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Abstract
Astrocytes make up 20–40% of glial cells within the central nervous system (CNS) and provide several crucial functions, 
ranging from metabolic and structural support to regulation of synaptogenesis and synaptic transmission. Although these 
cells are morphologically and functionally complex, astrocytes have been historically regarded as homogenous cell popula-
tions and studied as one population of cells. Fortunately, recent evidence in RNA profiling and imaging data has begun to 
refute this view. These studies suggest heterogeneity of astrocytes across brain regions, differing in many aspects such as 
morphology, function, physiological properties, developmental origins, and response to disease. Increased understanding 
of astrocyte heterogeneity is critical for investigations into the function of astrocytes in the brain and neuro–glia interac-
tions. Furthermore, insights into astrocyte heterogeneity can help better understand their role in neurological disorders and 
potentially produce novel approaches to treating these diseases.

Keywords  Astrocyte · Astrocyte heterogeneity · Astrocyte diversity · Morphology · Development · Function · Neurological 
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Introduction

Astrocytes are the most functionally diverse glial cells in 
the CNS and whose role in the nervous system has begun to 
be appreciated more over the past few decades. Astrocytes 
serve a multitude of versatile roles in providing metabolic 
and trophic support, regulating synaptogenesis, ion homeo-
stasis, neurotransmitter buffering, maintaining blood-brain 
barrier integrity, and contribute to patterns of neuronal net-
work activity [1–3]. In neural development, they function as 
neural stem cells, stimulate neurite outgrowth, guide axon 
projections, and promote synapse formation [4, 5]. They 

also have essential roles in responding to local neuropathol-
ogy and in the mediation of innate immune responses, con-
tributing to both inflammation and its resolution [6]. It is 
not possible to address all the studies on astrocyte function 
and pathology here, and we refer readers to these thorough 
reviews [1–8]. With all of these advancements in compre-
hending astrocytes and their role in the nervous system, 
what elements are still lagging in our understanding of 
astrocytes? One area of astrocyte science that remains rela-
tively unexplored, and the topic of this review, is astrocyte 
heterogeneity.

Cellular heterogeneity is a defining feature of all organ 
systems, where diverse cell populations operate together to 
ensure homeostatic function and proper physiological activi-
ties. While the same is true for the nervous system, studies in 
CNS cellular heterogeneity has been primarily investigated 
in neurons. Neuronal diversity was a certainty with early 
morphological and regional differences recorded by Camillo 
Golgi and Ramon y Cajal (Fig. 1a, [9]), and further veri-
fied with physiological and functional differences observed 
between differing neuronal subtypes. However, even with 
early morphological differences detected between astroglia 
(Fig. 1b, [10]), astrocytes were grouped as a homogenous 
population. For the better part of the century, astrocytes were 
treated as two separate populations: protoplasmic astroglia 
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of the gray matter and fibrous astroglia of the white matter 
[11–14]. While there have been special cases such as Mül-
ler glia in the retina and Bergmann glia in the cerebellum, 
protoplasmic and fibrous astroglia were considered the major 
subpopulations of astrocytes [15]. Fortunately, this view has 
been challenged in the past few years with advancements 
in experimental techniques and functional understanding of 
astrocytes. This review aims to briefly explore some aspects 
of astrocyte heterogeneity: developmental diversity, subpop-
ulations that have been determined, functional differences, 
and differences in the response to neuropathology. We sug-
gest further reading into this subject highlighted in other 
reviews [6, 10, 16–20].

Development Heterogeneity

Cellular diversification of organ systems is determined by 
developmental patterning of embryonic tissue. For exam-
ple, in the developing spinal cord, Sonic Hedgehog (Shh) 
and BMP/Wnt morphogen gradients along the neural tube 
participate in the control of diverse neuronal identities that 
emerge [21]. Initial evidence that astrocyte diversity is the 
result of patterning surprisingly came from the understand-
ing of how oligodendrocytes are derived in the spinal cord. 
A majority of oligodendrocytes are derived from the pMN 
domain, a domain located near the ventral neural tube that 

specifically expresses the bHLH transcription factor Olig2 
[22, 23]. Meanwhile, the surrounding domains (termed 
p1–p3) generate astrocytes in the ventral area. Analysis in an 
Olig2-null mouse model demonstrated that, in the absence 
of Olig2, the pMN domain is converted to a p2 domain and 
cells which once became oligodendrocytes were converted 
to astrocytes [24, 25]. Subsequent studies showed that 
Olig2 interacts with the factor Scl between the pMN and p2 
domains, repressing one another to control astrocyte verse 
oligodendrocyte fates [26].

These initial studies provided evidence of developmental 
patterning in organizing glia diversity but did not explain 
the formation of distinct subpopulations of astrocytes within 
the p1–p3 domains. To address this, subsequent studies ana-
lyzed the gene expression profiles of astrocytes generated in 
these domains in the absence of Olig2 using the Olig2-null 
mouse model [27]. These studies demonstrated that the tran-
scription factors Pax6 and Nkx6.1 selectively pattern these 
subsets of astrocytes. Additionally, the subpopulations are 
further demarcated by expression of Reelin and Slit. These 
subpopulations were designated as VA1, VA2, and VA3 
(related to the p1–3 domains respectively). Pax6 is required 
for VA1 and VA2 identity, while Nkx6.1 is required for VA3. 
VA1 expresses Reelin, VA2 expresses both Reelin and Slit, 
and VA3 expresses Slit.

These developmental astrocyte patternings were further 
validated by lineage-tracing approaches with Cre-expressing 

Fig. 1   Early morphological discoveries in neurons and astrocyte 
demonstrate morphological diversity in both cell types. a Diversity 
of neuronal cells. a, Purkinjie neuron (human); b, pyramidal neu-
ron (rabbit); c, motor neuron (cat); d,e horizontal neuron (cat); f, 
pre-motor interneuron (locust); g, visual amacrinal neuron (fly); h, 
multipolar neuron (fly); i, visual monopolar neuron (fly); j, visual 
interneuron (locust); k, pre-motor interneuron (crayfish); l, mechani-
cal sensory neuron (cray fish); (from Cajal, Fisher and Boycott, Bur-

rows, Strausfeld, O’Shea, Rowell and Reichert). Illustration taken 
from H. Reichert; Neurobiolgie, page 23 [9]. b Golgi staining of 
astrocytes in human cerebellum by Ramon y Cajal showing diversity 
of astrocytes. b, Bergmann glia; s, smooth protoplasmic astrocytes; v, 
velate astrocytes; f, fibrous astrocytes. Reproduced with permission 
from Springer Science & Business media: H. Kimelberg; Astrocytes 
in (patho)physiology of the nervous system, astrocyte heterogeneity 
or homogeneity? page 3 [10].
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mouse lines active in the specific spinal cord domains, dem-
onstrating positional identity along the dorsal/ventral axis 
within the distinct subpopulations of astrocytes [28]. These 
approaches were also extended to the developing forebrain, 
showing similar results of local embryonic regions being 
linked to regional location of astrocytes. Interestingly, this 
study also showed that each domain generates both fibrous 
and protoplasmic astrocytes, suggesting that morphologi-
cally diverse astrocyte populations develop from common 
origins [28]. While these studies begin to suggest that 
astrocyte heterogeneity within the CNS is specified early by 
developmental patterning, future studies will need elucidate 
region-specific patterning mechanisms in other regions of 
the CNS.

Subpopulations and Heterogeneity 
in the Adult Brain

Due to a lack of available tools in isolating populations of 
astrocytes, our understanding of astrocyte heterogeneity 
in the adult brain was limited to early morphological tech-
niques. The first of which came in differences between the 
protoplasmic and fibrous astrocytes. Protoplasmic astrocytes 
were shown to have long unbranched processes and gen-
erally express S100β, while fibrous astrocytes have short 
and highly branched extensions and express GFAP [1, 29, 
30]. This analysis was expanded in a recent study where 
nine morphologically distinct GFAP or S100β expressing 
astrocytes were identified, distributed in varying proportions 
across different brain regions [15]. Interestingly, changes 
in expression of GFAP and other astrocyte intermediate 
filaments, such as vimentin, synemin, and nestin, provided 
some of the earliest evidence of the heterogeneous response 
astrocytes have to disease and injury, a topic highlighted in 
a future section [31–33]. While these studies gave an early 
indication of astrocyte heterogeneity, a considerable amount 
of evidence on astrocyte heterogeneity would arise in the 
past decade with two scientific advancements.

The first being a novel translational profiling approach 
called TRAP, translating ribosome affinity purification, 
in which translated mRNAs could be compared between 
astrocyte populations. Initial studies using the approach 
compared cortical astrocytes, cerebellar astrocytes, and 
cerebellar Bergman glia, and reported extensive differences 
in gene expression between astrocytes of different brain 
regions [34]. This study, combined with microarray analy-
sis and genome-wide gene expression studies, found a large 
number of genes that are differentially expressed by subsets 
of astrocytes including genes that encode for proteins such 
as neuropeptides, sodium and potassium channels, various 
glutamate receptors and transporters, and surface glyco-
proteins [18]. Recently, this approach was improved upon, 

isolating and developing molecular profiles of astrocytes 
from six different brain regions utilizing BAC-TRAP (using 
BAC-transgenic mouse lines generated for TRAP methodol-
ogy) [35]. Profiling astrocyte mRNAs in major cortical and 
subcortical brain regions (cortex, hippocampus, caudate-
putamen, nucleus accumbens, thalamus, and hypothala-
mus), this study showed extensive molecular heterogeneity 
across these regions. Interestingly, this study used multiple 
coculture systems to show that the astrocytes preferentially 
promote neurite growth and synapse formation of neurons 
from the same brain regions over neurons from different 
brain regions.

The second advancement came in better understanding 
of molecular markers for astrocytes (outside of GFAP and 
S100β) and developing mouse models around these mark-
ers. One such marker that emerged as a broad marker for 
astrocytes in the adult brain is the folate enzyme Aldh1l1 
(aldehyde dehydrogenase 1 family member L1) [36]. A BAC 
transgenic mouse line was generated expressing GFP under 
the control of the Aldh1l1 promoter, allowing for fluores-
cence-activated cell sorting (FACS) isolation of astrocyte 
subpopulations (as well as the BAC-TRAP analysis high-
lighted above) [37]. A recent study utilizing FACS and 
immunological approaches in this mouse model detailed five 
different populations (termed A–E) of astrocytes within the 
mouse CNS [38]. These astrocyte populations were charac-
terized by their affinity and expression to several antibodies 
such as CD51, CD63, and CD71. Further, each astrocyte 
population was shown to differentially regulated synaptogen-
esis of neurons. Interestingly, this study also showed cor-
relative astrocyte populations in human glioma and found 
specific subpopulations during tumor progression which cor-
responded with the onset of seizures and tumor invasion. A 
parallel study utilizing the Aldh1l1-GFP mouse performed 
an extensive comparison of hippocampal and striatal astro-
cytes [39]. This study utilized multiple transcriptomic, pro-
teomic, morphological, and functional assays to thoroughly 
characterize and compare astrocytes from these two regions, 
demonstrating highly specific functional and morphological 
differences between these two populations (suggest reading 
[39] for all the detailed differences).

Recently, another marker used to determine astrocyte 
subpopulations in mice came from an old astrocyte protein 
expressed in most astrocytes, EAAT2 (excitatory amino 
acid transporter 2). Various promoter lengths of EAAT2 
were used to drive tdTomato expression in mouse models, 
which showed neuronal expression of tdTomato of a pro-
moter length up to 7.9 kb [40]. However, when the promoter 
length was increased to 8.3 kb, a subpopulation of astrocytes 
were highlighted within the cortical layers, showing higher 
populations in layers II/III and V [40, 41]. Microarray and 
functional analysis showed higher expression in genes such 
as Kcnj10 (encoding Kir4.1), LGR6, and Norrin and that 
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the proteins LGR6 and Norrin were important for maintain-
ing neuronal dendrites and spines. Subsequent studies were 
performed comparing cortical astrocytes with low and high 
expression of tdTomato to cortical astrocytes absent of tdTo-
mato signal [42]. RNA-seq comparisons in this approach 
showed cortical astrocytes absent of tdTomato signal dis-
played elevated levels of several non-astrocyte genes such 
as Iba1 and mog.

Taken together, these studies have provided a multitude 
of new evidence elucidating astrocyte heterogeneity and 
subpopulations within the adult brain. However, one caveat 
with these approaches is relying heavily on gene expression 
changes to support astrocyte heterogeneity. Future studies 
utilizing the approach highlighted in [39], while costly, will 
help not only circumvent this issue but generate a highly 
detailed map characterizing astrocyte subpopulations 
throughout the CNS. In this approach, not only are transcrip-
tomic differences highlighted, but proteomic, functional, and 
morphological differences are detailed.

Functional Heterogeneity

Given that astrocytes provide support to a diverse group 
of neurons, it is rational to believe that there is functional 
heterogeneity between astrocytes in different niches. Such 
functional differences were highlighted in the previous sec-
tion, specifically that populations of astrocytes preferentially 
promote neurite growth and synapse formation of neurons in 
the same brain regions [35, 38]. These findings, as well as 
the others highlighted above, suggest astrocyte heterogene-
ity has a strong connection to surrounding neuron popula-
tion. Potentially, astrocyte subpopulations may be induced 
by interactions with specific neuron populations to produce 
astrocytes which function in a precise manner to fit the needs 
of the surrounding neurons.

Another functional difference in astrocyte populations 
which may support this concept is in ion buffering. Kir4.1 
(Kcnj10) is an inward-rectified potassium channel expressed 
in astrocytes that is critical for homeostatic regulation of 
potassium ions in the extracellular space [43]. Kir4.1 protein 
levels vary highly in gray matter astroglia, and the neocor-
tex and hippocampus exhibit high heterogeneity in astroglia 
Kir4.1 levels [44, 45]. However, Kir4.1 is enriched in ventral 
horn astrocytes in the spinal cord and in cortical layers II/
III and layers V in the cortex [16, 40, 45]. These astrocytes 
support lower motor neurons in the spinal cord and upper 
motor neurons in the motor cortex, suggesting enrichment 
in Kir4.1 expression of astrocytes to regulated the potassium 
ion needs of motor neurons. However, this notion is based 
on immunohistochemical observations and need to be fur-
ther supported with functional measurements. Unfortunately, 
this brings up an issue when exploring functional diversity 

of astrocytes and that is the lack of available metrics for 
astrocyte physiology.

Electrophysiology, which has been a valuable tool for 
neuronal diversity, is difficult and does not provide much 
information in astrocytes. Astrocytes rarely diverge from 
the potassium equilibrium potential, have low membrane 
resistance making voltage clamping problematic, and are 
extensively coupled intracellularly to several other astrocytes 
[16]. The only study which extensively studied electrophysi-
ological heterogeneity in astrocytes was only able to find 
very subtle differences between hippocampal and striatal 
astrocytes [39]. Another physiological readout of astrocytes 
which has gained increased attention is intracellular calcium 
signaling, which has been suggested to represent a method 
of excitability that astrocytes use for communication [46, 
47]. Tools known as genetically encoded calcium indica-
tors (GECIs) have been used to view calcium signaling in 
astrocytes, however they have diverse properties and can 
only be visualized on a single imaging plane. Interestingly, 
the only study to measure calcium signaling differences 
between astrocyte populations using GECIs comes again 
from the extensive study done between hippocampal and 
striatal astrocytes [39]. These studies showed few differences 
between the calcium signaling. Hippocampal astrocytes dis-
played higher spontaneous calcium signal frequency while 
striatal astrocytes significantly relied on entry for basal cal-
cium levels more than hippocampal astrocytes.

Although there is some evidence in functional heteroge-
neity in astrocytes, it is clear that future studies will require 
novel tools to assess astrocyte physiology. Transcriptomics, 
proteomics, and immunohistochemical analysis give an early 
indicator of potential functional differences, but these are 
incomplete without proper metrics to connect these findings 
with function.

Astrocyte Heterogeneity in Disease

Astrocytes respond to a variety of injuries, infections, and 
diseases and astrocyte pathology is a major hallmark in 
a wide range of neurological disorders such as epilepsy, 
brain tumors, and neurodegeneration [38, 48–50]. Gener-
ally referred to as astrogliosis, reactive astrocytes undergo 
remarkable cellular, molecular, and functional alterations 
serving to support neurons, regulated the blood–brain bar-
rier, remodel the extracellular space, control immune cells, 
and control synapse formation in response to disease and 
injury [51–54]. These alterations include increased astrocyte 
proliferation and number, increased expression and rear-
rangement of GFAP and intermediate filaments, and vary-
ing expression levels of cytokines and signaling molecules 
[1, 31–33, 51–54]. However, the responses and changes in 
reactive astrocytes are very heterogeneous and can have both 
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detrimental and beneficial effects. In response to CNS inju-
ries, astrocytes have been shown to inhibit axon regeneration 
and can produce pro-inflammatory cytokines that worsen 
spinal cord injuries [55–57]. On the other hand, ablation of 
reactive astrocytes in models of injury and ischemia showed 
reactive astrocytes are crucial for withstanding insult and 
improving recovery [58–60]. In an epileptic brain, reactive 
astrocytes produce a variety of mechanisms which can both 
promote and oppose seizure development [18]. These het-
erogeneous responses raised the question of whether there 
might be different subtypes of reactive astrocyte which elicit 
different responses.

To begin to understand the profiles of reactive astro-
cytes, transcriptome analysis was performed on quiescent 
and reactive astrocytes isolated from healthy and injured 
brains, through lipopolysaccaride (LPS) injections or middle 
cerebral artery occlusions to induce ischemia [54]. Through 
these studies, two different types of reactive astroglia were 
characterized: A1 and A2. A1 astrocytes lose the ability to 
promote neuronal survival and synaptogenesis and induce 
the death of neurons and oligodendrocytes through toxic 
soluble factors [54, 61]. A2 astrocytes upregulate many neu-
rotrophic factors and promote neuronal survivability [54, 
61]. A1 astrocytes were also shown to be induced by acti-
vated microglial inflammatory signaling molecules, which 
when inhibited prevented A1 astrocyte development [61]. 
Furthermore, A1 astrocytes were shown to be present in 
aged mouse CNS tissue and around areas of disease pathol-
ogy in multiple neurodegenerative diseases in mouse and 
human [61–64]. However, while these populations show het-
erogeneity in the molecular phenotype of reactive astrocytes, 
it is unclear if these astrocytes are separate populations or 
the same astrocytes undergoing a continuum of progressive 
changes.

Regional heterogeneity of astrocyte populations in neu-
rological disorders is an interesting topic given the regional 
specificity of neurological disorders with astrocyte pathol-
ogy. Astrocytomas, one of the most common types of brain 
tumors, primarily occur in specific brain regions suggesting 
regional differences in the ability for astrocytes to proliferate 
and form tumors [18]. In one study, gene expression pro-
files from different brain regions showed heterogeneity in the 
express of the tumor-suppressor gene neurofibromatosis type 
1 (NF1). As previously highlighted, a recent studied demon-
strated that gene expression profiles of identified astrocyte 
subpopulations correlated with the profiles of different sub-
types of human glioblastomas [38]. Additionally, specific 
subpopulations were found during tumor progression which 
corresponded with the onset of seizures and tumor inva-
sion. Another neurological disorder with strong astroglia 
pathology is epilepsy. Astrocytes in epilepsy were shown 
to have downregulated Kir4.1 and Glutamate transporter-1 
(Glt1), potentially allowing accumulation of glutamate and 

potassium ions in the extracellular space and exacerbating 
disease pathology [49, 65]. While downregulation of those 
proteins is more related to global astrocyte changes versus 
astrocyte heterogeneity, point mutations in Kir4.1 and the 
astroglial water channel Aquaporin-4 (AQP4) are present 
in patients with temporal lobe epilepsy, suggesting some 
astrocyte heterogeneity in epilepsy.

Astrocyte heterogeneity becomes an even more enticing 
subject when looking at neurodegenerative diseases. Most 
neurodegenerative diseases present as loss of specific popu-
lations of neurons, so most studies focus on what disease 
factors are present in specific neuronal pools that make them 
susceptible to death over other neuron types. However, simi-
lar pathology can be present in susceptible neurons of differ-
ent diseases, such as TDP43, Tau, and FUS pathologies in 
both amyotrophic lateral sclerosis (ALS) and dementia [66]. 
Therefore, regional differences between astrocyte function-
ality or pathology may provide a key to understanding why 
specific neuronal pools die in neurodegenerative disease.

In Parkinson’s disease (PD), there is selective degenera-
tion of dopamine neurons in the substantia nigra pars com-
pacta (SN), while the neighboring dopamine neurons in the 
ventral tegmental area (VTA) are spared. The SN has been 
shown to have the lowest density of astrocytes and the levels 
of GFAP expression are reduced in PD post-mortem tissue, 
suggesting suppressed astrocyte response and decreased 
neuroprotection [67–69]. Recently, one study has demon-
strated that there are vast transcriptional differences between 
VTA and SN astrocytes [70]. Of these differences, GDF15, 
a member of the TGFβ superfamily, was expressed ~ 200 
times higher in VTA astrocytes and provided a neuroprotec-
tive effect to SN neurons when applied in vitro. PD astro-
glia have also been shown to exhibit senescence and release 
pro-inflammatory molecules that exacerbate dopaminergic 
neuron degeneration [71, 72]. In Huntington’s disease (HD), 
astrocytes from the striatum, where neuronal degeneration 
occurs, were shown to have significant downregulation of 
Kir4.1 [73]. Increased expression of Kir4.1 in striatal astro-
cytes through adeno-associated viruses (AAVs) showed 
increased striatal neuron survival and improved motor defi-
cits in an HD mouse model [73].

Alzheimer’s disease (AD) is characterized by a progres-
sive atrophy of cortical and subcortical structures. Astro-
cytes have been shown to undergo both degeneration and 
reactivity in a time and regional specific manner in AD [68, 
74]. In the entorhinal and prefrontal cortices, astrocytes 
become atrophic and fail to mount a response, suggesting 
that these regions have increase vulnerability to AD pathol-
ogy [68, 75, 76]. Reactive astrocytes, such as the A1 astro-
cytes highlighted above, have been shown to localize to the 
regions of degeneration in human AD patient post-mortem 
tissue and in mouse models of tauopathy [61, 77]. Interest-
ingly, astrocytes derived from AD patient iPSCs demostrate 
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lower EAAT1 and glutamine synthetase levels, reduced 
morphological heterogeneity, increased atrophy, and altered 
release of soluble inflammatory mediators [78]. Given the 
complex degeneration and reactivity of astrocytes in AD, it 
has been suggested that astrocytes should be a key criteria 
for development of effective AD therapeutics [79].

ALS has long been connected to astrocytes, exhibiting 
astroglia pathology even before neuronal death has occurred 
[65, 80]. In the SOD1 (G93A) transgenic mouse model, 
prominent astrocyte degeneration and atrophy occurs, which 
precedes both neuronal death and the appearance of clini-
cal symptoms [68]. In ALS, degeneration occurs in upper 
cortical motor neurons in layer V and lower motor neurons 
in the ventral horn of the spinal cord. Astrocyte subpopu-
lations within these areas demonstrated downregulation of 
both Kir4.1 and Glt1, providing excess glutamate and potas-
sium ions within the extracellular space which could serve 
to initiate or exacerbate the hyperexcitable deficits seen in 
ALS motor neurons [81–83]. Additionally, in vitro models of 
human and rodent ALS astrocytes demonstrate an increased 
release of neurotoxic factors to motor neurons that increase 
their susceptibility to death [84].

Taken together, these studies provide not only provide 
evidence for the role of astrocyte heterogeneity in neuro-
logical disorders but that astrocytes may provide potential 
therapeutic targets. Future studies into astrocyte heterogene-
ity in disease would benefit from the newer approaches taken 
to isolate and screen astrocyte subpopulations, combining 
mouse models used to analyze astrocyte subpopulations with 
mouse models of neurodegenerative diseases.

Conclusion

Astrocyte heterogeneity is a topic that has become more 
appreciated in the past few decades. Insights into astrocyte 
heterogeneity are crucial for our understanding of astrocyte 
biology in the developing and adult brain. Additionally, as 
astrocytes are crucial for neuronal function, maintenance, 
and neural development, understanding astrocyte hetero-
geneity is important to further understand neuronal func-
tion and development. Furthermore, the role astrocyte sub-
populations may serve in neurological disorders provides 
an interesting target for future therapeutic targets. However, 
this field is still in the early stages and requires advance-
ment in tools as early insights rely on transcriptional changes 
between astrocyte populations. Future studies would benefit 
greatly from tools for functional assessments as well as addi-
tional molecular tools for labeling and manipulating astro-
cyte pools. Astrocyte heterogeneity remains a fascinating 
topic that offers a promising addition to our understanding 
of the biology of the nervous system.
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