by disrupting the nucleocytoplasmic transport machinery 
[92]. Overexpression of TDP-43 C-terminal fragments either 
co-aggregate with, or cause the mislocalization of coat Nups 
(Nup107 and Nup160), inner ring Nups (Nup35, Nup58, 
Nup62, Nup93, Nup98, Nup205), transmembrane Nups 
(POM121 and POM210), cytoplasmic filament Nups (Gle1, 
Nup88, Nup214, RanBP2) nuclear basket Nups (Nup153 
and Nup155), and nuclear transport components (XPO5, 
NXF1) (Fig. 4r). This indicates that cytoplasmic aggrega-
tion of TDP-43 is highly disruptive to the NPC (Fig. 4t) [92]. 
While, the overexpressed system employed in these experi-
ments may exaggerate the degree of NPC interaction, these 
studies strongly suggest that TDP-43 cytoplasmic inclusions 
have the capacity to disrupt the NPC and its components 
(Fig. 4t) [92]. Notably, despite the substantial dysregulation 

of the NPC and nucleocytoplasmic transport, the Ran gradi-
ent appears normal in these experiments [92].

In addition to the gain-of-toxic function due to TDP-43 
aggregates, it is also possible that the nuclear depletion and 
loss of function of TDP-43 is a toxic contributor result-
ing from TDP-43 mislocalization to the cytoplasm [127]. 
These two mechanisms describing cellular stress from 
TDP-43 proteinopathy are likely not mutually exclusive. 
As stated above, TDP-43 is a master regulator of splic-
ing and it has been shown to act as a splicing repressor for 
cryptic exons [148–150]. Proper TDP-43 function has been 
shown to prevent the inclusion of specific exons, termed 
cryptic exons, by negatively regulating splicing at these 
sites [150]. Loss of function of TDP-43 due to its depletion 
leads to the inclusion of these cryptic exons which could 
allow for improper handling throughout an RNAs transla-
tion and maturation often leading to the decay of the host 
transcript (Fig. 4u) [148–150]. Indeed, downregulated genes 
from RNA sequencing datasets of samples with depleted 
TDP-43 are enriched for cryptic exons [148]. The inclusion 
of cryptic exons has been observed in C9orf72-mediated 
ALS/FTD [150]. Interestingly, cryptic exons are highly 
variable in different cell types, a finding that may provide 
clues to explain selective vulnerability in neurodegeneration 
[149]. Considering that TDP-43 interacts with thousands 
of transcripts, substantial work remains to be completed to 
understand how the inclusion of cryptic exons is the result 
of TDP-43 mislocalization and what role they play in the 
pathogenesis of neurodegenerative diseases. One such pos-
sibility is TDP-43′s altered regulation of stathmin-2 in ALS 
[151, 152]. Depletion of TDP-43, mimicking loss of nuclear 
TDP-43, leads to the pre-polyadenylation of stathmin-2 and 
decreased protein expression [151, 152]. Interestingly, stath-
min-2 is thought to play a role in neurite outgrowth and 
microtubule dynamics [151, 152]. The loss of stathmin-2 
following depletion of TDP-43, causes failure of neuronal 
regeneration after axotomy, a phenotype that is rescued by 
stathmin-2 transduction and pharmacological inhibition of 
c-Jun N-terminal kinase [151, 152].

Fused in Sarcoma (FUS)

Another widely studied, dysregulated RBP implicated 
in neurodegenerative disease is the FUS protein [135, 
153–157]. Historically, FUS pathology was considered to 
be a rare observation, only attributed to the abnormal aggre-
gation of mutant FUS in ~ 5% of ALS cases (ALS-FUS), 
and the abnormal aggregation of wild-type FUS in ~ 10% of 
FTD patients (FTD-FUS) [153, 154, 158, 159]. While initial 
studies were focused primarily on pathological FUS inclu-
sions, more recent work provides evidence that the spinal 
motor neurons of sporadic ALS patients display a diffuse 
cytoplasmic mislocalization of FUS, with no coinciding 
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Fig. 4   Nucleocytoplasmic trafficking deficits in neurodegenerative 
diseases. Top Left: Alzheimer’s disease. The phosphorylation state 
of tau protein determines its capacity for LLPS, where hyperphos-
phorylation promotes a more inseparable phase (a). Dysregulation 
of tau phosphorylation from stress, aging, and/or mutations cause it 
to aggregate into NFTs (b). Phospho-tau positive NFTs interact with 
the nuclear envelope, where they disrupt the NPC, and co-aggregate 
with Nup98 and Nup62 (c). NFT’s physical occlusion of the NPC 
(d). Impaired Ran gradient, mislocalized or aggregated Nups, RBPs 
and transport factors act as additional evidence of nucleocytoplasmic 
trafficking disruptions (e). Top Right: Huntington’s disease. mHtt 
harbors over 36 glutamine repeats (f). The polyQ tract within mHtt 
promotes its LLPS (g) which can lead to its pathological aggregation 
through aging and cellular stress (h). Toxic perinuclear aggregates 
of mHtt disrupt the NPC, evidenced by their sequestration of Nups, 
Ran-related proteins, and other transport factors (i). Nuclear mHtt 
aggregates are also common in Huntington’s patients although their 
contribution to disease progression may be less severe (j). Similar to 

tau in AD, mHtt can lead to an impaired Ran gradient and the mis-
localization and/or aggregation of proteins (k). Bottom: ALS/FTD. 
A common feature of ALS/FTD is the impaired import cytoplasmic 
accumulation of TDP-43 (l) and FUS (m). Both of these proteins can 
undergo LLPS distinct from stress granules, mediated by their LCDs 
(n, o). With aging, stress, and/or mutations in these LCDs, TDP-43 
or FUS can shift to an aggregated state (p, q). TDP-43 aggregates 
can include at least 14 Nups as well as several nuclear transport fac-
tors (r). TDP-43 aggregates lead to further disruption of the NPC 
and induce mislocalization of POM121 and POM210 to perinuclear 
puncta (t). The binding interactions of FUS aggregates are less elu-
cidated, although FTD-FUS co-aggregates with other FET proteins 
and TNPO1 (s, blue font). AD, HD, and ALS/FTD display a dis-
rupted Ran gradient, and mislocalized RBPs and transport compo-
nents (w). Nuclear loss of TDP-43 or FUS disrupts RNA metabolism 
(u, v). Nuclear accumulation of polyA-RNA (x) and distortions in the 
nuclear envelope (y)
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aggregation [157]. In agreement with these results, mice 
with mutation-induced cytoplasmic mislocalization of FUS 
without detectable cytoplasmic aggregation, exhibit age 
dependent progressive motor and cognitive deficits [160]. 
These recent studies suggest that the cytoplasmic inclu-
sions of FUS observed in postmortem tissue may not be 
the only toxic contribution provided by FUS dysregulation 
[160]. Considering FUS may have a wider contribution to 
ALS/FTD pathogenesis than once predicted, it is essential 
to understand the mechanisms by which FUS dysregulation 
occur, how these differ between ALS-FUS and FTD-FUS 
patients, and how they are distinct from the mechanisms 
driving TDP-43 pathology.

The relationship between TDP-43 and FUS is interest-
ing considering their structural and functional similarities: 
both have RNA recognition motifs, an LCD, and an NES 
and NLS; both are predominantly nuclear, yet play roles 
in mRNA stability and translation in the cytoplasm; and 
both are involved in transcription and splicing [161–163]. 
Indeed, the LCD of FUS is thought to mediate its capac-
ity for LLPS, disruptions of which may seed FUS aggre-
gation similar to the manner by which TDP-43 is thought 
to aggregate (Fig. 4o, q) [164]. Also, the nuclear export of 
FUS appears to be similar to TDP-43, given FUS has 2 pre-
dicted XPO1-mediated NES sequences that do not mediate 
its nuclear export [138]. Instead FUS export is regulated by 
passive diffusion through the nuclear pore and not by facili-
tated transport pathway [138, 165]. However, they have key 
differences that might explain why TDP-43 and FUS inclu-
sions are mutually exclusive [153, 154, 158, 159]. For exam-
ple, they utilize different transport pathways. The nuclear 
import of TDP-43 is facilitated by the KPNA/KPNB1 path-
way (Fig. 2a–e), while FUS nuclear import is conducted by 
Transportin-1 (TNPO1) via the TNPO pathway (Fig. 2h–l) 
[63, 65, 162, 166]. FUS mutations in ALS-FUS patients, 
have been shown to disrupt the binding of the TNPO1 recep-
tor, which would lead to FUS’s cytoplasmic accumulation 
in a manner independent from drivers of impaired TDP-43 
nuclear import (Fig. 4m) [162, 166–170]. Interestingly, neu-
ronal FUS has been shown to be dysregulated in conditions 
of stress due to failures of TNPO1 [165]. Intriguingly, astro-
cytes do not display FUS mislocalization under the same 
conditions, suggesting FUS may have cell-type specific 
contributions to disease [165]. Additionally, different mani-
festations of post-translational modifications of FUS, may 
play a role in its different presentations in ALS and FTD 
[171–179]. Specifically, the methylation of FUS residues 
adjacent to the PY-NLS can alter FUS’s interaction with 
TNPO1 [171–179]. Dimethylation, characteristic of ALS-
FUS, reduces this interaction, and hypomethylation, charac-
teristic of FTD-FUS, increases it [171–179]. In support of 
these findings, FTD-FUS inclusions are positive for TNPO1 
and other members of the FET protein family, EWS and 

TAF15, while ALS-FUS inclusions are not (Fig. 4s) [180]. 
These differences are intricately tied to the unique presenta-
tions of each disease and parsing out why these differences 
occur is important to characterize disease progression.

Similar to TDP-43, one consequence of FUS aggregation 
and mislocalization may also be a loss of function due to a 
nuclear depletion. While TDP-43 and FUS have similar roles 
in RNA processing and regulation of alternative splicing, 
FUS is thought to regulate a largely distinct set of transcripts 
in comparison to TDP-43 [181]. Depletion of FUS leads to 
broad misregulation of RNAs, including the dysregulation 
of expression for over 600 mRNAs as well as the dysregula-
tion of over 350 splicing patterns (Fig. 4v) [181]. Interest-
ingly, while both TDP-43 and FUS are important regulators 
of RNA metabolism, only 86 RNAs are regulated by both 
proteins, suggesting that the disruption to RNA metabolism 
due to FUS dysfunction impacts a different group of RNA 
compared to TDP-43 dysfunction [181]. These studies sug-
gest that neurodegeneration resulting from FUS dysfunction 
may be distinct from neurodegeneration caused by TDP-43 
dysfunction [181].

hnRNP A1 and hnRNP A2B1

Both TDP-43 and FUS are members of a large subclass 
of RNA-binding proteins known as hnRNPs, which have 
been shown to have diverse transcriptional control through 
their roles in RNA maturation and neuronal RNA transport 
granules. Additionally, these proteins have been associated 
with stress granule formation, which is critical to the cellu-
lar stress response [182–184]. Like TDP-43 and FUS, rare 
dominant mutations in the LCD of hnRNP A1 and hnRNP 
A2B1 have been associated with ALS [182–184]. Interest-
ingly, these mutations are most frequently associated with 
multisystem proteinopathy, a rare inherited disease in which 
patients experience the degeneration of muscle, bone and/
or the central nervous system [182–184]. The mutations in 
hnRNP A1 and hnRNP A2B1 have been shown to cause 
their mislocalization from the nucleus to the cytoplasm and 
to pathologically alter stress granule dynamics by enhanc-
ing their tendency to fibrillize and thereby disrupting their 
capacity to undergo LLPS [182–184]. These cytoplasmic 
inclusions have also been shown to colocalize with cyto-
plasmic TDP-43 aggregates and have been associated with 
TDP-43 nuclear depletion [182–184].

ADAR2

Our lab has shown that the RNA editing enzyme Adenosine 
Deaminase Acting on double-stranded RNA 2 (ADAR2) 
forms cytoplasmic inclusions in C9orf72-mediated ALS/
FTD and in Alzheimer’s Disease (Fig. 4e, w) [185]. ADAR2 
utilizes KPNA1 and KPNA3 to traffic into the nucleus [186, 
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187]. While it is unclear how ADAR2 accumulations form in 
ALS and AD it is possible that dysregulation of KPNA1 or 3 
would lead to abnormal cytoplasmic inclusions of ADAR2. 
In addition to its cytoplasmic accumulation we provided 
evidence to suggest aberrant function of A to I editing in 
C9orf72-mediated ALS/FTD with enrichment of A to I 
editing aberrations in the EIF2 pathway, which may lead to 
global translational inhibition [185]. ADAR2 is a nuclear 
enzyme and its presence in the cytoplasm alters the function 
of the enzyme, suggesting that the altered cellular localiza-
tion in disease represents a mechanism for its dysregulation 
[185]. There has been a revolution in the understanding of 
the function of A to I editing in both normal cellular func-
tion and in disease [188]. Dysregulation of ADAR2 and its 
normal cellular function would lead to altered regulation 
of RNA transcripts that would have yet unknown cellular 
consequences. While many RNA editing abnormalities have 
been associated with neurodegeneration [188], due to the 
massive number of uncharacterized A to I editing sites fur-
ther experiments are needed to establish the specific role 
of altered RNA A to I editing events in the pathogenesis of 
neurodegenerative diseases.

Superoxide Dismutase 1 (SOD1)

Mutations in the SOD1 gene were the first genetic asso-
ciation with ALS [189]. Patients with SOD1 mutations do 
not have TDP-43 or FUS pathology [190–193]. However, 
large SOD1 accumulations exist in patients with these SOD1 
mutations [190–193]. The dichotomy that appears to exist 
between neurons with SOD1 accumulations compared to 
TDP-43 and FUS accumulations is interesting and sug-
gests different mechanisms leading to neurodegeneration 
[190–193]. Further evidence to support the unique nature of 
SOD1 suggests that SOD1 exhibits a distinct transcriptome 
compared to that of C9orf72 patients [194]. It is possible 
that some components of the nuclear pore and nucleocy-
toplasmic transport are disrupted as a result of the SOD1 
G93A mutation [195]. However, conflicting reports suggest 
that more experiments are required to understand nucleocy-
toplasmic transport deficits in SOD1 mediated ALS [92].

Sporadic ALS

In contrast to familial ALS, there have been few studies 
which describe nucleocytoplasmic transport deficits in 
sporadic ALS. Limited number of studies report impaired 
nucleoporins (Nup62) and KPNB1 in cells with TDP-43 
aggregates [196, 197]. Considering the challenges associ-
ated with studying and modeling sporadic forms of ALS 
it is not surprising that few studies have begun to describe 
nucleocytoplasmic trafficking deficits. However, as stated 
above, TDP-43 aggregations have the capacity to disrupt the 

nucleocytoplasmic trafficking machinery and it is possible 
there will be future disruptions identified in sporadic ALS.

Huntington’s Disease

The degeneration of striatal medium spiny projection neu-
rons as well as cortical pyramidal neurons due to the pres-
ence of an expanded CAG repeat in the Huntingtin (HTT) 
gene is known as Huntington’s disease [198]. Individuals 
with more than 39 CAG repeats in the HTT gene develop 
progressive motor, cognitive and psychiatric symptoms 
leading to a steady decline in physical health and quality of 
life culminating in death 10—30 years after disease onset 
[199]. Translation of HTT with an abnormal number of 
CAG repeats, leads to huntingtin protein with an expanded 
poly-glutamine (polyQ) tract (mHtt) (Fig. 4f). Due to this 
polyQ tract and proline-rich region, mHtt undergoes LLPS 
(Fig. 4g), potentially leading to cytoplasmic, perinuclear, 
and nuclear aggregates through factors such as aging and 
other stressors (Fig. 4h–j) [200]. There is substantial evi-
dence that suggests these aggregates disrupt the NPC and 
nucleocytoplasmic trafficking in Huntington’s disease.

Immune-electron microscopy performed on cells over-
expressing mHtt show distortion of the nuclear membrane 
(Fig. 4y) and cytoplasmic inclusions of NPC proteins in cells 
with perinuclear inclusions of mHtt (Fig. 4k) [201]. Addi-
tionally, early analysis of protein interactions suggested that 
polyQ accumulations interact with nuclear pore components, 
specifically FG-repeat Nups found in the cytoplasmic fila-
ments (DDX19, RanBP2, and Nup214), the nuclear basket 
(Nup153), and the inner ring nucleoporin Nup62 [202].

More recent studies elaborated on these previous pub-
lications, firmly associating nucleocytoplasmic trafficking 
abnormalities with HD [90, 203]. First Gasset-Rosa et al. 
confirmed that mutant huntingtin accumulations lead to 
abnormal nuclear envelope morphology [203]. Using a 
mHtt mouse model, an increasingly severe nuclear enve-
lope pathology in the homozygous compared to heterozy-
gous animals suggested a dose-dependent phenotype [203]. 
These findings were confirmed in human induced pluripotent 
neural progenitor cells and in human postmortem tissue fur-
ther associating mutant huntingtin and nuclear membrane 
abnormalities with disease state [203]. In addition to nuclear 
membrane pathology, HD models and patients displays overt 
nucleocytoplasmic trafficking deficits [203]. mRNA export 
is dysregulated, as evidenced by increased mRNA levels in 
the nuclei of cortical regions in a mouse models and Hun-
tington’s disease human postmortem tissue (Fig. 4x) [203]. 
Concurrently, work done by Grima et al. showed a disruption 
of the Ran gradient in motor neurons differentiated from hiP-
SCs from HD patients [90]. Evidence for disruption of the 
NPC comes from the discovery in human post mortem tissue 
showing that patients with Huntington’s disease exhibit a 
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mislocalization or aggregation of the Ran GTPase activating 
protein, RanGAP1, in the frontal cortex, striatum, cerebel-
lum, and hiPSC neurons (Fig. 4k) [90]. Additionally, they 
found that Nup62, a component of the central channel of the 
inner ring of the NPC, was mislocalized only in the striatum 
and displayed a diffuse cytoplasmic pathology in human tis-
sue and hiPSC neuronal models (Fig. 4k) [90]. The Ran 
gradient deficit can be rescued both by inhibition of nuclear 
export via Exportin-1 inhibition with KPT-350 treatment; 
and interestingly, inhibition of O-GlcNAcylation, a common 
post translational modification for nucleoporins [90].

Alzheimer’s Disease

AD is the leading cause of dementia worldwide [204]. 
The age related progressive cognitive decline of episodic 
memory is the most common clinical feature of Alzheimer’s 
disease [204]. Early studies utilizing electron microscopy 
identified a close association between neurofibrillary tan-
gles (NFTs) and the NPC in neurons of post mortem tissue 
from patients with Alzheimer’s disease (Fig. 4d) [205]. Fur-
thermore, recent studies using iPSC-differentiated neurons 
have shown that tau accumulation disrupts nuclear lamina 
and nucleocytoplasmic transport [206]. Mechanisms for 
tau aggregation have parallels to RBP and mHtt aggrega-
tion—mutation and the phosphorylation states of tau have 
been implicated in its aberrant LLPS (Fig. 4a, b) [207, 208]. 
Given the prevalence of tau-pathology in AD and the emerg-
ing link between nucleocytoplasmic trafficking deficits and 
neurodegenerative diseases, elucidating the impact of tau 
inclusions on the NPC is critical to understanding disease 
pathogenesis.

Conflicting reports exist on the nature of Nup62s locali-
zation in Alzheimer’s disease postmortem tissue [88, 209]. 
Early studies found that Nup62 staining on abnormal nuclei 
in neurons with NFTs was localized primarily to the nuclear 
membrane and identified no aberrant localization [209]. 
More recent studies have suggested that similar to Hunting-
ton’s disease, Nup62 is mislocalized in neurons from AD 
patients (Fig. 4e) [88]. Due to difficulties in Nup62 labeling 
the authors suggest it is difficult to determine if cytoplas-
mic aggregation exists due to lipofuscin autofluorescence, 
but instead suggest diffuse cytosolic mislocalization and 
depletion at the nuclear membrane [88]. Nup414 labeling, 
which includes Nup62, further suggests the dysregulation of 
FG-repeat Nups [88]. Indeed, Nup98, the largest contribu-
tor to the FG-repeat diffusion barrier, interacts directly with 
phospho-tau and is mislocalized in AD hippocampal neurons 
[88]. Not surprisingly, the direct interaction of tau with the 
NPC leads to disruption of the NPC diffusion barrier and 
the Ran gradient (Fig. 4c) [88]. However, Nup54, POM121, 
Nup88, Nup153, Nup133, and Nup214 were shown to not 
have apparent differences in expression or distribution in 

neurons positive for tau tangles, which suggests normal 
function of the transmembrane, cytoplasmic filaments, 
nuclear basket, and coat nucleoporins, as well as some of the 
inner ring nucleoporins, indicating there is not a complete 
breakdown of the NPC [88, 209]. Nonetheless, similar to 
nuclear envelope aberrations found in other neurodegenera-
tive diseases, neurons from patients with Alzheimer’s dis-
ease exhibit aberrantly shaped nuclei (Fig. 4y) [209].

Neurons with and without NFTs also contain cytoplasmic 
accumulations of the RanGDP transporter, NTF2 (Fig. 4e) 
[209]. Failure of the nuclear import of RanGDP would lead 
to the disruption of the Ran gradient in AD and disruption 
of Ran mediated nucleocytoplasmic transport [210]. This 
supports the disruption of the Ran gradient in AD CA1 hip-
pocampal tissue, with phospho-tau inclusions [88]. Consid-
ering that the interactions of the karyopherin family with 
NTF2 are thought to expedite transport kinetics, it would 
not be surprising that NTF2 accumulations accompany addi-
tional nuclear import deficits [211]. Interestingly, induced 
cytoplasmic artificial beta sheets that form amyloid-like 
aggregates, inhibit nuclear export of mRNA, likely due to 
their forced mislocalization and co-aggregation of KPNA2 
and KPNA4, RanBP1, and THOC2 suggesting that the pres-
ence of beta-sheets in NFTs found in AD may further dis-
rupt nuclear trafficking adding additional sources of cellular 
stress (Fig. 4e) [212, 213].

Therapeutically Targeting 
Nucleocytoplasmic Transport Defects

The prevalence of nucleocytoplasmic trafficking through-
out neurodegenerative diseases creates an enticing oppor-
tunity for therapeutic intervention. To this point the nuclear 
export inhibitors KPT-350, KPT-335, and KPT-276 have 
been shown to have neuroprotective effects [89, 90, 92, 139]. 
However, the mechanism of this neuroprotection remains 
unclear [139]. Considering the recent evidence suggest-
ing that TDP-43 and FUS are not targets of exportin medi-
ated transport, it is unknown whether KPT compounds are 
directly modulating TDP-43 or FUS nucleocytoplasmic 
transport [138, 139, 165]. Biogen has recently initiated a 
Phase1 safety trial with an XPO1 inhibitor in ALS patients 
to be completed by the end of the fiscal year 2020 [214]. 
Interestingly though, low non-toxic concentrations of KPT 
compounds are not able to inhibit nuclear export, emphasiz-
ing even more that the detailed mechanisms for how KPT 
compounds might confer neuroprotection in neurodegenera-
tive disease have yet to be identified [139].

Considering the widespread presence of protein aggre-
gation in these diseases, removing these aberrant protein 
aggregates may alleviate the associated neurotoxic pheno-
types [146, 215]. Interestingly, nuclear import receptors can 
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disassemble aberrant insoluble protein aggregates that have 
been associated with neurodegenerative diseases [216]. Spe-
cifically, KNPA and KNPB have been shown to be able to 
disaggregate TDP-43 aggregates and TNPO1 was able to 
disaggregate FUS aggregates as well as other aggregates of 
proteins with a PY-NLS [216]. These findings suggest that 
failure of nuclear import can be rescued by supporting the 
possibly overwhelmed endogenous nuclear import recep-
tors (Ex. KNPA, KNPB, and TNPO1) [216]. If disaggrega-
tion of aberrant fibrils using nuclear import receptors can 
also restore normal transport of RNA binding proteins to 
the nucleus, it may be possible to rescue toxic cytoplasmic 
aggregates, alleviate nuclear depletion of RBPs and thereby 
protect against neuronal loss in neurodegenerative diseases 
[215, 216].

Conclusion

The widespread prevalence of impaired elements of nucleo-
cytoplasmic trafficking machinery throughout instances of 
neurodegeneration suggest the existence of a common mech-
anism of dysfunction. The potential of overlapping causa-
tive disease mechanisms creates exciting opportunities for 
multifaceted therapeutic interventions. While an enormous 
body of work remains to fully understand the mechanisms 
behind possible therapeutic interventions in nucleocyto-
plasmic transport, early evidence suggests multiple excit-
ing opportunities. These trafficking aberrations have been 
well established and their role in neurodegenerative diseases 
has been increasingly strengthened. However, the initiating 
factor that leads directly to detrimental nucleocytoplasmic 
trafficking deficits remains unclear. Nevertheless, it seems 
likely that regardless of how trafficking deficits begin, the 
consequences act in a feed-forward mechanism that will fur-
ther disrupt nucleocytoplasmic trafficking resulting in more 
severe consequences. Once nucleocytoplasmic trafficking 
defects have taken place, how this cellular disruption causes 
neurodegeneration is still largely unknown. It is likely that 
nuclear depletion and increased cytoplasmic concentration 
leading to aberrant aggregations will contribute to cellular 
stress through feed-forward disruptions of RNA metabo-
lism and nucleocytoplasmic transport. The identification of 
toxic species that result from trafficking deficits may result 
in additional opportunities for therapeutic interventions.
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