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Abstract
Information processing is onerous. Curiously, active brain tissue does not fully oxidize glucose and instead generates a local 
surplus of lactate, a phenomenon termed aerobic glycolysis. Why engage in inefficient ATP production by glycolysis when 
energy demand is highest and oxygen is plentiful? Aerobic glycolysis is associated to classic biochemical effects known by 
the names of Pasteur, Warburg and Crabtree. Here we discuss these three interdependent phenomena in brain cells, in light 
of high-resolution data of neuronal and astrocytic metabolism in culture, tissue slices and in vivo, acquired with genetically-
encoded fluorescent sensors. These sensors are synthetic proteins that can be targeted to specific cell types and subcellular 
compartments, which change their fluorescence in response to variations in metabolite concentration. A major site of acute 
aerobic glycolysis is the astrocyte. In this cell, a Crabtree effect triggered by K+ coincides with a Warburg effect mediated by 
NO, superimposed on a slower longer-lasting Warburg effect caused by glutamate and possibly by NH4

+. The compounded 
outcome is that more fuel (lactate) and more oxygen are made available to neurons, on demand. Meanwhile neurons consume 
both glucose and lactate, maintaining a strict balance between glycolysis and respiration, commanded by the Na+ pump. We 
conclude that activity-dependent Warburg and Crabtree effects in brain tissue, and the resulting aerobic glycolysis, do not 
reflect inefficient energy generation but the marshalling of astrocytes for the purpose of neuronal ATP generation. It remains 
to be seen whether neurons contribute to aerobic glycolysis under physiological conditions.
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Introduction

The full oxidation of glucose to CO2 and H2O renders 30–32 
ATPs [1]. The alternative to oxidation is the production of 
lactate, which consumes no oxygen and produces only 2 
ATPs. It was therefore surprising to see reports by Marcus 
Raichle and colleagues showing that evoked neural activity 
in human subjects is accompanied by glucose consumption 
in excess of oxygen consumption [2]. This finding was later 
confirmed by lactate measurements in humans and rodents 
[3, 4]. As the excess glycolysis occurred in the presence 
of oxygen, the phenomenon was a puzzling physiological 
counterpart to the aerobic glycolysis originally described in 

tumors [5]. Why would the brain shun oxygen and engage in 
inefficient energy production at the time of its greatest need? 
We address this question in this article. Sustained aerobic 
glycolysis, as reported in the developing brain [6] and in 
proliferating cells [7], will not be discussed here.

Whilst experimenting with yeast in the 1860s, Louis Pas-
teur observed that glycolysis, then known as fermentation, is 
acutely suppressed by oxygen [8]. In the 1920s, Otto War-
burg christened the phenomenon Pasteursche Reaktion [9], 
while reporting that it vanishes in tumor slices [5, 10]. The 
Warburg effect, a term introduced by Efraim Racker in the 
1970s [11], has become a prospective therapeutic target in 
cancer and inflammation [7, 12]. Warburg knew that glucose 
(but not amino acids and fatty acids) inhibits the respiration 
of tumors [5]. However, the inhibitory effect of glucose on 
respiration came to be named after Herbert Crabtree, who 
published his results (obtained with a Warburg manometer) 
several years later [13]. We could not find out when was the 
term Crabtree effect first introduced, but it appears in the 
literature as early as 1940 [14]. In contrast with the current 
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hype about the Warburg effect, the Crabtree effect remains in 
relative darkness, except for brewers [15], who take advan-
tage of the ancient evolutionary invention of ethanol as a 
tactical weapon [16, 17].

The Pasteur effect is the suppression of glycolysis by 
mitochondrial oxidative metabolism. The Warburg effect 
is the inhibition/failure of the Pasteur effect. The Crabtree 
effect is the suppression of mitochondrial oxidative metabo-
lism by glycolysis, i.e. the mirror image of the Pasteur effect 
(Table 1). There are other oxygen sinks in mammalian cells 
but for the sake of brevity, in this review we will refer to 
mitochondrial oxidative metabolism as respiration. The 
relationship between these three interdependent effects is 
depicted in Fig. 1. In a typical mammalian cell, blockage of 
respiration by anoxia or mitochondrial poisons stimulates 
glycolysis by a factor of 3 to 10, meaning that the Pasteur 
effect inhibits glycolysis by 60–90%. The Pasteur effect is 
thus a major contributor to the balance between glycolysis 
and respiration (Fig. 1a). The Warburg effect may be under-
stood as a deficit in the capacity of mitochondria to keep 
glycolysis at bay (Fig. 1b). The Crabtree effect involves 
a primary increase in glycolytic flux that leads to inhibi-
tion of respiration (Fig. 1c). In its original descriptions the 
increase in glycolysis was secondary to glucose addition [5, 
13]. Our group recently reported a variant of the Crabtree 
effect in astrocytes, in which the inhibition of respiration 
results not from increased glucose availability but from a 
primary stimulation of the glycolytic machinery mediated 
by an extracellular signal [18]. While conceptually differ-
ent, the Warburg and Crabtree effects look similar as they 
both involve enhanced relative glucose to oxygen consump-
tion and augmented lactate production. So which of them is 
responsible for activity-dependent aerobic glycolysis in brain 
tissue? The answer to that question lies in the metabolic 
behavior of neurons and astrocytes.

Neurons

Neurons are the main energy consumers of brain tissue, 
accounting for > 90% of the ATP turnover triggered by 
activity [19]. Substantial evidence in vitro and in vivo indi-
cates that neurons consume both glucose and lactate, the 
latter produced by neighboring astrocytes upon neuronal 
prompting [20–24]. The transfer of lactate from astrocytes 

to neurons is termed Astrocyte-to-Neuron Lactate Shuttle 
(ANLS), a phenomenon first proposed by Luc Pellerin and 
Pierre Magistretti in the 1990s [25] and since characterized 
by multiple experimental approaches [20–24]. ANLS is an 
evolutionary conserved phenomenon, an extreme version of 
which occurs in Drosophila melanogaster [26, 27]. How-
ever, its existence is not universally accepted [28–30].

Attempts to investigate the impact of synaptic activity on 
the metabolism of cultured neurons using prolonged bath 
application of glutamate or glutamate receptor agonists have 
produced contrasting results. While glutamate was found to 
inhibit glucose transport [31] and glycolysis [32], engaging 
NMDA receptors led to glycolysis stimulation [33]. Thanks 
to the availability of genetically-encoded fluorescent sen-
sors for metabolites, it has recently been possible to look 
into these phenomena with improved temporal resolution. 
Even short exposures of neurons to glutamate and NMDA 
provoke metabolic stress, with glutamate having the most 
dramatic effect [34–36]. As a more physiological activation 
by electrical stimulation, which did not perturb ATP or ATP/
ADP, resulted in robust glycolytic stimulation [36], it seems 
likely to us that inhibition of neuronal glucose transport and 
glycolysis by glutamate represent pathological events, akin 
to the generalized shutdown of metabolism observed in mul-
tiple systems under metabolic stress [37]. Two other studies 
based on genetically-encoded sensors gave more direct infor-
mation on the balance between glycolysis and respiration. 
In the first study, hippocampal granule cells in acute tissue 
slices responded to afferent stimulation (60 pulses distrib-
uted over 3 s) with transient increases in cytosolic NADH/
NAD+ ratio and lactate [38], pointing to stronger activation 
of glycolysis relative to respiration. However, the neuronal 
lactate surge was insensitive to blockage of the lactate trans-
porters [38], suggesting that there was no influx or efflux of 
lactate and that therefore the activity-dependent extracellular 
lactate surge observed in vivo [4, 39] originates in another 
cell type, i.e. astrocytes. In the second study, fluxes were 
measured with transport-stop protocols. Exposure of cul-
tured hippocampal neurons to a short theta burst (40 pulses 
distributed over 11 s) elicited a strong stimulation of both 
glucose consumption (200%) and mitochondrial pyruvate 
consumption (300%), but did not change cytosolic pyruvate 
or lactate [36]. This shows that the balance between glyco-
lysis and respiration withstood the change in flux regime. 

Table 1   Interdependence of 
glycolysis and mitochondrial 
respiration

Effect Effector Cellular response Reference Christening

Pasteur Respiration Inhibition of glycolysis Pasteur [8] Warburg [9]
Warburg Respiration deficit Stimulation of glycolysis Warburg et al. [10]

Warburg [5]
Racker [11]

Crabtree Increase in glycolysis Inhibition of respiration Crabtree [13]
Warburg [5]

Unknown, At or before 
Rosenthal et al. [14]
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Glycolysis and mitochondria were proposed to be synchro-
nized by a mechanism involving the Na+/K+ ATPase pump 
independently of adenine nucleotides and Ca2+ [36]. In this 
same study, tetanic stimulation (600 pulses over 30 s) caused 
ATP depletion and inhibition of mitochondrial pyruvate con-
sumption, indicative of mitochondrial collapse. This failure 
coincided with a large increase in intramitochondrial Ca2+, 
which is also observed in neurons exposed to toxic glutamate 
levels. Measurements in different types of neurons at varying 
levels of activation will be needed to ascertain the conditions 
under which the balance between glycolysis and respiration 
breaks down. The nature of the stimulation protocol is rel-
evant, as hinted by the sensitivity of long term potentia-
tion (LTP) and long term depression (LTD) to the specific 

arrangement of pulse stimulation [40]. Our working model at 
this stage is that at rest and at moderate levels of activation, 
neurons consume glucose and also lactate from astrocytes 
(more below), whereas at supraphysiological stimulation 
(e.g. excitotoxicity), mitochondria fail and neurons start to 
produce lactate. A fine balance between glycolysis and res-
piration in these cells is ensured by shared control of both 
pathways by the Na+/K+ pump [36]. It is not known how 
could the Na+ pump, which is a surface protein, exert control 
over the metabolism of mitochondria, most of which lie hun-
dreds of nanometers away. On top of this, there is a robust 
Pasteur effect evidenced by the strong response of neuronal 
glycolysis to metabolic and oxidative stress [41]. It remains 
to be seen whether neurons contribute to aerobic glycolysis 

Fig. 1   Pasteur, Warburg and Crabtree. a The Pasteur effect is the 
tonic inhibition of glycolysis by mitochondrial respiration that is 
abrogated by anoxia. b The Warburg effect is the weakening of the 
Pasteur effect, leading to lactate production despite the presence of 

oxygen. c The Crabtree effect is the inhibition of mitochondrial res-
piration by augmented glycolysis, also leading to lactate production. 
Note that the Warburg and Crabtree effects may not be distinguished 
without detailed knowledge of biochemical events involved
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in brain tissue under physiological conditions and how much 
of the incremental glucose consumption of active neurons is 
diverted to the pentose-phosphate pathway, which does not 
generate ATP but antioxidant power [42].

Astrocytes

Astrocytes are net lactate producers as shown by animal 
experiments in culture, in slices and in vivo [20, 21, 23, 
24]. The robust glycolytic phenotype of these cells is partly 
explained by stabilization of the master regulator of glyco-
lysis, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 
3 (PFKFB3); [42, 43]. PFKFB3 is the enzyme that generates 
fructose-2,6-biphosphate, a potent allosteric activator of the 
glycolytic enzyme 6-phosphofructokinase-1 (PFK1). Such 
is the strength of glycolysis in astrocytes that they are still 
able to export lactate when bathed in 10 mM lactate (Valde-
benito R. and Barros L.F., unpublished data). Contributing 
to this vectoriality is the expression in astrocytes of a lactate 
channel gated by extracellular lactate that can export even 
against a concentration gradient, using membrane potential 
as the driving force [44]. Pannexin hemichannels may also 
contribute to vectorial lactate export from astrocytes [45].

Astrocytic glycolysis is sensitive to several neuronal 
signals, acting through different mechanisms over differ-
ent spatial and temporal domains. Stimulation by glutamate 
is mediated by the Na+/glutamate cotransporter and the 
Na+ pump [25], peaks at 10–20 min and leaves the cell in 
a stimulated state long after removal of glutamate [46]. It 
is accompanied by stimulation of the glucose transporter 
GLUT1, also via the Na+/glutamate cotransporter and the 
Na+ pump [46–48]. Glutamate is oxidized by astrocytes 
[49], but in the short term its effect on respiration [50, 51] 
is smaller than its effect on glycolysis, as evidenced by a 
strong lactate production [25, 46]. Throughout the brain, 
postsynaptic activity is kept low by tonic GABA-mediated 
inhibition despite ongoing glutamate release. This means 
that astrocytes are exposed to some glutamate even if neu-
ronal energy demand, chiefly postsynaptic, is low. Consid-
ering the sluggish time course of glycolytic modulation by 
glutamate, its permanency upon glutamate removal and the 
fact that astrocytic glutamate uptake does not necessarily 
correlate with neuronal energy demand, it seems plausible 
that astrocytes integrate phasic glutamate signals into a sus-
tained metabolic signal, which primes them to receive pha-
sic information of postsynaptic energy demand, for example 
via extracellular K+. This tonic function may also extend 
to oligodendroglia, where glutamate facilitates glycolysis 
and lactate release through slow GLUT1 translocation to the 
cell surface mediated by NMDA receptors [52]. Exposure 
of astrocytes to glutamate results in rapid ATP depletion 
[18, 51, 53] but the stimulation of glycolysis develops much 
later so there does not seem to be a fast mechanistic link 

between the two phenomena. One point to be considered 
is the manner of glutamate application. We have discussed 
how bath application of glutamate or glutamate agonists to 
neurons results in inordinate Ca2+ increases and metabolic 
stress. This raises the issue of whether the astrocytic ATP 
depletion observed upon bath application of glutamate is, or 
is not, a physiological phenomenon. At any rate, the aerobic 
glycolysis induced by glutamate in astrocytes may well be 
regarded as a Warburg effect (Fig. 1b).

A more faithful second-to-second reporter of neuronal 
energy demand is extracellular K+. Active dendrites release 
K+ equimolarly with their uptake of Na+, which is in turn 
directly proportional to the ATP demand of the Na+ pump. 
Using microelectrodes and microdialysis, average extra-
cellular K+ in the central nervous system was measured 
at 2.5–3 mM under sleep and anesthesia, rising to 4 mM 
in the awake state [54] and up to 6 mM under physiologi-
cal stimulation [55]. The tiny size of the brain interstice 
(20 nm) implies that the μm electrodes create a third space 
that dampens fluctuations and that local extracellular K+ 
variations are even larger than recorded [56]. Early inves-
tigation of the metabolic effects of K+ on astrocytes using 
radioactive 2-deoxyglucose found small or no effects on gly-
colysis even at 50 mM [57–59]. However, with the advent 
of genetically-encoded sensors and their improved temporal 
resolution, it was possible to observe a strong, immediate 
stimulation of glucose consumption, even at 4 mM extracel-
lular K+ [46]. The stimulation of glucose consumption by 
K+ requires a functional Na+ pump [46] and is driven by the 
Na+/bicarbonate cotransporter NBCe1, leading to intracel-
lular alkalinization [60–62]. In addition, the NBCe1, acting 
through the bicarbonate-sensitive adenylyl cyclase, mediates 
the mobilization of glycogen in response to extracellular K+ 
[63] and, according to cytosolic NADH measurements, is 
also involved in the metabolic effects of glutamate and ATP 
[62]. Extracellular K+ contributes further to aerobic glyco-
lysis in its activation of the astrocytic lactate channel [44], 
leading to cytosolic lactate depletion and release of product 
inhibition of glycolysis [64]. Exposure of astrocytes to K+ 
resulted in elevated ATP levels and inhibition of respiration 
[18, 51], showing that aerobic glycolysis induced by K+ in 
astrocytes resembles the Crabtree effect, where a primary 
stimulation of glycolysis leads to a secondary inhibition of 
respiration (Fig. 1c). Whereas the effects of K+ and glu-
tamate on astrocytic metabolism do not interact linearly 
[50], afferent stimulation in hippocampal slices provoked 
an increase in astrocytic ATP [18], showing that the Crab-
tree effect dominates over the Warburg effect, at least in the 
short term.

Additional intercellular signals involved in the control 
of astrocytic glycolysis by neuronal activity are nitric oxide 
(NO) and ammonium (NH4

+). Astrocytes are devoid of NO 
synthase but are surrounded by the highest NO synthase 
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activity of the body, located in endothelial cells and in neu-
rons [65]. The initial observation that NO stimulates glyco-
lysis and lactate production in astrocytes but not in neurons 
through inhibition of mitochondrial cytochrome oxidase 
[66] was recently followed by the demonstration that the 
modulation can be detected within seconds at nanomolar 
NO, levels that are deemed to be within the physiological 
range [67]. Neurons may not produce enough NO to reach 
astrocytes [68] but endothelium is a stronger NO source, 
activated by shear stress during local reactive hyperemia or 
by neuronal signals [69–71]. NH4

+ is another candidate for 
the acute regulation of astrocytic metabolism. Most of the 
glutamate released during excitatory neurotransmission is 
returned to neurons in the form of glutamine. Within neu-
rons, glutamine is reconverted to glutamate with the gen-
eration of one NH4

+ [72]. It is not clear how much of this 
NH4

+ is returned to astrocytes as such, or as amino acids 
[73], but activity-dependent local NH4

+ surges have been 
recorded in several animal models [74–77]. NH4

+ is effi-
ciently captured by astrocytes via channels and transporters 
[78, 79]. Physiological ammonium levels in brain tissue have 
been estimated at 0.2–0.45 mM [79]. Intravenous infusion 
of NH4

+ leading to an increase of 0.7 mM, caused a rapid 
reversible rise in brain tissue lactate and cerebral blood flow 
[80]. At 0.2 mM, NH4

+ provoked an acute inhibition of mito-
chondrial pyruvate consumption in astrocytes resulting in 
deviation of the glycolytic flux towards lactate production 
and release, but glycolysis was not stimulated [81]. This lack 
of response is another example of the relative autonomy of 
glycolysis in these specialized cells. Given these metabolic 
effects of NH4

+ it is unfortunate that so little is known about 
the speed and mechanism of its release by neurons. If stored 
in synaptic vesicles to be co-released with glutamate [82], its 
metabolic effects would be fast. The primary target of both 
NO and NH4

+ (at low physiological levels) is the mitochon-
dria, so both signals can be said to induce aerobic glycolysis 
of the Warburg type.

Mechanisms of the Pasteur, Warburg and Crabtree 
Effects

According to classic biochemistry, the second-to-second 
conversation between glycolysis and respiration is conducted 
via adenine nucleotides. Glycolysis responds to ATP and 
AMP (which amplifies ADP changes through adenylate 
kinase) and respiration responds to ADP. Thus, the Pasteur 

effect is mediated by the mitochondria sustaining high cyto-
solic ATP and low cytosolic AMP, resulting in glycolysis 
inhibition at PFK1. The Warburg effect is therefore seen 
as a suppression/failure of these inhibitory mechanisms, 
either because not enough ATP is produced or because the 
glycolytic machinery becomes insensitive to ATP or AMP. 
The Crabtree effect develops when a primary stimulation 
of glycolysis (e.g. by glucose or by K+) increases ATP and 
decreases ADP, leading to inhibition of mitochondrial respi-
ration. All this sounds quite logical according to the test-tube 
properties of isolated enzymes and organelles, but there is 
no evidence that adenine nucleotides mediate these effects 
in intact cells under physiological conditions. For exam-
ple, the strong NBCe1-dependent activation of glycolysis 
in astrocytes that occurs despite increased cytosolic ATP 
[18] demonstrates that alternative mechanisms may override 
the influence of adenine nucleotides. Conversely, in astro-
cytes exposed to glutamate, glycolysis remained unstimu-
lated during several minutes despite severe ATP depletion 
[18, 46, 51], so there must be another, stronger influence 
interfering with the stimulatory effect of the nucleotides. In 
neurons, adenine nucleotides do not seem to be paramount 
either, because these cells are capable of increasing their 
rates of glycolysis and mitochondrial pyruvate consump-
tion by several-fold in the absence of detectable changes in 
cytosolic ATP and ADP [36]. Adenine nucleotide-mediated 
control may well dominate under pathological conditions 
like ischemia. For normal workloads however, it is perhaps 
time to consider alternatives, for example glycolytic inter-
mediates [15] or the conspicuous mitochondrial attachment 
of hexokinase to mitochondria [83, 84].

In summary, based on experiments in animals, in vivo, 
ex vivo and in cultured cells, the main locus of acute activ-
ity-dependent aerobic glycolysis in brain tissue appears to 
be the astrocyte. A fast Crabtree effect triggered by K+ coin-
cides with a fast Warburg effect mediated by NO, superim-
posed on a tonic, glutamate-dependent Warburg effect. The 
time course of the Warburg effect induced by NH4

+ remains 
to be determined. The combined result of these modulations 
is that lactate and oxygen are made available to neurons, 
on demand. In the meantime neurons maintain a balance 
between glycolysis and respiration mediated by parallel 
upstream control of both pathways by the Na+ pump (Fig. 2). 
Technical developments are eagerly awaited to confirm these 
observations in humans.
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