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Abstract
Methylglyoxal (MGO) is a highly reactive dicarbonyl molecule that promotes the formation of advanced glycation end 
products (AGEs), which are believed to play a key role in a number of pathologies, such as diabetes, Alzheimer’s disease, 
and inflammation. Here, Swiss mice were treated with MGO by intraperitoneal injection to investigate its effects on motor 
activity, mood, and cognition. Acute MGO treatment heavily decreased locomotor activity in the open field test at higher 
doses (80–200 mg/kg), an effect not observed at lower doses (10–50 mg/kg). Several alterations were observed 4 h after a 
single MGO injection (10–50 mg/kg): (a) plasma MGO levels were increased, (b) memory was impaired (object location 
task), (c) anxiolytic behavior was observed in the open field and marble burying test, and (d) depressive-like behavior was 
evidenced as evaluated by the tail suspension test. Biochemical alterations in the glutathione and glyoxalase systems were 
not observed 4 h after MGO treatment. Mice were also treated daily with MGO at 0, 10, 25 and 50 mg/kg for 11 days. From 
the 5th to the 11th day, several behavioral end points were evaluated, resulting in: (a) absence of motor impairment as evalu-
ated in the open field, horizontal bars and pole test, (b) depressive-like behavior observed in the tail suspension test, and (c) 
cognitive impairments detected on working, short- and long-term memory when mice were tested in the Y-maze spontane-
ous alternation, object location and recognition tests, and step-down inhibitory avoidance task. An interesting finding was 
a marked decrease in dopamine levels in the prefrontal cortex of mice treated with 50 mg/kg MGO for 11 days, along with 
a ~ 25% decrease in the Glo1 content. The MGO-induced dopamine depletion in the prefrontal cortex may be related to the 
observed memory deficits and depressive-like behavior, an interesting topic to be further studied as a potentially novel route 
for MGO toxicity.

Keywords  Methylglyoxal · Glyoxalase · Cognitive dysfunction · Memory · Dopamine · Mood · Diabetes

Introduction

Psychiatric disorders and cognitive dysfunction are com-
plex and often comorbid, as well as related to metabolic 
disturbances [1, 2]. In line with this, methylglyoxal (MGO), 
a reactive dicarbonyl generated endogenously, is capable of 
inducing oxidative stress, cellular damage, apoptosis and has 
been associated with neuronal dysfunction [3–6]. MGO can 
be generated by spontaneous fragmentation and elimination 
of phosphate from two metabolites of the glycolytic path-
way, namely glyceraldehyde-3-phosphate, and dihydroxy-
acetone phosphate [7, 8]. MGO can also be generated by 
the metabolism of glycine, tyrosine, and threonine [8–10]; 
during lipid peroxidation [11]; and by enzymatic isomeriza-
tion or protein catabolism [12–14].
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The glyoxalase system, comprised by the enzymes gly-
oxalase 1 (Glo1) and glyoxalase 2 (Glo2), is highly spe-
cific in detoxifying MGO [15, 16]. Initially, hemithioacetal 
is generated after the spontaneous reaction between MGO 
and glutathione (GSH). Then, hemithioacetal is converted 
to S-d-lactoylglutathione in a reaction catalyzed by Glo1. In 
the second step, Glo2 catalyzes the conversion of S-d-lac-
toylglutathione to d-lactate, regenerating GSH [9, 16, 17]. 
The absence of glyoxalase system would favor MGO to 
react with amino groups of basic amino acids and, by this, 
increasing the burden of the so-called advanced glycation 
end-products (AGEs) [7, 18]. AGEs, in turn, can activate the 
AGE receptor (RAGE) leading to the production of reactive 
oxygen species (ROS) and pro-inflammatory cytokines, what 
can promote a subset of physiological alterations contribut-
ing to illness appearance [19]. Altered MGO metabolism 
has been linked to diabetes [20, 21], mood disorders such 
as anxiety and depression [22], epilepsy [23], cancer [24], 
hyperalgesia, inflammation [25], and Alzheimer’s disease 
[26].

Modulation of Glo1 expression or MGO levels have been 
correlated with behavioral alterations in pre-clinical studies, 
including modulation of anxiety, seizure, pain and depres-
sive-like behavior in mice [22, 27–29]. A possible mecha-
nism underlying behavioral effects correlated to Glo1 levels 
was proposed after the identification of MGO as a competi-
tive partial agonist on γ-aminobutyric acid A (GABAA) 
receptor [30]. MGO has also been shown to modulate the 
activity of Nav1.8 voltage-gated sodium channel, inducing 
hyperalgesia in diabetic neuropathy [31], and MGO-acti-
vated TRPA1 ion channel can evoke pain [32].

The levels of MGO were found to be significantly ele-
vated in the plasma of diabetic patients and rats [16, 33, 
34]. Also, a study evaluating 267 non-demented elderly 
humans showed that the serum concentration of MGO was 
positively associated with a faster rate of cognitive decline 
[35]. Moreover, higher serum MGO levels in older people 
were associated with poorer memory and executive function 
and grey matter atrophy, without alterations in white matter 
or hippocampal volume [36].

Although recent studies have investigated the role of 
MGO, so far, only a few animal studies evaluated the effects 
of MGO on learning and memory. Either cognitive impair-
ment or absence of alterations has been shown, depend-
ing on the approach. It was observed that streptozotocin-
induced diabetic rats presented increased serum levels of 
MGO and spatial memory impairment [33]. On the other 
hand, prolonged treatment with 0.5% MGO in drinking 
water led to increased serum MGO in Sprague–Dawley 
rats, but the treatment did not cause any significant cognitive 
impairment on spatial and working memory [37]. Another 
study showed that 1% MGO in drinking water for 4 weeks 
impaired aversive memory in mice [38]. Also, repeated 

intracerebroventricular (i.c.v.) MGO injections (3 µmol/µL/
day) for 6 days revealed deficits in short-term recognition 
memory, but not working memory, when evaluated in the 
Y-maze [39]. This set of evidences is inconclusive and, as 
previously stated, the significance of MGO-induced cogni-
tive impairment still requires further investigation [37].

Considering this scenario, Swiss mice were subjected to 
acute or repeated MGO treatment (5–11 days, 10–200 mg/
kg), and a set of behavioral tests were undertaken: loco-
motor activity, vertical agility, force, motor coordination, 
depressive-like behavior, anxiety, and cognitive parameters 
to evaluate spatial, recognition, aversive and working mem-
ory, in the short- and long-term paradigms. We also assessed 
plasma MGO levels, antioxidant defenses and Glo1/Glo2 
abundance in the prefrontal cortex and hippocampus of 
mice. In addition, we evaluated levels of dopamine (DA), 
norepinephrine (NE) and serotonin (5-HT) in the brain.

Materials and Methods

Animals and Treatments

Experiments were conducted using 3-month-old female 
Swiss mice (35–55  g) bred at the Federal University 
of Santa Catarina (UFSC), Florianópolis, Brazil. Mice 
were maintained in groups of 10–12 animals per cage 
(42 × 34 × 17 cm), under controlled temperature (22 ± 1 °C), 
and 12 h light cycle (lights on at 7:00 AM), with free access 
to food (standard chow diet) and water. Efforts were made 
to minimize the number of animals used and their suffering.

Experiments were performed by using female mice given 
the animal facility provides this specific strain, and because 
several studies have shown that the prevalence of stress-
related psychiatric disorders (e.g., depression, post-traumatic 
stress disorder) are twice as prevalent in women compared 
to men [40]. This higher prevalence of females in depression 
and other stress-related disorders implies an increased sensi-
tivity of stress-related systems or substrates, as evidenced in 
previous studies that documented an increased responsive-
ness of the hypothalamic–pituitary–adrenal axis in female 
vs male rats [41–44].

Mice were treated with saline 0.9% (vehicle/control) or 
different doses of MGO (10, 20, 25, 50, 80 or 200 mg/kg) 
(Sigma-Aldrich, São Paulo) diluted in vehicle. Solutions 
were administered once a day by intraperitoneal injection 
(i.p.) with a relative injection volume of 1 mL/100 g of body 
weight. Treatments were made once (acute treatment) or 
daily (repeated treatment).
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Experimental Design

To evaluate the behavioral and neurochemical effects of 
MGO treatment, two administration approaches were used 
with independent groups of mice (Fig. 1):

(A) Acute administration (Fig. 1a): Based on previous 
studies that showed 800 mg/kg MGO was lethal [4, 45], we 
initially used up to 200 mg/kg MGO to investigate the lowest 
effective dose causing motor impairment in the open field 
test. MGO at 80 and 200 mg/kg (i.p.) produced a marked 
decrease in the locomotor activity in the open field, and 
were not further tested (Fig. S1). Mice receiving a single 
MGO at 10, 25 and 50 mg/kg injection did not present any 
noticeable change in the ambulatory activity 4 h after treat-
ment, as evaluated in the open field (Fig. S1). A single MGO 
dose of 10, 25 and 50 mg/kg MGO was applied, and 15 min 
or 4 h later independent groups of mice were submitted to 

behavioral tests: tail suspension test (TST), marble burying 
test (MBT), and object location task (OLT).

(B) Repeated treatment (Fig. 1b): Mice received a sin-
gle daily dose of MGO during 11 consecutive days, and the 
behavioral tests were performed at indicated time points, 
always 24 h after the last MGO injection (Fig. 1b), The 
testing sequence was: handling (day 0); administration of 
MGO (days 1–11); OF (day 5); OLT or object recognition 
task (ORT, days 5–9); Y-maze spontaneous alternation rate 
(Y-SA, day 7); triple horizontal bars test (THB, day 8); pole 
test (PT, day 10); step-down inhibitory avoidance task (IAT, 
days 10 and 11). To avoid acute effects and possible with-
drawal syndrome, mice were treated with MGO 2 h after the 
behavioral testing. On day 12, and 24 h after the behavioral 
tests, mice were anesthetized with isoflurane and euthanized 
by cervical dislocation. The prefrontal cortex, hippocampus, 
and plasma were immediately removed and stored at − 80 °C 

Fig. 1   Schematic representation of the experimental design. a Fifteen 
minutes after a single injection with MGO mice were tested in the 
tail suspension test followed by the open-field test. Four hours after 
a single injection with MGO, different groups of mice were tested 
in the open field and tail suspension test, or marble burying test and 
object location task. b Mice were subjected to repeated treatment, 

receiving a single daily injection of MGO (0, 10, 25 and 50 mg/kg). 
Twenty-four hours after the last injection mice were evaluated in the 
open field, object location and recognition tasks, Y-maze spontane-
ous alternation, triple horizontal bars, step-down inhibitory avoidance 
task, and pole test. Blood and brain samples were used for biochemi-
cal analyses after MGO treatment



357Neurochemical Research (2020) 45:354–370	

1 3

until use for measurement of MGO plasma levels. Monoam-
ines levels, and Glo1 and Glo2 content were evaluated in the 
prefrontal cortex and hippocampus.

General Procedures for Behavioral Testing

Behavioral tests were conducted between 09:30 and 16:30 h 
in a dimly lit and sound-isolated room: 15 lx for the OFT, 
OLT, and ORT; 30 lx for the rest of the behavioral tests. 
The experiments were recorded by a video camera system 
and images analyzed using the Any-Maze® software (Stoelt-
ing Co., Wood Dale, IL, USA). Mice were acclimatized to 
the experimental room for 2 h before the beginning of the 
tests. In tests that involved multiple sessions, once the mouse 
was exposed to a session paradigm, it was not mixed with 
non-exposed mice when it returned to its home cage. In the 
acute treatments, independent groups of mice were used for 
each behavioral test: OFT 32; MBT 26; TST 36; PT 46; 
OLT 20. In the repeated treatment protocol, three cohorts 
of mice were used to allow the execution of all behavioral 
tests and to avoid excessively animal stressing: (I) A group 
of 48 mice performed OFT, Y-SA, THB and step-down 
inhibitory avoidance task (IAT); (II) A group of 46 mice 
performed OF, OLT, and PT; (III). Another group of 46 mice 
performed OF, ORT, and PT. In addition, two other groups 
of mice underwent repeated treatment without participating 
in the other tests to perform only the TST (n = 16) or OLT 
(n = 20). The procedure was undertaken to exclude any pos-
sible interference of evaluating mice in more than one test. 
The total number of animals used to perform all tests in both 
protocols was 336 mice. The procedures used in the present 
study complied with the guidelines on the animal care of the 
UFSC Ethics Committee on the Use of Animals (CEUA/
UFSC, Protocol Number 7245210616), which follows the 
“ARRIVE guidelines” and the “Guide for the Care and Use 
of Laboratory Animals” from NIH.

Open Field Test

The spontaneous locomotor activity and anxiety-like behav-
ior of mice were evaluated in an open field arena. Each ani-
mal was placed in the center of the arena to freely explore 
the apparatus (40 × 40 × 30 cm) for 5 min [46, 47].

Tail Suspension Test

The immobility time was measured in the TST according 
to the method previously described [48]. Briefly, each ani-
mal was suspended by the tail at 60 cm from the ground 
for 6 min and the total immobility time was recorded. To 
exclude a possible interference, the locomotor activity of 
the mice was also evaluated in the OFT.

Marble Burying Test

A box (39.5 cm length × 33 cm width × 17 cm height) was 
filled with a 5 cm layer of husk bedding material that was 
evenly distributed across the whole cage. Fourteen glass 
spheres (marbles, 1.4 cm diameter) were spaced evenly in 
an 8 × 5 grid on the bed surface. During the test session, 
each mouse was placed in the box and allowed to explore 
it for 30 min. The number of marbles buried at least 2/3 of 
their depth was counted [49]. Rodents use bedding material 
to bury noxious and harmless objects, and the inhibition 
of marble burying can be considered as an anxiolytic-like 
effect [50].

Object Location Task

The spatial memory of mice was assessed using the OLT 
to evaluate both short- and long-term memory, based on 
protocols previously described [51, 52]. Briefly, 24 h after 
a habituation session in the open field arena (5 min), mice 
were replaced in the same arena for 5 or 10 min facing two 
identical objects (5 × 3 cm; training session) and after an 
interval of 90 min (short-term memory) or 24 h (long-term 
memory), one of the objects was moved to a new location 
(test session) and the time spent exploring the objects in the 
new (novel) and old (familiar) locations were recorded for 
5 min. Visual cues were added in the test room as spatial 
reference.

Object Recognition Task

The long-term recognition memory was evaluated using the 
ORT. This task followed the OLT protocol. The differences 
included: in the test session, one of the two identical objects 
were replaced for another object (novel object) placed in the 
same location. The novel object had the same dimensions 
but with a different shape. No visual cues were provided 
in the test room to limit spatial reference by clearing off 
objects/cues [52].

Spontaneous Alternation Test

Evaluation of working memory was carried out measuring 
the Y-SA test. When moving from one place to another, 
rodents exhibit the natural tendency to explore the least 
visited area or a previously known area which has changed 
(novelty), this behavior is referred to as spontaneous alter-
nation [53]. Y-SA was assessed using a Y-shaped maze, 
with three equal arms (30 × 10 × 25 cm height). During 
5 min, the total number of arm entries with all four paws 
(N) was used as a parameter of locomotor activity. The 
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number of ‘correct’ triplets (M, consecutive choices of 
each of the three arms without re-entries) was registered 
as a measure of spontaneous alternation [54, 55].

Step‑Down Inhibitory Avoidance Task

To assess short- and long-term aversive memory, mice 
were exposed to the IAT. Based on previously described 
procedures [56, 57], each mouse was placed on a platform 
and its latency to step down on the grid with all four paws 
was measured. During the training session, immediately 
after stepping down on a grid, the mouse received a 2 s 
long scrambled foot shock (0.3 mA), then it was trans-
ferred to a home cage. To evaluate memory retention, test 
sessions were performed 1.5 h (short-term) and 24 h (long-
term) after the training session. Test sessions were identi-
cal to the training session, except that no foot shock was 
given. A maximum of 180 s per session was waited to the 
mouse stepping down on the grid.

Plasma Methylglyoxal

MGO levels were determined by high-performance liquid 
chromatography coupled to a fluorescent detector (HPLC-
FD). MGO was derivatized with 1,2-diamino-4,5-methyl-
enedyoxybenzene (DMB) to allow fluorometric detection, 
as previously described by [58]. HPLC apparatus consisted 
of a Jasco LC-2000 Plus System coupled to fluorescent 
detector, using an Inerstil ODS-4®; 4.6 × 150 mm column, 
at a flow rate of 0.5 mL/min. The DMB-MGO derivative 
was eluted in an isocratic solution consisted of methanol, 
acetonitrile, and water at a 35:10:55 ratio. The fluores-
cence was monitored using an excitation at 355 nm and 
an emission at 399 nm.

Measurement of Brain Monoamines

The monoamine levels were determined by HPLC-FD 
according to [59]. Hippocampus and prefrontal cortex of 
mice were homogenized in 0.2 M perchloric acid contain-
ing 3 mM cysteine at 1:5 (w:v). Homogenate was centri-
fuged (12,000×g, 10 min, 4 °C) and the resulting super-
natant was frozen (− 80 °C) for analysis. HPLC apparatus 
was from Jasco (LC-2000 Plus System), using an ACE® 
C18 Ultra-Inert column, at a flow of 0.6 mL/min. Mon-
oamines were eluted in an isocratic solution of acetate 
(12 mM acetic acid, 0.26 mM EDTA)/methanol (86:14, 
v/v) solution. The fluorescence was monitored using exci-
tation at 279 nm and emission at 320 nm.

Western Blotting

Protein levels of Glo1 and Glo2 were estimated by West-
ern blotting in the prefrontal cortex and hippocampus of 
mice. The tissue samples were homogenized in ice-cold lysis 
buffer (50 mM Tris–HCl, pH 7.5, 150 mM NaCl, 1% NP-40, 
1% protease inhibitor cocktail, 1 mM PMSF). Samples were 
submitted to SDS-PAGE electrophoresis, and proteins elec-
trotransferred to PVDF membranes and blocked with 5% 
non-fat dried milk. Membranes were probed with specific 
primary antibodies for Glo1 (SC 67351, 1:1000) and Glo2 
(SC 51092, 1:1000), GCL (SC-22755, 1:1000), and TrxR1 
(SC-20147, 1:1000) from Santa Cruz Biotechnology (Dal-
las). Band intensity was normalized by Ponceau S staining, 
which presented optical density linearity relative to protein 
load. ECL images were obtained using standard chemilumi-
nescence techniques, then recorded by Chemidoc apparatus 
(BioRad, La Jolla) and quantified by ImageJ software (https​
://image​j.nih.gov/ij/).

Statistical Analysis

The OLT and ORT were analyzed using Student’s t test to 
compare indexes of exploration of the relocated or novel 
objects against 50% to exclude random exploration. Data 
presenting normal distribution were analyzed by one-way 
analysis of variance (ANOVA) followed by the Newman-
Keuls post hoc test. Data that failed the normality test were 
analyzed by the Kruskal–Wallis non-parametric test, fol-
lowed by Dunn’s comparison. The accepted level of sta-
tistical significance was p ≤ 0.05. Data are expressed as 
mean ± standard error of the mean (SEM) or median (inter-
quartile range). All statistical tests were carried out using 
the Statistica software package, version 7.0 (StatSoft Inc., 
Tulsa, OK, EUA).

Results

Acute and Repeated Effects of MGO on Motor 
Function

Mice were tested in the OFT 4 h after a single MGO admin-
istration (20, 80, 200 mg/kg) as a preliminary evaluation to 
access locomotor activity (see Supplementary data, Fig. S1). 
Overall, severe impairment in the locomotor activity (dis-
tance, decreased entries and time in the center, grooming, 
rearings) was observed at 80 and 200 mg/kg. None of these 
alterations were observed at 20 or 50 mg/kg MGO (Fig. S1).

The OFT was also performed after 4 daily MGO admin-
istrations (0, 10, 25 or 50 mg/kg) 24 h after the last adminis-
tration (Table S1). Mice treated with MGO did not show any 
significant alteration in the OFT, as compared to the control 

https://imagej.nih.gov/ij/
https://imagej.nih.gov/ij/
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group, including total distance traveled, average speed or 
immobility time (Table S1). The anxiety-like parameters 
(number of entries and time spent in the central area) were 
not altered.

Force and motor coordination of mice, as evaluated by 
the pole test and triple horizontal bars were not altered up to 
200 mg/kg in the acute treatment (Fig. S2). In the repeated 
treatment for 7–9 days, the doses of 10, 25 and 50 mg/kg 
MGO did not produce alterations on the same parameters 
in the pole test and triple horizontal bars (Fig. S2). Since 
no alterations on motor function were observed with 10, 25 
and 50 mg/kg MGO, these doses were employed for further 
testing.

MGO Modulates Anxiety‑Like Behavior

In order to characterize whether MGO induces anxiolytic 
effect, as previously published [27, 60], mice were tested 
in the MBT and in the OFT 4 h after treatment with MGO. 
Control group buried around 90% of spheres in the MBT 
test, which was around the same percentage of marbles bur-
ied by the group of animals treated with 25 mg/kg MGO 
(96%), while animals treated with 10 mg/kg MGO buried 
significantly fewer marbles (68%) [F(2,24) = 9.72; p > 0.05] 
(Fig. 2a). The time spent in the central area of the OFT can 
be used as an indicator of anxiety-like behavior [47]. In this 
regard, at doses 20 and 50 mg/kg (data not shown) no altera-
tions in the time mice spent in the central area was observed 
in the OFT, while at 10 mg/kg mice remained almost twice 
as much time in the central area, when compared to the 
saline treated control [F(2,21) = 9.18; p > 0.05] (Fig. 2b). The 
decreased number of buried marbles and the increased time 

in the center of the open field point to an anxiolytic-like 
effect of MGO at the lowest dose tested, thus, confirming 
literature data showing an anxiolytic effect of MGO [27, 60].

MGO Induces a Rapid Depressive‑Like Behavior

Fifteen minutes after MGO injection, the immobility time 
was significantly increased in the TST at dose of 25 mg/
kg (Fig. 3a), while after 4 h both doses (10 and 25 mg/kg) 
were effective in increasing the immobility time in the TST 
(Fig. 3b). At both time points, locomotor activity remained 
unaltered (Fig. 3d, e). Also, experiments in the repeated pro-
tocol with MGO (20 mg/kg) showed that 5 daily doses of 
MGO increased the immobility time in the TST, as evalu-
ated 24 h after the last injection [F(1,14) = 11.27; p > 0.05] 
(Fig.  3c). No alterations in the spontaneous locomotor 
activity of mice were detected in the OFT at this time point 
(Fig. 3f).

Effects of MGO on Cognition

We choose 20 mg/kg MGO to test the short-term (90 min) 
spatial memory in the OLT, 3.6 h after mice received an 
acute MGO administration (Fig. 4a). Control mice explored 
the object B (relocated) for a significantly longer period 
[t(6) = 2.590; p < 0.05]. However, mice acutely treated with 
MGO showed memory impairment, indicated by the location 
index that was around 50% [t(9) = 0.011; p > 0.05] (Fig. 4a). 
In the habituation sessions (5 min) of the OLT on the open 
field, all groups presented similar locomotor activity (data 
not shown). In the training sessions, significant differences 
were not observed on the exploration time of the objects, 

Fig. 2   Effects of MGO on anxiety-like behavior. Mice were treated 
with a single injection of MGO (10, 25  mg/kg) and 4  h later mice 
were tested. The percentage of hidden spheres in the MBT (a); and 

the time spent in the central area in the OFT (b) were recorded. The 
bars represent the mean ± SEM of 8–9 animals per group. *p < 0.05 
as compared to the control group (Newman-Keuls post hoc test)
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thus, indicating no bias due to exploratory preference 
(Fig. 4d).

For the repeated treatment, the long-term (24 h) spatial 
and recognition memory of mice were evaluated in the OLT 
and ORT, respectively, 24 h after 7 daily MGO (10, 25 and 
50 mg/kg) administrations (Fig. 4b, c). In the test session 
of OLT, control mice showed location index (related to the 
exploration of the object in new location) significantly higher 
than 50% [t(10) = 4.343; p < 0.05], an indication of memory 
retention. The same memory retention was observed in mice 
receiving 10 mg/kg MGO [t(10) = 4.237; p < 0.05]. How-
ever, it was not the case for mice treated with 25 mg/kg 
[t(11) = 0.573] and 50 mg/kg [t(11) = 0.051] MGO, showing 
location index similar to 50% (p > 0.05), indicating spatial 
memory impairment (Fig. 4b). Long-term spatial memory 
evaluation (OLT) showed that all groups displayed similar 
exploration time of both objects during the training session 
(Fig. 4e). The short-term spatial memory was also tested. 
After 6 daily injections of MGO (20 mg/kg), we performed 
a similar experiment in which mice were only exposed to the 
OLT, to avoid interference of multiple testing. In this case, 

mice treated with MGO showed the same memory impair-
ment (Fig. S3).

In the test session of ORT, control mice showed recogni-
tion index (related to the exploration of the novel object) 
significantly higher than 50% [t(11) = 5.201; p < 0.05], an 
indication of memory retention. A similar memory retention 
was observed in mice treated with 10 mg/kg [t(10) = 11.35; 
p < 0.05], and 25 mg/kg [t(11) = 3.645; p < 0.05] MGO. How-
ever, mice receiving 50 mg/kg MGO were unable to distin-
guish between the familiar and novel objects, as shown by 
the recognition index similar to 50% (p > 0.05), indicating 
recognition-memory impairment (Fig. 4c). In the training 
session of long-term recognition memory evaluation (ORT) 
the exploration time of both objects were not significantly 
different (Fig. 4f).

Evaluation of the working memory of mice treated with 
MGO was carried out by measuring the spontaneous alter-
nation in the Y-maze. No differences in the alternation rate 
were observed in mice treated with 10 or 25 mg/kg MGO, 
in comparison to the control group (Fig. 5a). However, the 
number of alternations was significantly decreased in mice 

Fig. 3   Effects of MGO on depressive-like behavior. Immobility time 
was tested in the TST 15 min (a), or 4 h (b) after a single injection 
with MGO (10 and 25 mg/kg), and 24 h after 5 daily injections with 
MGO (20 mg/kg) (c). The distance each mouse travelled was meas-
ured in the open field 15 min (d) or 4 h (e) after a single MGO injec-

tion (10 and 25 mg/kg), and 24 h after 5 daily injections of treatment 
with MGO (20 mg/kg) (f). The bars represent the mean ± SEM of 5–8 
animals per group. *p < 0.05 as compared to the control group (New-
man-Keuls post hoc test)
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treated with 50 mg/kg MGO [F(3,38) = 4.36; p < 0.05], as 
compared to the control group (Fig. 5a), indicating deficit 
on working memory. The one-way ANOVA revealed no 
significant differences in the total number of arm entries 
[F(3,38) = 1.35; p > 0.05] (Fig. 5b).

Short- and long-term aversive memory of mice treated 
with MGO for 10  days were evaluated using the IAT 
(Fig. 5c). Statistical analysis revealed that only the control 
group displayed significantly higher latencies to step down 
the platform, in the short- (1.5 h) and long-term (24 h) mem-
ory tests (p < 0.05). All groups treated with MGO exhibited 
memory impairment, as shown by the absence of signifi-
cant differences (p > 0.05) in the latency time to step down 
the platform, as compared to the respective training session 
latency. An exception was observed in mice treated with 

25 MGO mg/kg that exhibited long-term memory retention 
(p < 0.05), but not short-term memory retention (Fig. 5c).

Biochemical Responses After MGO Treatment

Acute administration of MGO produced an increase in 
plasma MGO levels 4 h after treatment at 25, but not at 
10 mg/kg (Fig. 6a), which is in accordance to literature 
data that reported maximal MGO plasma concentration is 
reached 4 h after administration [61]. In addition, plasma 
MGO levels were determined 24 h after the last MGO injec-
tion on 11th day of the repeated treatment. No statistical 
differences in the MGO levels were observed among the 
groups, as revealed by one-way ANOVA [F(3,25) = 1.29; 
p > 0.05] (Fig. 6b).

Fig. 4   Effects of methylglyoxal on spatial and recognition memory. 
For short-term spatial memory evaluation, mice were tested in the 
OLT 90 min after the training session, and 3.6 h after a single injec-
tion (20  mg/kg). The location index of mice in the test session (a) 
and the exploration time of the two identical objects in the training 
session (d) are shown. For long-term spatial and recognition memory 
evaluation, the test sessions of object location (OLT) and recognition 
(ORT) tasks were performed after 8  days of treatment (10, 25 and 

50  mg/kg). Mice were submitted to a 10  min training session, then 
returned to home cage, 4 h later mice received the last injection and 
the test session was performed after further 20 h. Location index in 
the OLT (b) and recognition index in the ORT (c) were calculated. 
The exploration time of the two objects in the training session of 
the OLT (e) and ORT (f) are also presented. The bars represent the 
mean ± SEM of 11–12 animals per group. *p < 0.05 as compared to 
50% (Student’s t test)
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Four hours after an acute MGO treatment the antioxidant 
defenses (GSH-t levels; GR and Glo1 activities; and Glo1 
and Glo2 relative abundance) were not altered by 10 and 
25 mg/kg MGO, when evaluated in the prefrontal cortex and 
hippocampus (Table S2 and Fig. S4).

We also assessed the Glo1 and Glo2 protein levels after 
repeated treatment for 11 days with MGO. Glo1 levels 
were decreased by 17% in the hippocampus after treat-
ment at 10 mg/kg MGO, in comparison to the control group 
(Fig. 7a), without significant changes at 25 and 50 mg/kg. In 
the prefrontal cortex, a 27% decrease in the relative amount 
of Glo1 was observed at 50 mg/kg MGO, as compared to the 
control group (Fig. 7b). The other doses failed to produce 

a noticeable effect. Glo2 levels were not affected by MGO 
treatment in both the hippocampus and prefrontal cortex of 
mice (Fig. 7c, d).

Monoamine Levels

After the repeated MGO (50 mg/kg) treatment for 11 days, a 
marked decrease on DA levels was observed in the prefron-
tal cortex, as compared to the control group [F(3,27) = 4.83; 
p < 0.05] (Fig. 8a). The method was unable to detect dopa-
mine in the hippocampus. NE levels were not altered by 
MGO in the prefrontal cortex (Fig. 8b) or hippocampus 

Fig. 5   Effects of methylglyoxal on working memory or short- and 
long-term aversive memory. Mice were treated for 6 days and tested 
in the Y maze 24 h after the last injection. The alternation rate (a) and 
the number of arm entries (b) were recorded. The bars represent the 
mean ± SEM of 10–11 animals per group. *p < 0.05 as compared to 
the control group (Newman-Keuls post hoc test). c Mice were treated 

for 10 and 11 days and short-term (1.5 h) and long-term (24 h) mem-
ory were evaluated in the step-down inhibitory avoidance test. The 
bars represent the median (interquartile range) of step-down latencies 
of 9–10 animals per group. *p < 0.05 as compared to the training ses-
sion of the same group (Kruskal–Wallis non-parametric test followed 
by Dunn’s comparison)



363Neurochemical Research (2020) 45:354–370	

1 3

(Fig. 8c). In addition, 5-HT levels were not altered by MGO 
in the prefrontal cortex (Fig. 8d) or hippocampus (Fig. 8e).

Discussion

Motor Responses of Mice Treated with MGO

Preliminarily, we evaluated the effects of acute MGO treat-
ment on locomotor activity, given it can be an essential fac-
tor in behavior investigation. A previous study showed that 
MGO can act as a competitive partial agonist of GABAA 
receptors, and at high acute doses, MGO leads to locomo-
tor depression, ataxia, and hypothermia in mice [30]. These 
findings were corroborated by data herein presented, given 
that hypolocomotion was observed in the OFT, 4 h after a 
single MGO injection, at 80 and 200 mg/kg. These effects 
are considered characteristics of an inhibitory action to the 
central nervous system, which are in line with the idea that it 
was triggered by the activation of the GABAA receptors [30, 
62], which remains to be confirmed. Given that hypolocomo-
tion can add biases to behavioral tests, these doses of 80 and 
200 mg/kg were not further explored.

Our results showed that acute or repeated treatment with 
MGO, up to the dose of 50 mg/kg, did not affect the sponta-
neous locomotor activity, vertical agility, force, and motor 
coordination, as accessed by the OF, Y-SA, THB and PT. 
Therefore, the doses of 10, 20 or 25, and 50 mg/kg were 
chosen for biochemical measurements and further behavioral 
analysis.

Anxiolytic and Depressive‑Like Behavior Induced 
by MGO Treatment

The clear depressive-like effect observed in the TST as early 
as 15 min and 4 h after MGO treatment was not previously 
observed, instead, some reports showed antidepressive-like 
effect of MGO [60, 63, 64]. Lower Glo1 expression has been 
also positively associated with antidepressive-like behavior 
[63]. Also, our repeated protocol showed that MGO caused 
a non-acute depressive-like effect after 5 days of treatment 
(Fig. 3). The reasons for dissimilar results require further 
investigation on dose range and treatment regimens, genetic 
background, and other possible interfering variables. The 
presented data are consistent in acute and in repeated treat-
ment, and were reproduced a number of times and, also 
reproduced when two other mice strains were tested (data 
not shown), indicating MGO can induce depressive-like 
behavior in mice. Furthermore, a clear decrease in dopamine 
levels was observed in the prefrontal cortex (Fig. 8), suggest-
ing that, besides GABAA activation, MGO can affect DA 
levels, depending on the dose and treatment regimen. How-
ever, further experiments are needed to clarify this topic.

In support to our results, a clinical study showed that 
depressed patients presented lower Glo1 mRNA levels in 
peripheral white blood cells, which returned to basal lev-
els upon remission of symptoms [65]. Animal models of 
depression, including repeated defeat and chronic unpredict-
able mild stress [66, 67], have shown diminished expression 
of Glo1 in the hippocampus or prefrontal cortex, which is 
compatible with the idea that elevated MGO levels are able 
to produce a depressive-like effect. In addition, a Glo1-KO 

Fig. 6   Plasma methylglyoxal. Four hours (a) after a single MGO 
injection, or 24  h after 11 daily injections with methylglyoxal (b), 
plasma levels of MGO were evaluated. Values are presented as 

mean ± SEM (n = 7–10). **p < 0.01 as compared to the control group 
(Newman-Keuls post hoc test)
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mouse has been produced, in which a depressive-like behav-
ior was evidenced [28], in agreement with our results. 
Overall, the literature and our data indicate that directly or 
indirectly MGO can be related to depressive-like behavior 
in Swiss mice. However, the divergent results [60, 63, 64] 

cannot be disregarded, and new experiments are warranted 
to clarify these apparent discrepancies.

Genetic deletion or pharmacological blockade of 
TRPA1 produces antidepressant-like effect in mouse mod-
els of depression, in accordance with a depressive-action 

Fig. 7   Effects of methylglyoxal on the glyoxalase system. Glyoxalase 
1 (Glo1; a and b) and glyoxalase 2 (Glo2; c and d) were evaluated in 
the hippocampus (a and c) and prefrontal cortex (b and d). Mice were 
treated daily with indicated doses of MGO for 11 days, and samples 
collected on the next day. Bars represent the mean ± SEM of n = 8–10 

for the prefrontal cortex, and n = 3–6 for the hippocampus. * p < 0.01 
as compared to the control group, as evaluated by the one-way 
ANOVA followed by Kruskal–Wallis non-parametric test followed by 
Dunn’s comparison
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elicited by MGO treatment [68]. Interestingly, MGO at 
low dose (10 mg/kg) produced anxiolytic effect in behav-
ior tasks associated with neurochemical alterations in the 
hippocampus (reduction in the Glo1 levels and increased 
TrxR activity). The importance of hippocampus in the anx-
iety and anxiolytic action is related in the literature data 
[69]. In order to confirm the anxiolytic effect of MGO, we 
are planning experiments to investigate the hippocampus-
dependent mechanism involved in such an effect.

Cognitive Parameters After MGO Treatment

MGO modification of biomolecules was considered a key 
event underpinning cognitive dysfunction [36]. However, 
previous studies have not systematically investigated the 
effects of MGO on learning and memory, nor its related 
mechanisms. Despite the different tests we employed, our 
results showed that MGO can disturb memory of mice, albeit 
at different extensions. MGO impaired spatial, recognition, 
aversive and working memory of mice in short- or long-term 
paradigms.

We found spatial short-term memory impairment in a 
brief period of time (3.6 h) after MGO injection. In general, 
AGEs formation occurs over a period of several hours to 
weeks [70, 71], and apoptosis induced by MGO takes hours 
to days to occur [72]. Based on these evidences, alternative 
mechanisms than AGE formation cannot be excluded as the 
leading cause for short-term memory impairment induced 
by MGO.

Repeated MGO treatment induced memory impairment, 
as evaluated by the spontaneous alternations in the Y-maze 
(50 mg/kg, day 7), OLT (25 and 50 mg/kg, day 9), ORT 
(50 mg/kg, day 9), and in the IAT (10, 25 and 50 mg/kg, day 
10 and 11). A possible MGO-dependent mechanism induc-
ing memory deficits would be related to AGEs formation, 
as MGO can be considered a major glycating agent [7, 70, 
73]. Moreover, MGO can induce oxidative stress, cellular 
damage and apoptosis that can disturb neuronal function [3, 
5, 6, 39], which would be related to memory disturbances 
mediated by RAGE activation [19, 74, 75]. Another pos-
sible mechanism inducing memory impairment would be 
related to GABAA receptor activation, since MGO can act as 
a competitive partial agonist of this receptor [30]. MGO has 
also been shown to activate TRPA1 ion channel evoked pain 
[32]. Interestingly, the ablation of TRPA1 channel may be 
crucial in regulating hippocampal fear-related learning and 
amygdala-dependent fear-related memory [76]. Authors also 
showed that TRPA1 deficient mice presented better recogni-
tion and spatial memory. These findings open the possibility 
that MGO-dependent activation of TRPA1 can be a potential 
mechanism leading to aversive memory impairment. New 
experiments are warranted to clarify the possible mecha-
nisms underlying this memory impairment.

Biochemical Responses

Shortly after MGO treatment, brain MGO levels are 
increased [30], a similar increase in MGO levels was 
observed 4 h after a single intraperitoneal injection. How-
ever, the picture changes in the repeated treatment, as plasma 
levels of MGO remained comparable to control levels, when 
evaluated 24 h after the last MGO injection. Due to its reac-
tivity toward basic amino acids, it is expected that MGO 

Fig. 8   Effects of methylglyoxal on brain monoamine levels. Mice was 
treated with the indicated MGO doses for 11 days, the next day sam-
ples were harvested, and dopamine (DA, a), norepinephrine (NE, b 
and c), and serotonin (5-HT, d and e) were determined in the prefron-
tal cortex (a, b and d), and hippocampus (c and e). The method was 
unable to detect dopamine in the hippocampus. The bars represent the 
mean ± SEM of 6–11 animals per group. *p < 0.05 as compared to the 
control group (Newman-Keuls post hoc test)
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reacts with serum proteins, or to diffuse to other tissues [70, 
77, 78]. Acute responses can, eventually, be regarded as 
direct effects of MGO, however, 24 h after MGO injection, 
as analyzed in the repeated treatment, cannot be attributed to 
a direct effect of MGO. This limitation prevents conclusions 
when comparing acute and repeated treatment responses to 
MGO, since the mechanism of action may not be the same. 
These are characteristics that should be taken into considera-
tion when analyzing short term responses, as compared to 
repeated or chronic treatment.

Previously, we observed alterations in the activity and 
expression of Glo1, GR and TrxR, and in GSH-t levels [78, 
79], when HT22 nerve cells received acute MGO treatment, 
which are derived from mice hippocampus. Likewise, after 
MGO treatment, acute hippocampal slices of mice pre-
sented a rapid increase in GR, TrxR, Glo1 and Glo2 [80]. 
We hypothesized that the in vivo treatment would pro-
duce similar responses, for this reason Glo and antioxidant 
defenses were also analyzed in mice acutely treated with 
MGO (Table S2 and Fig. S4). However, 4 h after MGO treat-
ment, no alterations were observed in GSH-t levels, neither 
in Glo1 and GR activities, or Glo1 protein, as evaluated in 
the prefrontal cortex and hippocampus. It is plausible to 
suggest that the observed behavioral effects, within 4 h of 
treatment, are not related to these biochemical endpoints.

The previously reported changes in the glyoxalase system 
after in vivo MGO treatment are divergent, which would pos-
sibly be related to species and treatment protocol differences. 
Intracerebroventricular injection of MGO for 5 days in CD1 
mice induced an increase in brain Glo1 mRNA and protein 
levels [60]. Conversely, Glo1 overexpression decreased brain 
MGO levels [30]. However, no changes were observed in 
Wistar rats after continuous intracerebroventricular injection 
of MGO for 3 weeks, and Glo1 activity evaluated 21 days 
later [39]. In our experimental setup, daily MGO treatment 
for 11 days caused a significant decrease in the Glo1 levels 
in the prefrontal cortex at 50 mg/kg. Based on this result, it 
is valid to think that cerebral cortex may present increased 
susceptibility for repeated MGO burden, since lower Glo1 
levels were observed is this brain area.

The idea of a cortical vulnerability is supported by data 
showing that DA levels were decreased in the prefrontal 
cortex, but not in the hippocampus. Since we did not per-
form the measurements of DA synthesis, release, formation 
of metabolites, it cannot be concluded that MGO disrupts 
dopamine homeostasis in the brain. However, our results 
stimulate further investigation on this subject. It can be 
speculated that the DA decrease following MGO treatment 
may be associated with the decreased working memory per-
formance displayed by mice in the Y-maze (50 mg/kg). Both 
the prefrontal cortex structure and DA levels are particularly 
important for the stabilization of current goal representa-
tions in working memory [81–83]. Importantly, as far as we 

know, this is the first evidence linking MGO treatment with 
decreased DA levels, whose mechanism of action remains 
to be elucidated.

Among the possible mechanisms, MGO-derived toxins 
are candidates to explain DA depletion. Under physiological 
conditions, MGO can generate free radicals [84], and react 
with DA to generate the neurotoxin 1-acetyl-6,7-dihydroxy-
1,2,3,4-tetrahydroisoquinoline (ADTIQ), which accumulates 
in the brain of Parkinson’s disease patients [85, 86]. Moreo-
ver, diabetic rats presented elevated levels of ADTIQ and 
MGO in the brain [87]. Salsolinol is another toxin derived 
from DA that was increased in neuronal cells exposed to 
MGO [88]. Furthermore, a number of possible metabolic 
routes for MGO toxicity has been previously reviewed [3]. 
Thus, MGO-derived toxins, among other routes, are candi-
dates for the observed DA depletion in the prefrontal cortex 
of mice, nevertheless, experimental evidence supporting this 
possibility has yet to be produced.

The D1- and D2-class dopamine receptors are highly 
distributed in mammalian brain, including dopaminergic 
and non-dopaminergic neurons. The presynaptic inhibitory 
DA receptors in dopaminergic neurons generally provide an 
important negative feedback mechanism. These autorecep-
tors can downregulate DA synthesis by inhibiting tyrosine 
hydroxylase, the rate-limiting enzyme in DA synthesis, thus 
decreasing DA levels [89, 90]. Undergoing experiments are 
addressing this possibility.

Rather than measures of short-term memory, working 
memory has been associated with intellectual abilities in 
humans, especially with fluid intelligence [91]. Fluid intel-
ligence or reasoning can be interpreted as the kind of think-
ing an individual can use when confronted with a relatively 
new task that cannot be performed automatically. This pro-
cess is dependent on the activity of frontoparietal networks, 
especially the prefrontal cortex [83]. Thus, conditions that 
exhibit the pathological accumulation of MGO, such as dia-
betes, can be expected to induce cognitive deficits. Indeed, 
several studies showed that diabetes would favor cognitive 
impairments, including deficits associated with working 
memory [1, 92–94].

The acquisition phase of memory is driven by attentional 
processes in the prefrontal cortex, which are connected to 
other brain regions. Therefore, it is suggested that the short- 
and long-term memory impairment observed after MGO 
treatment, may be, at least in part, mediated by dopamin-
ergic transmission during the acquisition phase of memory 
[91, 95]. The importance of DA for learning and memory, 
especially in the prefrontal cortex, is not deeply understood 
[96]. However, DA does seem to be important for working 
memory and cognitive processes dependent on the prefrontal 
cortex function. An example can be seen with Parkinson’s 
disease that features the loss of dopaminergic neurons and 
decreased DA levels [97]. In a spatial working memory task, 



367Neurochemical Research (2020) 45:354–370	

1 3

Parkinson’s disease patients receiving levodopa (DA precur-
sor), displayed better memory performance, as compared to 
pre-medication period, suggesting that DA is required for 
proper spatial working memory performance [98].

Conclusions

The present study showed that only acute treatment with 
the highest MGO doses tested (80 and 200 mg/kg) pro-
duced hypolocomotion, without altering motor capacity. 
Acute MGO treatment confirmed its anxiolytic effect. The 
depressive-like effect, induced by acute and repeated MGO 
treatment, has not been previously reported. Treatment 
with MGO induced cognitive deficits, as evaluated by the 
spontaneous alternation in the Y maze, OLT, ORT and IAT. 
NE and 5-HT levels were not altered by repeated treatment, 
while MGO decreased DA levels in the prefrontal cortex. We 
speculate that the MGO effect on cortical DA levels may be 
a novel form of MGO toxicity. More studies are required to 
unravel the routes leading to DA depletion, depressive-like 
behavior, and memory impairment, and to verify if they are 
connected.
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