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Abstract
Dihydrolipoamide dehydrogenase (LADH, E3) deficiency is a rare (autosomal, recessive) genetic disorder generally present-
ing with an onset in the neonatal age and early death; the highest carrier rate has been found among Ashkenazi Jews. Acute 
clinical episodes usually involve severe metabolic decompensation and lactate acidosis that result in neurological, cardio-
logical, and/or hepatological manifestations. Clinical severity is due to the fact that LADH is a common E3 subunit to the 
alpha-ketoglutarate, pyruvate, alpha-ketoadipate, and branched-chain alpha-keto acid dehydrogenase complexes, and is also 
a constituent in the glycine cleavage system, thus a loss in LADH function adversely affects multiple key metabolic routes. 
However, the severe clinical pictures frequently still do not parallel the LADH activity loss, which implies the involvement 
of auxiliary biochemical mechanisms; enhanced reactive oxygen species generation as well as affinity loss for multienzyme 
complexes proved to be key auxiliary exacerbating pathomechanisms. This review provides an overview and an up-to-date 
molecular insight into the pathomechanisms of this disease in light of the structural conclusions drawn from the first crystal 
structure of a disease-causing hE3 variant determined recently in our laboratory.

Keywords  Dihydrolipoamide dehydrogenase · E3 deficiency · Alpha-ketoglutarate dehydrogenase complex · Pyruvate 
dehydrogenase complex · Pathogenic mutation · Reactive oxygen species (ROS) · X-ray crystallography · Structure

E3 Deficiency—the Disease, Enzyme, 
and Affected Multienzyme Complex 
Functions

(Dihydro)lipoamide dehydrogenase (LADH, E3; gene: 
dld) deficiency is an often prematurely lethal rare auto-
somal recessive genetic disorder [1]; the highest carrier 
rate (1:94-1:110, G194C-hE3, h for human) has been 
found among Ashkenazi Jews with a disease frequency of 
1:35,000–1:48,000 [2, 3]. The first and sole review on the 
molecular pathomechanisms of this disease was written by 
our laboratory [4]. This disorder involves mainly neurologi-
cal, cardiological, and hepatological manifestations whose 

symptoms generally arise very early in life. The phenotypic 
spectrum includes hyperammonemia, failure to thrive, hypo-
tonia, encephalopathy, seizure, hepatomegaly, liver dys-
function, lactate acidosis, hypoglycemia, Leigh syndrome, 
developmental delay, hypertrophic cardiomyopathy, vision 
impairment/optic atrophy, ataxia, and microcephaly, among 
others [1, 3, 5–16]. Potentially lethal hepatological conse-
quences, often together with encephalopathy and coagulopa-
thy, may present in isolation and in adulthood [3, 17–19]. 
The severity of the clinical outcomes is due to the simul-
taneous defects of the mitochondrial E3-harboring multi-
enzyme dehydrogenase complexes for alpha-ketoglutarate 
(KGDHc), pyruvate (PDHc), alpha-ketoadipate (KADHc), 
and branched-chain alpha-keto acids (BCKDHc); interest-
ingly, the glycine cleavage system (GCS), which also con-
tains the LADH protein, remains unaffected in E3-deficiency 
[1, 4, 20–22]. In the above dehydrogenase complexes the 
common E3 subunit catalyzes the re-oxidation of the dihy-
drolipoate (DHLA) moieties covalently linked to the respec-
tive E2 components and the reduction of NAD+ to NADH 
(LADH activity, forward reaction). Pathogenic gene variants 
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include missense or nonsense mutations, splice site vari-
ants, and ones with (small) deletions/insertions; 14 disease-
causing enzyme variants have been reported to date in the 
clinical literature [4, 6, 8].

Auxiliary Exacerbating Pathomechanisms

Clinical severity, more often than not, does not parallel the 
loss in LADH activity [4, 6, 8, 13, 20, 23, 24]. Recent results 
suggest that the missing clues could be (i) enhanced reactive 
oxygen species (ROS) production by various pathogenic hE3 
mutants [20, 23, 24], particularly in acidosis [24], (ii) lib-
eration of selected hE3 variants from the E3-tethering mul-
tienzyme complexes [25–29], and (iii) ROS generation by 
the E1–E2 subcomplex of the hKGDHc (when E3 is scarce) 
[20], principally in the course of acidosis [30].

ROS Generation by hE3, Pathogenic hE3 Mutants, 
and hE3‑Harboring Multienzyme Complexes

Among all the mitochondrial alpha-keto (or 2-oxo) acid 
dehydrogenase complexes (OADHc), the KGDHc exhib-
its the most dominant ROS generation under pathologi-
cally relevant conditions [20–22, 31–42]. ROS generation 
by the KGDHc can occur in the forward catalytic direction 
in case the physiological electron acceptor NAD+ is scarce 
or absent (in vitro), or alternatively in the reverse reaction 
driven by a high NADH/NAD+ ratio [20, 30, 33, 34]; super-
oxide (as a primary ROS) is generated at the flavoenzyme 
E3 component [20, 33, 34] (see Scheme 1). The isolated E3 
component [43, 44] is also capable of generating ROS, in 
an oxidase reaction, in either direction of the catalytic reac-
tion [20, 24, 30, 45–51] (Scheme 1). The E3 subunit forms 
a functional (obligate), non-covalent homodimer that uses 
residues from both monomers for the physiological LADH 
activity [45, 52–55], but not for the ROS-generating activ-
ity [56–58]; hE3 comprises four domains: a FAD-binding 
(1–149), a NAD+/NADH-binding (150–282), a central 
(283–350), and an interface domain (351–474). ROS genera-
tion in the reverse reaction of the isolated E3 component is 
stimulated in acidosis; this same pathological condition also 
enhances the ROS production in the reverse, but not in the 

forward reaction of KGDHc [30]. Sensitivity to a decreas-
ing pH of ROS-generation by isolated disease-causing hE3 
mutants that display increased ROS-generating capacities 
in the reverse reaction was reported to be even more pro-
nounced [24]; pathogenic substitutions which stimulated 
ROS production took place at the disulfide-exchange site 
(P453L), the dimerization surface (E340K, D444V), or the 
cofactor-binding site (G194C) [24]. Calibrated gel filtration, 
molecular dynamics (MD) simulation, hydrogen–deuterium 
exchange mass spectrometry (HDX-MS), diffusion-ordered 
(DOSY) NMR, (soft-ionizing) nano-LC MS, and X-ray crys-
tallography (see below) all confirmed that neither (mild) aci-
dosis nor the hitherto investigated disease-causing homodi-
merization surface mutations led to monomerization of the 
E3 dimer [24, 25, 30, 59–62]. Importantly, ROS production 
could also be stimulated by a relevant disease-causing hE3 
mutant (G194C-hE3) when complexed to a multienzyme 
complex (hKGDHc) [20]. The D444V-, G194C-, E340K-, 
R460G-, and R447G-hE3 pathogenic mutants were reported 
to oxidatively deteriorate the lipoic acid (LA) cofactors of 
the PDHc and KGDHc in a yeast model, and in case of 
D444V-hE3, in human homozygous fibroblasts [23]. In 
mutants exhibiting stimulated ROS production, LADH 
activity was generally impaired in both catalytic directions. 
In P453L-hE3 the physiological activity was almost entirely 
lost while the ROS-generating activity became predominant, 
whereas in G194C-hE3 the LADH activity was not altered, 
but the ROS-producing capacity increased [24]. For P453L-
hE3 the clinical phenotype was very severe [16, 63] and the 
excessive ROS production was proposed to be a contributing 
factor to this [24]. G194C-hE3 leads often to adult-onset 
manifestations, which is in accord with the retained LADH 
activity and the moderately enhanced ROS generation [24]. 
FAD contents were almost entirely retained in D444V-hE3 
and E340K-hE3, while G194C-hE3 and P453L-hE3 exhib-
ited ~ 30% loss of FAD [24]. Circular dichroism (CD) spec-
troscopy represented no significant overall structural altera-
tions in the above four mutants [24]. HDX-MS however 
detected significant changes in flexibility/exposure in the 
lipoic acid (LA) binding channel of P453L-hE3 and G194C-
hE3, which could potentially result in stimulation of ROS 
production. HDX-MS data for D444V-hE3 and E340K-hE3 
were rather inconclusive in terms of the mechanism of action 

Scheme 1   Forward, reverse, 
and ROS-generating reactions 
of LADH
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of increased ROS production [25]. MD simulation of 13 
disease-causing hE3 mutants was also carried out [59, 60]; 
good correlation with HDX-MS results was reported for the 
P453L, K37E, G194C, I445M, and R460G substitutions [4].

Conclusions of the First Disease‑Causing Mutant Structure 
(D444V‑hE3) Relevant to Compromised Enzymatic Activity 
and ROS Generation

Crystal structures have been published for hE3 [28, 29, 52, 
61, 64] and now also for the D444V-hE3 disease-causing 
mutant from our laboratory [61]. High-resolution crystal 
structures have very recently been determined in our labora-
tory also for the P453L- (PDB ID: 6I4Z), G194C- (PDB ID: 
6I4P), R460G- (PDB IDs: 6I4R and 6HG8), R447G- (PDB 
ID: 6I4S), I445M- (PDB ID: 6I4T), and G426E-hE3 (PDB 
ID: 6I4U) disease-causing variants and for hE3 at the hith-
erto highest 1.75 Å resolution (PDB ID: 6I4Q), however, the 
thorough and comparative analysis of these structures is still 
in progress. The already published and analyzed D444V-hE3 
crystal structure demonstrated a shorter and wider H+/H2O-
releasing channel when compared to the wild type structure. 
This channel is solvent accessible, leads to the active site and 
it is the continuation of the LA-binding substrate channel 
(Fig. 1); the H+/H2O channel appears to have catalytic roles 
in LADH function and perhaps ROS generation by hE3 [61]. 
A drop in surface potential around the exit of this channel 
was also found when compared to the hE3 structure. Several 
helices and random coils form the above channel, the helices 

all pointing with the positive ends of their dipoles towards 
the active site; structural alterations in the channel-forming 
helices likely affect the active site via relayed helix dipole 
moment contributions. All the above mentioned structural 
alterations in D444V-hE3 hence indeed may lead to a drop 
in enzyme activity and the positive shift in ROS-generating 
capacity [61]. Another indirect effect that might also have 
contribution to the pathological behaviors is an overall 
change in penetration through the channel upon structural 
changes, which was suggested altering the apparent redox 
potential of the FAD moiety [65, 66]; the redox status of 
FAD has direct influence on both the regular catalytic and 
ROS-generating activities. The C-terminus in D444V-hE3 
was shown by HDX-MS to possess higher flexibility as 
compared to hE3 [25]; this effect could not be detected by 
crystallography, perhaps due to the cryogenic conditions. 
Since the C-terminus separates and hence forms connec-
tion between the LA-binding and the H+/H2O channels, 
any change in this region might also affect the LA-binding 
substrate channel, which is also implicated in both the nor-
mal catalytic action as well as superoxide generation [25, 
61]. Since the disease-causing dimer interface substitutions 
(D444V, E340K, R447G, R460G, I445M) all take place in 
the vicinity of the H+/H2O channel (Fig. 2), considerably 
far from the LA-binding channel, the cofactor-binding sites, 
and the active site, this channel was connected to the poten-
tial existence of a generalized pathomechanism of human 
E3-deficiency for the disease-causing dimerization interface 
mutations [61].

Fig. 1   The LA(/DHLA)-binding and H+/H2O channels in the A-B 
dimers of hE3 (A, PDB ID: 5NHG) and D444V-hE3 (B, PDB ID: 
5J5Z). Monomer A is labeled in both proteins. The redox-active C45-

C50 pair and FAD are represented as yellow and red sticks, respec-
tively. (Color figure online)
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Affinity Loss for Multienzyme Complexes 
and Respective Structural Conclusions 
for D444V‑hE3

The affinity of E3 for the KGDHc proved to be low [67–69] 
and even lower in acidosis [30]; E3 binds ~ 30 times stronger 
to the PDHc [68, 70, 71]. Several experimental evidence 
suggest that E1, and not E2, would directly bind E3 in the 
KGDHc [72–74]. LADH can also exist as a liberated protein 
in vivo [30, 68, 75–78]; it is the most abundant flavoprotein 
in brain and muscle mitochondria [79]. Several disease-caus-
ing hE3 variants (R447G-, D444V-, R460G-, and E340K-
hE3) exhibit significantly impaired affinity for the hPDHc 
leading to greatly compromised overall hPDHc activities 
[25–27, 29]. The D444V-hE3 crystal structure demonstrated 
a drop in surface potential over the entire protein molecule, 
while HDX-MS showed an enhanced flexibility on the sur-
face where the E3-binding protein (E3BP) of hPDHc is teth-
ered [25, 61]; both effects likely contribute to the compro-
mised affinity for hPDHc. The D444V-hE3 crystal structure 
also confirmed previous experimental data on the lack of 
monomerization and FAD loss in this mutant [61].

ROS Generation by the E1–E2 Subcomplex 
of the hKGDHc

In case hE3 is untethered from the hKGDHc, as is likely 
the case for several pathogenic variants and in acidosis, 

the E1-E2 subcomplex is potentially also capable of gen-
erating ROS at a very considerable rate in the forward 
catalytic direction [20] (Scheme 1). Thus, under such con-
ditions, ROS production might proceed simultaneously 
from E3 (principally in the reverse catalytic direction) 
as well as from the E1-E2 subcomplex (in the forward 
catalytic direction), provided that substrate provision is 
sufficient [4, 20]; an intact population of KGDHc may still 
retain some overall activity [6], unless the LA prosthetic 
group suffers oxidative damage [23]. Since the E2 (dihy-
drolipoamide succinyltransferase) component could poten-
tially also be targeted against ROS generation, we very 
recently determined its cryo-electronmicroscopic struc-
ture; we were able to detect residues 218–453 at 3.31 Å 
resolution (PDB ID: 6H05), which in a further and still 
progressing stage of structure determination appears to 
develop to be 2.9 Å resolution (unpublished result).

Conclusions

In conclusion, human E3-deficiency is still an incurable 
and hardly manageable disease, which might be taken 
under better control by dietary restrictions, nutritional 
support, correction of metabolic acidosis and coagulopa-
thy, administration of flavins, lipoic acid, thiamine, trial 
of dichloroacetate, for selected and respective cases [1, 
4]. Since in many cases with impaired affinity for multien-
zyme complexes the residual hE3 activity is much higher 
than the residual overall multienzyme complex activity, 
with the high-resolution crystal structures in hand, adap-
tor molecules could potentially be developed to retether 
the respective pathogenic hE3 mutants to their harboring 
multienzyme complexes; although this might only be a 
limited therapeutic solution, the approach can potentially 
be advantageous for selected patients. Development of 
specific ROS generation inhibitors against selected hE3 
mutants and the E2 subunit of the hKGDHc, besides a 
general antioxidant therapy, might also be a valid approach 
towards possible therapeutic solutions. Besides gene ther-
apy, which still requires substantial development to be effi-
cient and completely safe, enzyme replacement therapy 
might gain potentials in the treatment of human E3 defi-
ciency in the near future [80, 81].
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