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Abstract
The link between mitochondrial dysfunction, redox impairment, and inflammation leads to increased rates of brain cells 
loss in neurodegenerative diseases and in affective disorders. Carvacrol (CAR) is a component of essential oils found in 
Labiatae. CAR exerts antioxidant and anti-inflammatory effects in different cell types, as assessed in both in vitro and in vivo 
experimental designs. Nonetheless, it was not previously investigated whether and how CAR would prevent mitochon-
drial impairment in human cells exposed to a pro-oxidant challenge. Therefore, we analyzed here whether a pretreatment 
(for 4 h) with CAR (10–1000 µM) would promote mitochondrial protection in the human neuroblastoma cells SH-SY5Y 
exposed to hydrogen peroxide (H2O2). We found that CAR at 100 µM prevented the H2O2-induced decline in the activity 
of the complexes I and V, as well as on the levels of adenosine triphosphate (ATP). CAR also prevented the H2O2-elicited 
decrease in the activity of the mitochondrial enzymes aconitase, α-ketoglutarate dehydrogenase, and succinate dehydroge-
nase. Moreover, CAR induced an antioxidant action by decreasing the levels of lipid peroxidation, protein carbonylation, 
and protein nitration in the mitochondrial membranes. Interestingly, CAR prevented the pro-inflammatory action of H2O2 by 
downregulating the transcription factor nuclear factor-κB (NF-κB). The inhibition of the heme oxygenase-1 (HO-1) enzyme 
by zinc protoporphyrin IX (ZnPP IX, 10 µM) suppressed the preventive effects caused by CAR regarding mitochondrial 
function and inflammation. Thus, it is suggested that CAR caused cytoprotective effects by an HO-1-dependent manner in 
SH-SY5Y cells exposed to H2O2.
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Introduction

Neurodegenerative diseases present several common 
aspects, such as impairment in the redox environment, neu-
roinflammation, and disruption in the bioenergetics state, 
mainly affecting mitochondrial function and dynamics [1–3]. 
Moreover, alterations in signaling pathways mediating cell 
survival lead to increase death rates of brain cells (both neu-
ron and glia) [4]. Similar routes leading to neuronal loss are 
also observed in the brain of patients suffering from major 
depression, bipolar disorder, and schizophrenia, which are 
affective disorders [5–7]. Since there is not a cure for those 
brain diseases, prevention of neuronal and glial dysfunction 
in the sporadic cases is an interesting strategy to decrease 
the number of individuals affected by such maladies [8]. In 
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that context, mitochondria are an interesting pharmacologi-
cal target when aiming to ameliorate brain cells function in 
the case of neurodegeneration [9].

The mitochondria present the molecular apparatus neces-
sary to produce more than 90% of the adenosine triphos-
phate (ATP) in the nucleated human cells [10]. The elec-
tron transfer chain (ETC) contains the complexes I (NADH 
dehydrogenase), II (succinate dehydrogenase, SDH), III 
(coenzyme Q:cytochrome c—oxidoreductase), and IV 
(cytochrome c oxidase), as well as the electron transfer 
components ubiquinone (the so-called coenzyme Q10) and 
cytochrome c (a heme protein) [11, 12]. The flux of elec-
trons in the ETC is utilized by the complexes to generate a 
proton (H+) gradient across the inner mitochondrial mem-
brane, which is measured as the mitochondrial membrane 
potential (MMP) experimentally [13]. The H+ gradient is 
utilized by the complex V (ATP synthase/ATPase) pro-
tein to produce ATP [11]. Mitochondrial damage leads to 
decreased ability to sustain the production of ATP in the 
organelles, as well as enhances the production of reactive 
oxygen and nitrogen species (ROS and RNS, respectively) 
by the mitochondria [14]. Actually, the mitochondria are the 
main site of ROS production in the mammalian cells [14]. 
The ETC generates radical anion superoxide (O2

−⋅) due to 
electron leakage in the complexes I–III and IV [14]. Then, 
O2

−⋅ is converted into hydrogen peroxide (H2O2) by the 
manganese-dependent superoxide dismutase (Mn-SOD), 
the mitochondrial form of SOD [15]. Catalase (CAT) or 
glutathione peroxidase (GPx) generates water by consum-
ing H2O2 in the mitochondria or in the cytosol [15]. H2O2 
is not a free radical, but it can react with iron or cupper 
ions leading to the formation of the hydroxyl radical (⋅OH), 
the most powerful free radical generated in human cells 
[15]. It would particularly important in the mitochondria 
because these organelles contain high concentrations of iron 
and cupper due to the work of ETC [15]. Therefore, mito-
chondria are susceptible to a pro-oxidant impairment (i.e., 
lipid peroxidation and the consequences of this deleterious 
action) generated by H2O2.

In this regard, several natural compounds have been 
described as potential neuroprotective agents, as evalu-
ated in both in vitro and in vivo experimental models, by 
promoting mitochondrial protection. We have previously 
demonstrated that carnosic acid, pinocembrin, naringenin, 
and tanshinone I, for example, attenuated the effects of 
different chemical stressors on both redox and functional 
parameters related to mitochondria in the dopaminergic 
cell line SH-SY5Y [16–21]. At least in part, the benefits 
resulting from the pretreatment of SH-SY5Y cells with 
such bioactive molecules are dependent on the cytopro-
tective enzyme heme oxygenase-1 (HO-1) [21–23]. HO-1 
generates free iron ions, carbon monoxide (CO), and bili-
verdin during the degradation of heme [24]. The enzyme 

biliverdin reductase (BVR) consumes biliverdin producing 
bilirubin, a potent antioxidant [25]. On the other hand, CO 
has been associated with an anti-inflammatory effect in 
animal cells due to the ability in inhibiting the transcrip-
tion factor nuclear factor-κB (NF-κB), the master regula-
tor in the immune response [26, 27]. Nonetheless, some 
studies have indicated a pro-oxidant and pro-apoptotic role 
for HO-1 in some cell types [28, 29]. The mechanisms 
underlying the pro-survival and cytotoxic actions of HO-1 
are focus of intense research [29].

In this context, carvacrol (CAR; 5-isopropyl-2-methyl-
phenol; C10H14O) has been demonstrated to be an antioxi-
dant, anti-inflammatory, and anti-apoptotic agent experimen-
tally [30]. CAR is found in the essential oil of some plants 
such as Origanum vulgare L. and Rosmarinus officinalis L. 
[31]. It was previously shown that CAR protected SH-SY5Y 
cells exposed to iron ions by a mechanism involving the inhi-
bition of NF-κB [32]. Moreover, CAR alleviated the effects 
of cisplatin in the mice kidney by a mechanism involving 
HO-1 modulation [33]. It was shown that CAR caused neu-
roprotection in mice subjected to focal cerebral ischemia 
and reperfusion, indicating that CAR presents the ability to 
cross the blood–brain barrier (BBB) [34]. Nonetheless, it 
was not previously reported whether CAR would be able to 
promote mitochondrial protection in experimental models 
of neuronal dysfunction. Thus, we investigated here whether 
would exert mitochondrial protection in SH-SY5Y cells 
exposed to H2O2, a pro-oxidant stressor that is produced 
by brain cells at high rates and that induces mitochondrial 
dysfunction by several ways [35].

Materials and Methods

Materials

The plastic materials utilized in the maintenance of cell cul-
ture were acquired from Corning, Inc. (NY, USA) and Beck-
ton Dickson (NJ, USA). The chemicals and other materials 
necessary to cell culture have been obtained from Sigma 
(MO, USA). Other reagents and assay kits utilized in this 
work were purchased from different manufacturers, as indi-
cated whenever necessary.

Chemical Assays

Epinephrine Autoxidation

The autoxidation of epinephrine was assayed in alkaline pH 
(7.4) according to a protocol previously published [36]. The 
autoxidation of epinephrine was detected at 480 nm in a 
spectrophotometer.
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DPPH Assay

The assay using the 2,2-diphenyl-1-picryl-hydrazyl-
hydrate (DPPH) free-radical has been performed based 
on the protocol published by others [37]. CAR at different 
concentrations was incubated with DPPH and the absorb-
ance was read at 518 nm in a spectrophotometer.

Biological Assays

Cell Culture and Treatments

We utilized the human neuroblastoma SH-SY5Y cell 
line as an in  vitro experimental model of dopaminer-
gic cells. The SH-SY5Y cell line was acquired from 
the American Type Culture Collection (Manassas, VA, 
USA) and was cultured in Dulbecco’s modified Eagle’s 
medium (DMEM)/F-12 HAM nutrient medium (1:1 mix-
ture) containing fetal bovine serum (FBS, 10%), L-glu-
tamine (2 mM), penicillin (1000 units/mL), streptomycin 
(1000 µg/mL), and amphotericin B (2.5 µg/mL) in a 5% 
CO2 humidified incubator (37 °C).

H2O2 at 300 µM was used as a pro-oxidant stressor for 
3 h or 24 h according to each specific assay. CAR (dis-
solved in dimethyl sulfoxide, DMSO) at 10–1000 µM was 
administrated for 4 h prior exposing the cells to H2O2 
(pretreatment experimental model). The specific inhibitor 
of HO-1, zinc protoporphyrin IX (ZnPP IX, 10 µM), was 
administrated to the cells for 1 h before the treatment with 
CAR. Additional information is described in the figure 
legends. The data are shown as the mean ± S.E.M. of three 
or five independent experiments each done in triplicate.

Cell Viability and Cytotoxicity Assays

The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazo-
lium bromide (MTT) assay was used to analyze the effect 
of specific treatments on the viability of the SH-SY5Y 
cells [38]. At the end of each experiment, the cells were 
exposed to MTT for 1 h at 37 °C. After this period, the 
culture medium was removed and the wells were washed 
twice with PBS (pH 7.4). The insoluble formazan formed 
intracellularly was dissolved by the administration of 
100 µL DMSO to each well and incubated for 30 min. The 
absorbance was read at 570 nm in a spectrophotometer.

The leakage of the cytoplasmic lactate dehydrogenase 
(LDH) enzyme was quantified in the culture medium as an 
index of membrane integrity based on the protocol indi-
cated by the manufacturer (CytoTox 96-NonRadioactive 
Cytotoxicity Assay, Promega).

Isolation of Mitochondria

Mitochondria were isolated from the SH-SY5Y cells by 
washing the and re-suspending in a buffer with 250 mM 
sucrose, 10 mM KCl, 1 mM EGTA, 1 mM EDTA, 1 mM 
MgCl2, 1 mM dithiothreitol (DTT), 1 mM phenylmethylsul-
phonyl floride (PMSF), 1 mM benzamidine, 1 mM pepstatin 
A, 10 mg/mL leupeptin, 2 mg/mL aprotonin, and 20 mM 
HEPES (pH 7.4). The samples were centrifuged at 1000×g 
for 10 min at 4 °C in order to remove cell debris and nuclei, 
as well as unbroken cells. The mitochondrial fraction was 
obtained after centrifuging the resulting supernatant at 
11,000×g for 20 min at 4 °C [39].

Isolation of Submitochondrial Particles

We obtained submitochondrial particles (SMP) after isolat-
ing mitochondria from the SH-SY5Y cells. The solution pre-
senting mitochondria was frozen and thawed (three times), 
leading to the rupture of mitochondrial membranes and to 
the release of the components of the mitochondrial matrix. 
This solution was washed (twice) with a buffer containing 
140 mM KCl, 20 mM Tris–HCl (pH 7.4) in order to generate 
SMP without the enzyme Mn-SOD (which would interfere 
in the quantification of reactive species by the organelles, 
as described below). We have also utilized this protocol to 
determine the production of O2

−⋅ and to evaluate the effects 
of chemical stressors (H2O2, in this work) and/or CAR on 
the levels of markers of redox impairment in the membranes 
of mitochondria, since SMP are mitochondrial membranes 
without any component of the matrix of these organelles 
[36].

Quantification of the Production of O2
−⋅ and NO⋅

We quantified the generation of O2
−⋅ by using the SMP 

obtained from the SH-SY5Y cells in a reaction medium con-
taining 230 mM mannitol, 70 mM sucrose, 10 mM HEPES-
KOH (pH 7.4), 4.2 mM succinate, 0.5 mM KH2PO4, 0.1 µM 
catalase, and 1 mM epinephrine, as previously published 
[36]. The levels of NO⋅ were quantified in the cellular level 
following the protocol of the manufacturer of a commercial 
kit (Abcam, MA, USA).

Examination of the Mitochondria‑Related Apoptotic Factors 
and Cell Death‑Associated Parameters

The immunocontents of cytochrome c (mitochondrial and 
cytosolic) and of the cleaved form of PARP were examined 
through the utilization of ELISA assay kits, based on the 
instructions of the manufacturer (Abcam, MA, USA). Cas-
pase-9 and caspase-3 enzyme activities were measured by 
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using fluorimetric assay kits following the instructions of the 
manufacturer (Abcam, MA, USA) [16].

Quantification of Enzyme Activities

The enzymatic activity of aconitase, α-ketoglutarate dehy-
drogenase, succinate dehydrogenase, complex I, and com-
plex V were quantified by using commercial kits according 
to the instructions of the manufacturer (Abcam, MA, USA).

Evaluation of the Levels of ATP

The levels of ATP were evaluated by following the protocol 
of a commercial kit (Abcam, MA, USA). After the depro-
teinization of the samples, it was centrifuged and the levels 
of ATP were determined in the supernatants [20].

Measurement of the Mitochondrial Membrane Potential 
(MMP)

The MMP was measured by the use of a commercial kit 
utilizing tetraethylbenzimidazolylcarbocyanide iodine (JC-
1) as a lipophilic cationic dye that can cross mitochondrial 
membranes, accumulating in the organelles according to the 
changes in the membrane potential (Abcam, MA, USA).

Examination of the Levels of Malondialdehyde (MDA), 
Protein Carbonyl, and 8‑Oxo‑2′‑Deoxyguanosine 
(8‑Oxo‑dG)

We quantified the levels of MDA, protein carbonyl, and 
8-oxo-dG by following the instructions of the manufac-
turer of commercial kits (Abcam, MA, USA), as previously 
described [20]. MDA and protein carbonyl levels were quan-
tified in both mitochondrial and total samples.

Determination of the Levels of 3‑Nitrotyrosine

We quantified the levels of 3-nitrotyrosine in the membranes 
of the mitochondria through the utilization of a polyclonal 
antibody (Calbiochem, Germany), which was diluted 1:2000 
in phosphate-buffered saline (PBS containing albumin at 5%, 
pH 7.4), as previously published [40].

Isolation of the Cell Nucleus

The cell nucleus was isolated by using the Nuclear Extrac-
tion Kit, following the instructions of the manufacturer of a 
commercial assay kit (Cayman Chemical, MI, USA) and as 
previously published by us [16]. The protein determination 
was performed through the Bradford method.

Measurement of the Levels of Interleukin‑1β (IL‑1β) 
and Tumor Necrosis Factor‑α (TNF‑α)

The levels of the pro-inflammatory cytokines IL-1β and 
TNF-α were measured based on the instructions of the 
manufacturer of a commercial ELISA assay kit (Abcam, 
MA, USA).

Quantification of the Activity of the Nuclear Factor‑κB 
(NF‑κB)

We quantified the activity of the p65 subunit of NF-κB 
according to the protocol of the manufacturer of a commer-
cial assay kit (Abcam, MA, USA) [21].

Statistical Analyses

We performed the statistical analyses by using the GraphPad 
5.0 software. Data are shown as the mean ± standard error of 
the mean (S.E.M.) of three or five independent experiments 
each done in triplicate; p values were considered significant 
when p < 0.05. The differences between the experimental 
groups were examined by one-way ANOVA, followed by 
the post hoc Tukey’s test.

Results

CAR Attenuated the Effects of H2O2 on the Viability 
of SH‑SY5Y Cells by an HO‑1‑Dependent Fashion

According to Fig. 1, CAR at 10 and 100 µM did not affect 
the viability of SH-SY5Y cells. However, CAR at 500 and 
1000 µM induced a significant decrease in the cell viability 
in this experimental model (p < 0.05). In this regard, only 
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Fig. 1   The effects of carvacrol (CAR) on the viability of SH-
SY5Y cells exposed to H2O2. The cells were treated with CAR at 
10–1000 µM during 4 h prior to the challenge with H2O2 at 300 µM 
for further 24 h. Data are shown as the mean ± SEM of three or five 
independent experiments each done in triplicate. One-way ANOVA 
followed by the post hoc Tukey’s test, *p < 0.05 different from the 
control group; ap < 0.05 different from H2O2-treated group
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CAR at 100 µM attenuated the H2O2-induced decline in the 
viability of SH-SY5Y cells (p < 0.05). Therefore, this CAR 
concentration was utilized in the other experiments that 
were performed in this work. In order to evaluate whether 
the HO-1 enzyme would be involved in the cytoprotection 
caused by CAR in H2O2-treated SH-SY5Y cells, ZnPP IX 
was administrated to the cells before the treatment with 
CAR. Thus, as depicted in Fig. 2A, the inhibition of HO-1 
by ZnPP IX abolished the protection mediated by CAR in 
H2O2-treated cells (p < 0.05). Moreover, CAR attenuated the 
H2O2-induced cytotoxicity (as assessed through the meas-
urement of LDH leakage from the cells) by an HO-1-asso-
ciated manner (Fig. 2B, p < 0.05).

CAR also alleviated the pro-apoptotic effects induced 
by H2O2 in SH-SY5Y cells by a mechanism dependent on 
HO-1. CAR significantly blocked the release of cytochrome 
c to the cytosol (Fig. 3A, p < 0.05). Consequently, CAR 
prevented the loss of cytochrome c in the mitochondria 

of H2O2-treated cells (Fig. 3B, p < 0.05). The activation 
of the pro-apoptotic caspases-9 and -3 was decreased by 
CAR in the cells exposed to H2O2 (Fig. 4A, B, respectively; 
p < 0.05). Also, the cleavage of PARP, a target of caspase-3 
during apoptotic cell death, was attenuated by CAR in 
H2O2-treated cells (Fig. 4C, p < 0.05). The anti-apoptotic 
effects induced by CAR were suppressed by the inhibition 
of HO-1, showing a role for this enzyme in the CAR-induced 
mitochondria-related blockade of cell death during the expo-
sure to H2O2.

CAR Promoted Mitochondrial Protection 
by a HO‑1‑Dependent Mechanism in SH‑SY5Y Cells 
Exposed to the Pro‑oxidant Agent H2O2

CAR significantly attenuated the H2O2-induced impair-
ment in the function of the complex I by a mechanism 
dependent on HO-1, since the inhibition of this enzyme by 
ZnPP IX blocked this effect in SH-SY5Y cells (Fig. 5A, 
p < 0.05). Similarly, ZnPP IX abrogated the mitochondrial 
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Fig. 2   The effects of heme oxygenase-1 (HO-1) inhibition by zinc 
protoporphyrin IX (ZnPP IX) on the viability (A) and leakage of lac-
tate dehydrogenase (LDH) (B) in SH-SY5Y cells treated with car-
vacrol (CAR) and/or H2O2. ZnPP IX at 10 µM was administrated to 
the cells for 1 h before the exposure to CAR. The cells were treated 
with CAR at 100 µM during 4 h prior to the challenge with H2O2 at 
300 µM for further 24 h. Data are shown as the mean ± SEM of three 
or five independent experiments each done in triplicate. One-way 
ANOVA followed by the post hoc Tukey’s test, *p < 0.05 different 
from the control group; ap < 0.05 different from H2O2-treated group; 
bp < 0.05 different from the CAR + H2O2-treated group
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Fig. 3   The effects of heme oxygenase-1 (HO-1) inhibition by zinc 
protoporphyrin IX (ZnPP IX) on the cytosolic (A) and mitochondrial 
(B) contents of cytochrome c (cyt c) in SH-SY5Y cells treated with 
carvacrol (CAR) and/or H2O2. ZnPP IX at 10 µM was administrated 
to the cells for 1 h before the exposure to CAR. The cells were treated 
with CAR at 100 µM during 4 h prior to the challenge with H2O2 at 
300 µM for further 24 h. Data are shown as the mean ± SEM of three 
or five independent experiments each done in triplicate. One-way 
ANOVA followed by the post hoc Tukey’s test, *p < 0.05 different 
from the control group; ap < 0.05 different from H2O2-treated group; 
bp < 0.05 different from the CAR + H2O2-treated group
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protection mediated by CAR regarding the function of 
complex V in the mitochondria of the cells exposed to 
H2O2 (Fig. 5B, p < 0.05). As expected, CAR prevented 
the decline in the ATP content in the mitochondria 
of H2O2-treated cells by an HO-1-dependent manner 
(Fig. 5C, p < 0.05). Moreover, CAR efficiently prevented 
the H2O2-induced loss of MMP in SH-SY5Y cells by a 

mechanism involving the HO-1 enzyme (Fig. 6; p < 0.05). 
The mitochondria-related protection caused by CAR was 
also observed regarding the function of the TCA cycle in 
SH-SY5Y cells exposed to H2O2. As depicted in Fig. 7A, 
CAR significantly attenuated the H2O2-induced impair-
ment in the activity of aconitase (p < 0.05). Similar effects 
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treated with CAR at 100 µM during 4 h prior to the challenge with 
H2O2 at 300 µM for further 24 h. Data are shown as the mean ± SEM 
of three or five independent experiments each done in triplicate. One-
way ANOVA followed by the post hoc Tukey’s test, *p < 0.05 dif-
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Fig. 5   The effects of heme oxygenase-1 (HO-1) inhibition by zinc 
protoporphyrin IX (ZnPP IX) on the activity of the complexes I (A) 
and V (B) and on the levels of ATP (C) in SH-SY5Y cells treated 
with carvacrol (CAR) and/or H2O2. ZnPP IX at 10 µM was adminis-
trated to the cells for 1 h before the exposure to CAR. The cells were 
treated with CAR at 100 µM during 4 h prior to the challenge with 
H2O2 at 300 µM for further 24 h. Data are shown as the mean ± SEM 
of three or five independent experiments each done in triplicate. One-
way ANOVA followed by the post hoc Tukey’s test, *p < 0.05 dif-
ferent from the control group; ap < 0.05 different from H2O2-treated 
group; bp < 0.05 different from the CAR + H2O2-treated group
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were seen regarding the function of α-KGDH and SDH 
(Fig. 7B, C, respectively; p < 0.05). Nonetheless, the inhi-
bition of HO-1 by ZnPP IX suppressed the TCA cycle-
related protection caused by CAR in cells challenged by 
H2O2 (p < 0.05).

CAR also prevented both cellular and mitochondrial 
redox impairment elicited by H2O2 in SH-SY5Y cells. CAR 
pretreatment reduced the levels of lipid peroxidation and 
protein carbonylation in the SH-SY5Y cells (Fig. 8A, B, 
respectively; p < 0.05). Moreover, CAR efficiently attenuated 
the levels of oxidative stress in the DNA of SH-SY5Y cells, 
as assessed through the formation of 8-oxo-dG (Fig. 8C, 
p < 0.05). In spite of this, the inhibition of HO-1 blocked 
the antioxidant effects caused by CAR in the cells exposed 
to H2O2 (p < 0.05). Similar antioxidant effects were seen in 
the mitochondria obtained from the SH-SY5Y cells. CAR 
decreased the lipid peroxidation levels in the membranes of 
mitochondria isolated from the H2O2-treated cells (Fig. 9A, 
p < 0.05). Also, protein carbonylation in mitochondrial 
membranes was reduced by CAR in the H2O2-treated cells 
(Fig. 9B, p < 0.05). CAR was also effective in decreas-
ing the levels of protein nitration in the membranes of 
mitochondria obtained from SH-SY5Y cells facing H2O2 
(Fig.  9C, p < 0.05). The antioxidant effects caused by 
CAR in the mitochondrial membranes obtained from the 
H2O2-challenged cells were suppressed by ZnPP IX, indi-
cating a role for HO-1 in mediating this protective effects 
elicited by CAR (p < 0.05).

The production of free radicals was also assessed in this 
work in SH-SY5Y cells treated with CAR and/or H2O2. As 
demonstrated in Fig. 10A, CAR reduced the production 
of O2

−⋅ in the SMP obtained from the H2O2-treated cells 
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Fig. 7   The effects of heme oxygenase-1 (HO-1) inhibition by zinc 
protoporphyrin IX (ZnPP IX) on the activity of the tricarboxylic acid 
cycle (TCA) enzymes aconitase (A), α-ketoglutarate dehydrogenase 
(B), and succinate dehydrogenase (C) in SH-SY5Y cells treated with 
carvacrol (CAR) and/or H2O2. ZnPP IX at 10 µM was administrated 
to the cells for 1 h before the exposure to CAR. The cells were treated 
with CAR at 100 µM during 4 h prior to the challenge with H2O2 at 
300 µM for further 24 h. Data are shown as the mean ± SEM of three 
or five independent experiments each done in triplicate. One-way 
ANOVA followed by the post hoc Tukey’s test, *p < 0.05 different 
from the control group; ap < 0.05 different from H2O2-treated group; 
bp < 0.05 different from the CAR + H2O2-treated group
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by a mechanism involving the enzyme HO-1 (p < 0.05). 
Similarly, HO-1 played a role in mediating the CAR-
induced decrease in the cellular production of NO⋅ in the 
H2O2-treated SH-SY5Y cells (Fig. 10B, p < 0.05). Inter-
estingly, CAR was not effective in inhibiting the autoxi-
dation of epinephrine, as may be observed in Fig. 11. On 
the other hand, CAR presented a concentration-dependent 

antioxidant effect by inhibiting the oxidation of DPPH, 
as depicted in Fig. 12 (p < 0.05). These data indicate that 
CAR may fail as a direct antioxidant depending on the 
type of redox stressor present in a particular environment.
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Fig. 8   The effects of heme oxygenase-1 (HO-1) inhibition by zinc 
protoporphyrin IX (ZnPP IX) on the total levels of malondialde-
hyde (MDA) (A), protein carbonyl (B), and 8-oxo-2′-deoxyguanosine 
(8-oxo-dG) (C) in SH-SY5Y cells treated with carvacrol (CAR) 
and/or H2O2. ZnPP IX at 10  µM was administrated to the cells for 
1  h before the exposure to CAR. The cells were treated with CAR 
at 100  µM during 4  h prior to the challenge with H2O2 at 300  µM 
for further 24 h. Data are shown as the mean ± SEM of three or five 
independent experiments each done in triplicate. One-way ANOVA 
followed by the post hoc Tukey’s test, *p < 0.05 different from the 
control group; ap < 0.05 different from H2O2-treated group; bp < 0.05 
different from the CAR + H2O2-treated group
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Fig. 9   The effects of heme oxygenase-1 (HO-1) inhibition by zinc 
protoporphyrin IX (ZnPP IX) on the levels of malondialdehyde 
(MDA) (A), protein carbonyl (B), and 3-nitrotyrosine (C) in the 
membranes of mitochondria obtained from SH-SY5Y cells treated 
with carvacrol (CAR) and/or H2O2. ZnPP IX at 10 µM was adminis-
trated to the cells for 1 h before the exposure to CAR. The cells were 
treated with CAR at 100 µM during 4 h prior to the challenge with 
H2O2 at 300 µM for further 24 h. Data are shown as the mean ± SEM 
of three or five independent experiments each done in triplicate. One-
way ANOVA followed by the post hoc Tukey’s test, *p < 0.05 dif-
ferent from the control group; ap < 0.05 different from H2O2-treated 
group; bp < 0.05 different from the CAR + H2O2-treated group
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CAR Induced Anti‑inflammatory Effects 
in H2O2‑treated SH‑SY5Y Cells by a Mechanism 
Associated with HO‑1

Since pro-oxidant agents are able to cause redox impairment, 
mitochondrial dysfunction, and inflammation, we tested here 
whether CAR would be able to modulate the pro-inflamma-
tory state elicited by H2O2 in SH-SY5Y cells. As depicted 
in Fig. 13A, CAR prevented the increase in the levels of 
IL-1β in the SH-SY5Y cells exposed to H2O2 (p < 0.05). 
Similarly, CAR attenuated the H2O2-induced increase in the 
levels of TNF-α in SH-SY5Y (Fig. 13B, p < 0.05). CAR pre-
treatment was also effective in inhibiting the activation of 
the transcription factor NF-κB in the cells treated with H2O2 
(Fig. 13C, p < 0.05). The anti-inflammatory effects elicited 
by CAR were blocked by ZnPP IX (p < 0.05).

Discussion

In the present work, CAR pretreatment attenuated the del-
eterious effects induced by the pro-oxidant agent H2O2 by 
a mechanism involving the enzyme HO-1. The cytoprotec-
tive actions caused by HO-1 have been reported by several 
research groups, showing that this enzyme mediates antioxi-
dant, anti-apoptotic, and anti-inflammatory effects in mam-
malian cells [41–44]. Nonetheless, it was not previously 
demonstrated whether HO-1 would mediate the beneficial 
effects induced by CAR experimentally. The role of HO-1 
in promoting mitochondrial protection is still on debate, 

0

100

200

300

400 *

a

b

O
2-•

 p
ro

du
ct

io
n 

(%
 o

f c
on

tr
ol

)

0

100

200

300

*

a

b

Carvacrol (100 µM)

H2O2 (300 µM)

ZnPP IX (10 µM)

-
-
-

+
-
-

+
-

-

-
-
+

+

-
+

+
+
+

N
O

•  p
ro

du
ct

io
n 

(%
 o

f c
on

tr
ol

)

A

B

Fig. 10   The effects of heme oxygenase-1 (HO-1) inhibition by zinc 
protoporphyrin IX (ZnPP IX) on the production of radical anion 
superoxide (O2

−⋅) (A) and nitric oxide (NO⋅) (B) by SH-SY5Y cells 
treated with carvacrol (CAR) and/or H2O2. ZnPP IX at 10  µM was 
administrated to the cells for 1  h before the exposure to CAR. The 
cells were treated with CAR at 100 µM during 4 h prior to the chal-
lenge with H2O2 at 300  µM for further 24  h. O2

−⋅ production was 
determined by using submitochondrial particles (SMP) obtained from 
SH-SY5Y cells, as described in the “Materials and Methods”. Data 
are shown as the mean ± SEM of three or five independent experi-
ments each done in triplicate. One-way ANOVA followed by the post 
hoc Tukey’s test, *p < 0.05 different from the control group; ap < 0.05 
different from H2O2-treated group; bp < 0.05 different from the 
CAR + H2O2-treated group
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since it was found that HO-1 also works as a pro-oxidant 
in some cases, causing cellular injury and altering physi-
ological parameters [28]. In this regard, the modulation of 
HO-1 may serve as a therapeutic target in the case of neuro-
degenerative diseases, as recently reviewed [29]. We have 

demonstrated that several natural compounds can modulate 
HO-1 through the activation of signal pathways related to 
cell survival, leading to the mitochondrial protection, which 
is crucial to suppress the pro-apoptotic actions of different 
chemical stressors [18, 20, 45].

HO-1 generates CO, biliverdin, and free iron as products 
of the heme degradation [46]. Biliverdin is converted into 
bilirubin, a potent antioxidant, by BVR [47]. CO, on the 
other hand, has been viewed as an inhibitor of the master 
regulator of inflammation, the transcription factor NF-κB 
[26, 48]. Therefore, it is expected that the combination 
of direct antioxidant actions exerted by bilirubin and the 
attenuation of inflammation by CO would cause mitochon-
drial protection by decreasing the pro-oxidant signal of 
pro-inflammatory cytokines on the mitochondria. During 
inflammation, the production of ROS by the mitochondria 
is enhanced [49]. Also, depending on the duration of the 
pro-inflammatory stimulus, the intrinsic apoptotic path-
way, which presents the mitochondria as central players, is 
activated during inflammation, causing increased rates of 
cell death [50]. This is particularly important in brain cells, 
which are very sensitive to redox impairment and mitochon-
drial dysfunction [51]. Thus, the modulation of the HO-1/
CO/NF-κB signaling pathway by CAR is expected to act 
both directly and indirectly on the maintenance of mitochon-
drial function and dynamics. HO-1 is an inducible enzyme 
whose expression is controlled by the transcription factor 
nuclear factor erythroid 2-related factor 2 (Nrf2), among 
others [52]. Nrf2 is upregulated by certain natural com-
pounds in mammalian cells, and the activation of this tran-
scription factor leads to the expression of several cytoprotec-
tive proteins [53]. These effects have been associated with 
prevention of cellular dysfunction in different experimental 
models using chemical stressors [22, 23, 42]. Even though 
we have not analyzed whether the link between HO-1 and 
Nrf2 in the present work, it may be suggested that such regu-
lator would be associated with the cytoprotection seen here. 
Further research would be useful in investigating the role of 
Nrf2 in the HO-1-mediated preventive effects induced by 
CAR in mammalian cells.

Prevention of mitochondrial dysfunction is central when 
considering neurodegenerative diseases, since alterations 
in the activity of these organelles appear in Alzheimer’s 
disease (AD), Parkinson’s disease (PD), and Huntington’s 
disease (HD), as well as in affective disorders [54, 55]. 
Indeed, the use of anti-depressants by patients suffering from 
major depression or bipolar disorder may not be sufficient 
to downregulate the pro-inflammatory status observed in 
different brain areas [56–59]. Sustained pro-inflammatory 
signal leads to neuronal loss, an event that would amplify 
the impact of major depression of the life quality of the 
patients [60]. On the other hand, some environmental fac-
tors may cause mitochondrial dysfunction, as is the case of 
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Fig. 13   The effects of heme oxygenase-1 (HO-1) inhibition by zinc 
protoporphyrin IX (ZnPP IX) on the production of the pro-inflamma-
tory cytokines interleukin-1β (IL-1β) (A) and tumor necrosis factor-α 
(TNF-α) (B), and on the activity of the transcription factor nuclear 
factor-κB (NF-κB) (C) in SH-SY5Y cells treated with carvacrol 
(CAR) and/or H2O2. ZnPP IX at 10 µM was administrated to the cells 
for 1 h before the exposure to CAR. The cells were treated with CAR 
at 100  µM during 4  h prior to the challenge with H2O2 at 300  µM 
for further 24 h. Data are shown as the mean ± SEM of three or five 
independent experiments each done in triplicate. One-way ANOVA 
followed by the post hoc Tukey’s test, *p < 0.05 different from the 
control group; ap < 0.05 different from H2O2-treated group; bp < 0.05 
different from the CAR + H2O2-treated group
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agrochemicals that have been associated with the induction 
of PD, for example [61, 62]. By impairing mitochondrial 
function, these neurotoxic agents enhance the production 
of ROS by the organelles, leading to posterior inflamma-
tion [63]. A similar mechanism has been seen in the patho-
physiology of some diseases in in vivo experimental models 
[64, 65]. Thus, the mitochondrial impaired function may be 
a cause or a consequence of inflammation. Therefore, tar-
geting mitochondria during neuroinflammation may be an 
interesting pharmacological strategy to decrease the loss of 
brain cells in the case of neurodegeneration and/or affective 
disorders, among others [1, 66].

Overall, CAR promoted mitochondrial protection by a 
mechanism related to HO-1 in SH-SY5Y cells exposed to 
H2O2. The antioxidant effects CAR exerted in mitochon-
drial membranes are crucial to maintain both mitochondrial 
function (mainly the OXPHOS system) and dynamics (dur-
ing events such as mitochondrial fusion and fission, as well 
as mitochondrial biogenesis). In spite of the results seen 
here, future research is necessary to investigate whether 
CAR would exert similar effects in in vivo experimental 
models, since the concentration of this natural compound 
that induced beneficial effects here is considered high when 
analyzing its bioavailability [67]. Furthermore, CAR at high 
concentrations induced toxic effects in the SH-SY5Y cell 
line, as assessed here through the cell viability assay. Thus, 
it should be studied in the future to avoid intoxication when 
using CAR therapeutically.
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