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Abstract
The brain uses mainly glucose as fuel with an index of glucose to oxygen utilization close to 6, the maximal index if all 
glucose was completely oxidized. However, this high oxidative index, contrasts with the metabolic traits of the major cell 
types in the brain studied in culture, neurons and astrocytes, including the selective use of the malate-aspartate shuttle 
(MAS) in neurons and the glycerol-phosphate shuttle in astrocytes. Metabolic interactions among these cell types may partly 
explain the high oxidative index of the brain. In vivo, neuronal activation results in a decrease in the oxygen glucose index, 
which has been attributed to a stimulation of glycolysis and lactate production in astrocytes in response to glutamate uptake 
(astrocyte–neuron lactate shuttle, ANLS). Recent findings indicate that this is accompanied with a stimulation of pyruvate 
formation and astrocyte respiration, indicating that lactate formation is not the only astrocytic response to neuronal activation. 
ANLS proposes that neurons utilize lactate produced by neighboring astrocytes. Indeed, neurons can use lactate to support 
an increase in respiration with different workloads, and this depends on the Ca2+ activation of MAS. However, whether this 
activation operates in the brain, particularly at high stimulation conditions, remains to be established.
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Introduction

The brain consumes mainly glucose and is the major glucose 
consumer organ of the body. In the resting state, most of this 
consumption is oxidative, as evidenced from measurements 
of the stoichiometry between oxygen (CMRO2) and glucose 

(CMRglc) utilization, or oxygen-glucose index (OGI), which 
is close to 6:1, the theoretical maximum for the full oxida-
tion of glucose (reviewed in [4, 22]). A submaximal OGI 
value, of around 5.5–6 is found in animal or human brain 
at rest, the difference generally attributed to lactate forma-
tion and efflux from the brain (reviewed in [22]). However, 
upon activation, the OGI in the activated brain region drops 
further. In this short review we will examine the properties 
of neurons and astrocytes in culture, especially those that 
have been described recently, relevant to whole brain vari-
ations in OGI.

Neurons and Astrocytes: Respiration Matters

The very high oxidative consumption of glucose contrasts 
with the metabolic properties of the two major cell types 
in the brain, neurons and astrocytes. Glucose metabolism 
in neurons is more oxidative than in astrocytes [2, 27, 41]. 
Glycolysis is less active in neurons and this correlates with 
lower PFK1 activity than astrocytes, with low levels of the 
glycolysis regulating enzyme 6-phosphofructo-2-kinase/
fructose-2,6-bisphosphatase isoform 3 (PFKFB3), and lower 

Special Issue: In Honor of Prof. Vera Adam-Vizi.

 *	 Jorgina Satrústegui 
	 jsatrustegui@cbm.csic.es

1	 Departamento de Biología Molecular, Centro de 
Biología Molecular Severo Ochoa, Consejo Superior de 
Investigaciones Científicas-Universidad Autónoma de 
Madrid (CSIC-UAM), Nicolás Cabrera, 1, 28049 Madrid, 
Spain

2	 Centro de Investigación Biomédica en Red de Enfermedades 
Raras (CIBERER), Madrid, Spain

3	 Instituto de Investigación Sanitaria Fundación Jiménez Díaz 
(IIS-FJD), Madrid, Spain

4	 Facultad de Ciencias Ambientales y Bioquímica, Universidad 
de Castilla la Mancha, Toledo, Spain

5	 Centro Regional de Investigaciones Biomédicas, Unidad 
Asociada de Biomedicina UCLM-CSIC, Toledo, Spain

http://crossmark.crossref.org/dialog/?doi=10.1007/s11064-019-02803-7&domain=pdf


2386	 Neurochemical Research (2019) 44:2385–2391

1 3

levels of the glycolysis activator Fructose 2,6-bisphosphate 
[25, 27]. In addition, neurons have high levels of the two 
mitochondrial carriers involved in the malate-aspartate shut-
tle (MAS), the aspartate-glutamate carrier Aralar/AGC1/
Slc25a12 (AGC1) and the oxoglutarate-malate carrier OGC/
Slc25a11 [60], which allow for a vigorous oxidation of cyto-
solic NADH in mitochondria and the maintenance of high 
respiration rate during glucose metabolism [18, 36, 48, 58]. 
In contrast, glycolysis and lactate production are very active 
in astrocytes, while oxygen consumption in mitochondria 
from acutely isolated brain astrocytes is lower than in those 
isolated from neurons [41]. Although AGC1 protein is pre-
sent in astrocytes in culture [33, 53] its levels in brain astro-
cyte mitochondria are much lower than those in neurons, 
both in brain astrocytes [49], and in Müller cells in the retina 
[35, 66]. Its loss does not result in any difference in glucose 
dependent OCR in cultured astrocytes [30], indicating that 
the malate-aspartate shuttle does not contribute to glucose 
oxidation in these glial cells. In contrast, astrocytes express 
the two components of the glycerol-phosphate shuttle (GPS) 
[30], with activity values as those reported for other tissues 
or cell types [16, 42]. Earlier work by Nguyen et al. [46] 
showed that the major isoform of cytosolic glycerophosphate 
dehydrogenase (GPDH) had very low levels in neurons and 
astrocytes, suggesting that GPS might be of little importance 
in these cells. However, the mRNA of a second cytosolic 
glycerol‐P‐dehydrogenase (GPD1‐like), functionally iden-
tified in heart [40, 64], is expressed in neurons and astro-
cytes [12]. It is possible that the activity of cGPDH found 
in mouse astrocytes, which matches that of mitochondrial 
GPDH (45.30 ± 3.69 and 44.00 ± 2.26 μmol NADH/mg/min, 
respectively, Juaristi et al. [30]) corresponds to this novel 
isoform. These results suggest GPS in cultured mouse brain 
astrocytes as main NADH shuttle responsible for the transfer 
of redox equivalents from cytosolic NADH to mitochondria 
during glucose utilization and explains the lack of impact of 
ARALAR deficiency on lactate production and respiration 
rates in these cells. The finding of a glycerol-phosphate shut-
tle in astrocytes agrees with the mild but significant effects 
of inhibitors of this shuttle on the cytosolic NADH/NAD+ 
ratios and lactate formation examined by imaging with flu-
orescent probes in astrocytes [32] and with the reports of 
McKenna et al. [45].

The use of these two different redox shuttles by neu-
rons and astrocytes adds another layer of complexity to the 
known interrelations between these two cell types. Indeed, 
the mitochondrial component of the glycerol-phosphate 
shuttle, mitochondrial glycerophosphate dehydrogenase, 
is a powerful source of reactive oxygen species (ROS) in 
mitochondria, and is activated by calcium from the exter-
nal face of the inner mitochondrial membrane [1, 63]. The 
presence of the glycerol-phosphate shuttle in astrocytes 
may be related to the high ROS production in astrocyte 

mitochondria as compared to neuronal mitochondria [41]. 
The high production of mitochondrial ROS has been shown 
to be associated with the existence of a large proportion of 
deactive complex I in astrocytes, and to a greater propor-
tion of complex I assembled into supercomplexes in neurons 
[41, 65]. However, as an extra ROS source, glycerophos-
phate dehydrogenase may add to the large ROS output in 
astrocytes. In addition, astrocytes are equipped with a strong 
redox antioxidant system, mediated by the presence of active 
Nrf2, a transcription factor activated by ROS that controls 
the expression of antioxidant genes, whereas the Nrf2 path-
way activity is lower in neurons [9, 11].

The very high oxidative consumption of glucose in the 
brain contrasts with the metabolic properties of pure pri-
mary cell cultures studied at low, physiological glucose 
levels (Table 1). In the case of neurons, the more oxidative 
cells in the brain, mouse cortical neurons in culture convert 
into lactate about half of the glucose utilized, the remaining 
half being used in cell respiration [30], a result at odds with 
the almost full oxidation of glucose in the brain in vivo. In 
the case of astrocytes in culture, which are known to be 
glycolytic cells, glucose consumption is much larger than 
for neurons and lactate production also accounts for about 
half of the consumed glucose. However, basal respiration 
is only one tenth of that expected if the remaining glucose 

Table 1   Metabolic characterization of primary cultures of mouse cor-
tical neurons and astrocytes

Primary cultures from mouse cortical neurons [56] and astrocytes 
[30, 31] were used after 9 DIV and 14 DIV, respectively for the assay 
of glucose consumption and lactate production when cultured with 
5  mM glucose. Glucose consumption and lactate production were 
determined in parallel from the changes in glucose and lactate con-
centration in the cultures during a 12  h interval [30]. Oxygen con-
sumption rate (OCR) in intact neurons and astrocytes incubated with 
2.5 mM glucose was studied using Seahorse XF24 Extracellular Flux 
Analyzer. OCR was stimulated by the addition of 200 µM glutamate 
(astrocytes) and 100  µM NMDA (neurons). Oligomycin sensitive 
respiration was determined following 6 µM oligomycin addition and 
after substraction of non mitochondrial respiration
a Data were taken from Juaristi et al. [30, 31] and Rueda et al. [56], 
and expressed in µmoles × mg−1 × h−1

b The increase upon glutamate stimulation was 1.6 fold. Other stimu-
lants (extracellular ATP) were able to stimulate oligomycin-sensitive 
OCR even further

Neurons Astrocytes

Glucose consumeda 0.40 1.09
Lactate produceda 0.42 1.08
Basal OCRa 1.2 0.3
Predicted OCR if half of each 

glucose molecule was fully 
oxidizeda

1.2 3.2

Increase in oligomycin-sensi-
tive OCR upon glutamate/
NMDA stimulation

2.3–2.4 (fold) 1.6–1.9 (fold)b
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was fully oxidized in mitochondria, again at odds with the 
brain OGI (Table 1).

It may be argued that some glucose utilization and lactate 
production in neuronal cultures is partially due to contami-
nating astrocytes present in the cultures, and that the actual 
OGI in cultured neurons is probably closer to 6. However, 
this argument cannot be applied to astrocyte cultures, in 
which respiration is ten times lower than that required for 
the full oxidation of glucose [30, 31]. A factor to be con-
sidered to explain the high lactate production of these brain 
cells is the large volume of extracellular medium in culture 
as compared to the brain, which would favor lactate release 
and dilution in the external medium, thereby enhancing 
glycolysis.

In the case of astrocytes, these cells in culture are thought 
to differ from those in brain by becoming more glycolytic, 
as supported by changes in mRNA levels in rapidly isolated 
brain cells with respect to cultures [12]. However, a pro-
teomic study in cultured and acutely isolated brain astro-
cytes revealed that these differences were not so large, and 
involved mainly increases in proteins from the extracellular 
matrix in cultured astrocytes [60].

One of the mechanisms that would resolve this paradox 
is through interactions and exchange reactions between neu-
rons and astrocytes which would allow a complete oxidation 
of brain glucose. The astrocyte to neuron lactate shuttle, 
ANLS [50, 51], proposes that neuronal activity results in 
glutamate release and uptake by astrocytes, which stimulates 
lactate production in these cells. Astrocytic lactate is then 
taken up and oxidized by neurons. Additionally, pyruvate 
produced by neurons may be taken up and oxidized by astro-
cytes [13]. This transcellular pathway of glucose oxidation 
would provide an almost complete oxidation of brain glu-
cose and glycogen.

This shuttle is supported by the distribution of specific 
glucose transporters and plasma membrane pyruvate/lactate 
transporters in neurons and astrocytes [60] which favor lac-
tate production and efflux from astrocytes and lactate uptake 
and oxidation to pyruvate in neurons (see [8]). In addition, 
the malate aspartate NADH shuttle, which is essential for 
lactate and glucose oxidation by neurons [38] does not play 
any major role in glucose oxidation in astrocytes, either in 
basal or in stimulated conditions [30, 31].

Notably, in vivo studies have shown that disruption of 
astrocytic or neuronal lactate transporters in hippocampus 
leads to amnesia, suggesting the requirement of ANLS com-
ponents for memory formation [61]. However, the exact con-
nection between the lactate transporters and the process of 
memory remains to be established.

On a cellular level, the astrocyte response to neuronal 
activation has been studied in mixed cultures of astrocytes 
and neurons each derived from a different species, a pro-
cedure allowing to follow the transcriptomic changes in 

astrocytes that take place after chemically induced neuronal 
activation [26]. Neuronal stimulation caused upregulation of 
the transporters involved in ANLS, glucose and glutamate 
transporters and lactate dehydrogenase (LdhA), suggesting 
an important influence of neuronal activity on the expres-
sion of ANLS. However, these transcriptomic changes are 
late events which took place after several hours of neuronal 
activation. Importantly, they were attributed to a transcrip-
tional pathway involving cAMP–PKA–CREB rather than to 
the action of glutamate on astrocytes. In fact, the ANLS is 
still a matter of debate ([7, 8, 22]; and references therein).

Astrocyte and Neuronal Energy Metabolism 
Upon Neuronal Activation

Central to ANLS is the link between neuronal activity and 
lactate production by astrocytes. According to the prevail-
ing hypothesis, glutamate capture by astrocytes results in an 
increase in cytosolic Na+ which drives different ion pumps 
in the plasma membrane, to restore resting Na+ levels. The 
ATP required for this Na+-dependent workload is obtained 
by aerobic glycolysis from blood glucose or from endog-
enous glycogen. The other task carried out by brain astro-
cytes is the clearance of K+ from the extracellular space, a 
process dependent on the activity of the sodium bicarbonate 
cotransporter NBCe1/Slc4a4 [57].

Glutamate stimulation of glucose consumption and lac-
tate formation in astrocytes was initially reported by Pel-
lerin, Magistretti and coworkers [14, 17, 50] and other 
groups [39] but not by other laboratories who found that 
glutamate uptake in astrocytes was not accompanied by 
increases in lactate production or glucose consumption [21, 
28, 34, 52, 62]. The reasons for this discrepancy probably 
lie on the culture conditions, media and/or glucose concen-
trations [22]. Recent findings by a number of laboratories 
in cultured astrocytes, indicate that upon exposure to gluta-
mate, both K+ and glutamate stimulate glycolysis and lactate 
formation [10, 23], pyruvate production [31] and an increase 
in the NADH/NAD+ ratio [32] as determined with geneti-
cally coded sensors.

Another important consideration is whether this response 
to glutamate is accompanied by an increase in OXPHOS or 
not. In the case of K+, OXPHOS does not participate in the 
response as K+ does not stimulate astrocyte respiration; this 
is due to a variant of the classical Crabtree effect [23]. The 
uptake of bicarbonate through NBCe1/Slc4a4 which follows 
astrocyte K+-depolarization, causes cytosolic alkalinization 
and stimulation of glycolysis to increase ATP beyond its 
use by the Na+ pump, explaining the lack of a respiratory 
response to K+ [23]. However, in contrast to previous obser-
vations [5] OXPHOS does participate in the response to glu-
tamate [31, 54]. The stimulation of astrocyte respiration by 
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glutamate (about 1.6 fold, Table 1) responds to the strictly 
Na+-dependent workload caused by glutamate uptake, and 
does not depend on the Ca2+ signals elicited by glutamate 
in these cells [31]. It is accompanied by an increase in gly-
colytic pyruvate production, indicating that the response 
to glutamate is a stimulation of glycolysis with pyruvate 
production, and also oxidation in mitochondria. In addition, 
some of the glutamate taken up is also oxidized in astrocyte 
mitochondria [31] as proposed previously [29], contributing 
to the increase in astrocyte respiration. Interestingly, when 
faced to the double challenge of K+ and glutamate removal, 
respiratory stimulation persists, suggesting that in the in vivo 
situation astrocytes possibly respond to neuronal stimuli by 
increasing respiration [31] and, depending on the stimulation 
conditions, with lactate production.

It may be argued that the fact that astrocytes produce 
lactate and also obtain ATP from OXPHOS upon neuronal 
stimulation is not an objection to ANLS. However, recent 
findings from the field of neuronal metabolism, particularly 
during strong activation conditions, question aspects of the 
ANLS hypothesis.

Neuronal activation is associated with the workloads 
involved in the return to the resting state, a mostly postsyn-
aptic activity [3]. The source of energy to obtain the required 
ATP is largely OXPHOS, as neurons are able to upregulate 
their own respiration in order to match ATP consumption 
[36, 37, 55] (Table 1). Interestingly, work in cortical neurons 
in culture has shown that the upregulation of OXPHOS is 
Ca2+ dependent, not only because part of the workload is 
also Ca2+ dependent, but due to a prominent role of Ca2+ 
in boosting the respiratory response. In the case of neurons, 
Ca2+ activation of the malate-aspartate shuttle (MAS), plays 
an important role in stimulation of respiration, and the effect 
of Ca2+ is thought to be due to Ca2+ binding to EF-hand 
Ca2+ binding motifs of the mitochondrial aspartate/gluta-
mate carrier, AGC1, which face the intermembrane space 
[44, 47]. Indeed, the AGC1 catalyses the exchange of glu-
tamate plus a proton against aspartate, so that the overall 
reaction is electrogenic. This makes this step irreversible in 
polarized mitochondria, a condition favored for a controlling 
step, and drives the entire MAS in the direction of redox 
equivalent transfer into mitochondria.

An important consequence of Ca2+ activation of AGC1-
MAS is the supply of pyruvate to mitochondria [24]. In fact, 
the supply of exogenous pyruvate fully reverts the limited 
stimulation of respiration in response to different workloads 
observed in AGC1-deficient neurons [36, 55], suggesting 
that pyruvate supply controls neuronal respiration either on 
glucose or lactate [38]. The affinity for Ca2+ of AGC1-MAS 
is about 300 nM [15, 24], a value lower than the apparent 
affinity for Ca2+ of the mitochondrial Ca2+ uniporter (MCU), 
another Ca2+ target in mitochondria, and probably the major 
one in AGC1-deficient neurons.

In sum, the strong stimulation of respiration in cultured 
neurons and their ability to use external lactate via MAS for 
that purpose support ANLS, at least under basal and mild 
activation conditions. However, recent findings by Yellen’s 
lab have questioned the notion that in vivo activated neurons 
take up lactate from the extracellular medium [19, 20]. In 
fact, using biosensors expressed in neurons, it was shown 
that synaptic (electrical) stimulation of hippocampal dentate 
granule neurons or the whisker stimulation of neurons in 
layers II/III of the primary somatosensory barrel cortex of 
an awake mouse was accompanied with rapid increases in 
cytosolic NADH and, in dentate gyrus neurons, also with 
increases in cytosolic lactate. Importantly, the use of the 
specific MCT1 and MCT2 inhibitor AR-C155858 which pre-
vented the uptake of lactate from the extracellular medium in 
hippocampal slices, did not prevent the stimulation-induced 
increase in lactate levels. This indicated that it arose from an 
increase in glycolysis and lactate formation in the stimulated 
neuron itself [19] although it was somewhat surprising that 
lactate over-accumulation in the presence of AR-C155858 
was not observed. It would be interesting to know whether 
this presumably neuronal lactate production is maintained 
or varies depending on the stimulation conditions.

Regardless of that, as a standing lactate gradient exists, 
with higher lactate concentration in astrocytes than neurons 
[43], neuronal lactate may be extruded to nearby neurons 
with lower lactate concentrations or to the extracellular 
space. In fact, claims for the possible formation of lactate 
by neurons under strong stimulation conditions are not new. 
Indeed, studies in isolated brain mitochondria indicated 
that high calcium loads, below those required to induce the 
permeability transition, cause an inhibition of the malate 
aspartate shuttle which is expected to slow down glycolysis, 
and increase lactate and NADH formation [16]. This effect 
was attributed to an inhibition of the second transporter of 
the malate aspartate shuttle, the oxoglutarate-malate carrier 
(OGC/Slc25a11). Inhibition would be due to competition 
between oxoglutarate dehydrogenase and the OGC for the 
common substrate oxoglutarate (OG). Activation by matrix 
Ca2+ of oxoglutarate dehydrogenase lowers its Km for OG 
with a drop in matrix OG concentration resulting in lower 
OG efflux along OGC and a resulting drop in MAS activity. 
An inhibition of MAS under strong stimulation conditions 
has also been proposed in cultured neurons [6, 59], but Díaz-
García et al. [19] did not find evidence for an inhibition of 
the shuttle. Whether this mechanism of shuttle inhibition 
actually operates in vivo is still an open question.
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