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Abstract

In a previous study, we observed a significant increase in phosphoglycerate mutase 1 (PGAMI1) levels after pyridoxine
treatment. In the present study, we investigated the effects of PGAMI1 on novel object recognition, cell proliferation, and
neuroblast differentiation in the dentate gyrus. We generated a Tat-PGAMI1 fusion protein to cross the blood-brain barrier and
neuronal plasma membrane. We administered the Tat peptide, control-PGAMI1, or Tat-PGAM1 fusion protein to 8-week-old
mice once a day for 3 weeks and tested novel object recognition memory. The mice were then euthanized to conduct western
blot analysis for polyhistidine expression and immunohistochemical analysis for Ki67, doublecortin, and phosphorylated
cAMP response element-binding protein. Mice treated with Tat peptide showed similar exploration times for familiar and
new objects and the discrimination index was significantly lower in this group than in the control group. Tat-PGAM1 mod-
erately increased the exploration time of new objects when compared to familiar objects, while the discrimination index was
significantly higher in the Tat-PGAMI1-treated group, but not in the control-PGAMI1-treated group, when compared with
the control group. Higher PGAM1 protein expression was observed in the hippocampus of Tat-PGAM 1-treated mice when
compared with the hippocampi of control, Tat peptide-, and control-PGAM1-treated mice, using western blot analysis. In
addition, the numbers of proliferating cells and differentiated neuroblasts were significantly lower in the Tat peptide-treated
group than in the control group. In contrast, the numbers of proliferating cells and differentiated neuroblasts in the dentate
gyrus were higher in the Tat-PGAM -treated group than in the control group. Administration of Tat-PGAMI1 significantly
facilitated the phosphorylation of cAMP response element-binding protein in the dentate gyrus. Administration of control-
PGAM1 did not show any significant effects on novel object recognition, cell proliferation, and neuroblast differentiation in
the dentate gyrus. These results suggest that PGAMI1 plays a role in cell proliferation and neuroblast differentiation in the
dentate gyrus via the phosphorylation of cAMP response element-binding protein in the hippocampus.
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Introduction

Neural stem cells reside in the adult mammalian brain,
including humans, and contribute to brain plasticity
throughout life [1, 2]. Two major neurogenic areas have
been reported in the adult mammalian brain, one of which
is the subgranular zone within the dentate gyrus of the
hippocampus. Newly generated neurons may participate in
the formation of spatial memory [3] and adult neurogen-
esis-deficient animals show impairment in spatial learn-
ing [4]. In the dentate gyrus, progenitors expand and may
differentiate into neuroblasts. Then, these cells migrate
into the granule cell layer to become mature neurons [5].
Neural stem cells are known to utilize glycolytic metabo-
lism for maintaining self-renewal and lineage potency and
then switch to oxidative metabolism during differentiation,
which is needed to support the growing energy demands
of specialized progeny [6].

Phosphoglycerate mutase (PGAM, E.C. 5.4.2.1) is an
enzyme of the anaerobic glycolysis pathway where it cata-
lyzes the conversion of 3-phosphoglycerate to 2-phospho-
glycerate [7]. Several lines of evidence demonstrate that
PGAM is increased in various cancer tissues including
in the brain [8-14], and high levels of PGAMI expres-
sion indicate a high grade of gliomas [15, 16]. Conversely,
knockdown or targeting of PGAMI attenuates cell pro-
liferation in cancer tissues [17, 18] and inhibits glioma
cell proliferation and migration in vitro [15]. PGAM1 is
believed to be a novel molecular target for cancer treat-
ment [17, 19]. Endogenous PGAM1 is expressed in the
endothelium of capillaries as well as arteries in all regions
of the brain including the hippocampus [20]. It has been
reported that PGAMI1 levels are decreased in the hip-
pocampus in several neurological disorders including phe-
nylketonuria [21], hypoxia [22], and schizophrenia [23,
24]. In addition, knockdown of PGAM1 results in partial
reduction in glycolysis and cancer cell motility [25]. In
contrast, in a previous study, we demonstrated that pyri-
doxine significantly increased cell proliferation and neu-
roblast differentiation in the dentate gyrus [26] and, using
a proteomics approach, we also validated that these effects
are associated with the up-regulation of PGAMI in the
hippocampus [27]. However, we did not confirm the direct
effects of PGAM1 on novel object recognition, cell prolif-
eration, and neuroblast differentiation in the dentate gyrus.

Blood vessels in the central nervous system are con-
tinuous, non-fenestrated vessels and consist of astro-
cytes and specialized endothelial cells that allow them to
tightly regulate the movement of molecules, ions, and cells
between the blood and the central nervous system [28,
29]. In addition, cells have a lipophilic barrier in the cel-
lular membrane, which makes it difficult to deliver large
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molecules and also small particles into the cell so that they
can perform their biological functions. Transactivator of
transcription (Tat) from human immunodeficiency virus
(HIV) can pass very efficiently through the cell membranes
of cultured mammalian cells [30, 31]. Previous studies
have demonstrated that Tat-fusion proteins are able to
cross the blood-brain barrier and can be delivered to the
intracellular space [32, 33]. In the present study, therefore,
we generated a Tat-PGAMI1 fusion protein to facilitate
the crossing of the blood—brain barrier and elucidated the
effects of this protein on novel object recognition memory,
cell proliferation, and neuroblast differentiation in the den-
tate gyrus.

Experimental Procedures
Experimental Animals

Male C57BL/6J mice (7 weeks of age, n=40) were pur-
chased from Jackson Laboratory Co. Ltd (Bar Harbor, ME,
USA). Five animals were housed per cage in a conven-
tional area under standard conditions at ambient tempera-
ture (22 +2 °C) and humidity (60+5%) on a 12/12 h light/
dark cycle with ad libitum access to food and water. Animal
handling and care conformed to the guidelines of current
international laws and policies (National Institutes of Health
Guide for the Care and Use of Laboratory Animals, Publica-
tion No. 85-23, 1985, revised 1996) and were approved by
the Institutional Animal Care and Use Committee of Seoul
National University (SNU-170417-19-1). All experiments
were conducted with an effort to minimize the number of
animals used and the physiological stress caused by the pro-
cedures employed. All experimental procedures were con-
ducted according to ARRIVE guidelines [34].

Construction of Expression Vectors

A cell-permeable Tat expression vector was prepared in the
laboratory as previously described [35]. The cDNA sequence
of human PGAM1 was amplified by polymerase chain reac-
tion (PCR) using the PGAMI1 specific sense primer 5'-CTC
GAG ATG GCC GCC TAC A-3'" and the PGAMI1 specific
anti-sense primer 5'-GGA TCC TCA CTT CTT GGC CTT-
3'. PCR products were excised, eluted (Expin Gel; GeneAll
Biotechnology Co., Ltd., Seoul, Korea), and ligated into a
TA cloning vector ()GEM®-T easy vector; Promega Corpo-
ration, Madison, WI, USA) according to the manufacturer’s
protocol. The purified TA vector containing human PGAM1
cDNA was ligated into the Tat expression vector to produce
a Tat-PGAM1 fusion protein. The recombinant expression
plasmid consisted of 6His-Tat-PGAM1 in a pET-15 vector.
We also constructed 6His-PGAM1 without Tat as a control.
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To produce the Tat-PGAM1 and control-PGAM proteins,
the plasmid was transformed into Escherichia coli BL21
cells. The transformed bacterial cells were grown in 100 mL
of lysogeny broth media to a D600 value of 0.5-1.0 and then
induced with 0.5 mM isopropyl p-p-1-thiogalactopyranoside
at 18 °C for 18 h. Harvested cells were lysed by sonication
and purified using a Ni**-nitrilotriacetic acid Sepharose
affinity column (Qiagen, Inc.) and PD-10 column chroma-
tography (GE Healthcare, Chicago, IL, USA). The concen-
tration of purified proteins was estimated using a Bradford
assay [36].

Equal amounts of protein were analyzed using 10%
sodium dodecyl sulfate polyacrylamide gel electrophore-
sis (SDS-PAGE). Proteins were then electrotransferred to
a polyvinylidene difluoride membrane. The membrane was
blocked with tris-buffered saline (25 mM Tris—HCI, 140 mM
NaCl, 0.1% Tween 20, pH 7.5) containing 5% non-fat dry
milk and subsequently probed using anti-polyhistidine anti-
bodies (1:2000, His-probe, SantaCruz Biotechnology, Santa
Cruz, CA, USA). Proteins were identified using chemilu-
minescent reagents as recommended by the manufacturer
(Amersham, Franklin Lakes, NJ, USA).

Administration of Tat-PGAM1

Following a 1-week acclimation to laboratory conditions,
mice were divided into 4 groups (n=10 in each group): con-
trol, Tat peptide-, control-PGAM1-, and Tat-PGAM 1 -treated
groups. Tat peptide (2 mg/kg), control-PGAMI1, and Tat-
PGAMI1 (10 mg/kg) were intraperitoneally administered to
mice at 8 weeks of age, once a day for 3 weeks.

Novel Object Recognition Test

The testing apparatus consisted of an open box
(25 ecm X 25 cm X 25 cm) made of black acrylic as previ-
ously described [27]. The floor was covered with woodchip
bedding, which was moved around between trials and testing
days to prevent the build-up of odor in certain places. The
objects to be discriminated were made of solid metal and
could not be displaced by the mice due to their weight. The
objects were cleaned with bleach to remove residual odors.

On the 20th day of treatment with control, Tat peptide,
control-PGAMI1-, or Tat-PGAMI, 1 h after treatment, mice
from each group (n =10 per group) were allowed to explore
the apparatus for 2 min. On the testing day (21st day of
treatment), two 2-min trials were performed 1 h after the
last treatment. In the sample trial, two identical objects were
placed in two opposite corners of the apparatus. Mice were
placed in the apparatus and left to explore these two identi-
cal objects. After the sample trial, mice were placed back
in their home cage for an inter-trial interval of 1 h; subse-
quently, a choice trial was performed. In the choice trial, a

new object replaced one of the objects that were present in
the sample trial. The mice were exposed again to two differ-
ent objects: the familiar and new objects. Exploration was
defined as directing the nose toward the object at a distance
of no more than 2 cm and/or touching the object with the
nose. From this measure, a series of variables were then
calculated: the total time spent in exploring the two identical
objects in the sample trial and the time spent exploring the
two different objects in the choice trial.

The distinction between familiar and new objects in the
choice trial was determined by comparing the time spent
exploring the familiar object with the time spent exploring
the new one. The discrimination index represents the dif-
ference in exploration time expressed as a proportion of the
total time spent exploring the two objects in the choice trial.

Confirmation of Tat-PGAM1 Delivery
into Hippocampus

Following the novel object recognition test, animals in the
control, Tat peptide-, control-PGAM-, and Tat-PGAM1-
treated groups (n=35 in each group) were sacrificed. Brain
tissue was analyzed by western blotting as previously
described [27]. Following sacrifice and the removal of tis-
sues, the tissues were cut into 500-um-thick sections on a
vibratome (Leica Microsystems GmbH) and the hippocam-
pus was dissected using a surgical blade. Hippocampal
tissues were homogenized in 50 mM phosphate-buffered
saline (PBS, pH 7.4) containing 0.1 mM ethylene glycol-
bis(B-aminoethyl ether)-N,N,N',N'-tetraacetic acid (pH 8.0),
0.2% Nonidet P-40, 10 mM ethylenediaminetetraacetic
acid (pH 8.0), 15 mM sodium pyrophosphate, 100 mM
B-glycerophosphate, 50 mM sodium fluoride, 150 mM
sodium chloride, 2 mM sodium orthovanadate, 1 mM phe-
nylmethylsulfonyl fluoride and 1 mM dithiothreitol (DTT).
Following centrifugation for 5 min at 16,000xg at 4 °C, the
protein concentration in the supernatants was determined
using a Micro BCA protein assay kit with bovine serum
albumin as the standard (Pierce; Thermo Fisher Scientific,
Inc., Waltham, MA, USA). Aliquots containing 20 ug of total
protein were boiled in loading buffer containing 150 mM
Tris (pH 6.8), 3 mM DTT, 6% SDS, 0.3% bromophenol blue,
and 30% glycerol. Each aliquot was subsequently loaded
onto a polyacrylamide gel. Following electrophoresis, the
proteins in the gel were transferred to a nitrocellulose mem-
brane (Pall Life Sciences, Port Washington, NY, USA). To
reduce background staining, the membrane was incubated
with 5% non-fat dry milk in PBS containing 0.1% Tween-20
for 45 min at 25 °C, which was followed by incubation with
rabbit anti-polyhistidine primary antibody (1:2000, His-
probe, SantaCruz Biotechnology), peroxidase-conjugated
goat anti-rabbit IgG (1:5000, SantaCruz Biotechnology), and
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an ECL chemiluminescent reagent (Pierce; Thermo Fisher
Scientific, Inc.).

Tissue Processing

Following the novel object recognition test, animals (n=35
in each group) were anesthetized with 1 g/kg of urethane
(Sigma-Aldrich, St. Louis, MO, USA) and perfused tran-
scardially with 0.1 M PBS (pH 7.4) followed by 4% para-
formaldehyde in 0.1 M PBS (pH 7.4) as previously described
[27]. The brains were dissected and post-fixed for 12 h in
the same fixative. The tissue was cryoprotected by overnight
saturation with 30% sucrose. Serial brain sections were cut
coronally at a thickness of 30 um using a cryostat (Leica,
Wetzlar, Germany) and collected in 6-well plates containing
PBS for further processing.

Immunohistochemistry

All sections were processed under the same conditions to
ensure that the immunohistochemical data were comparable.
Tissue sections, at 90 pum intervals, were selected from an
area between 1.82 and 2.30 mm posterior to the bregma, as
defined by a mouse atlas [37]. The sections were sequentially
treated with 0.3% H,O, in PBS for 30 min and 10% normal
goat serum in 0.05 M PBS for 30 min at 25 °C. Sections
first underwent overnight incubation with rabbit anti-Ki67
antibody (1:1000; Abcam), rabbit anti-doublecortin (DCX)
antibody (1:5000; Abcam) or rabbit anti-phosphorylated
cAMP response element-binding protein at Ser133 (pCREB;
1:400; Cell Signaling Technology, Inc., Beverly, MA, USA)
at 25 °C. Thereafter, the sections were treated with bioti-
nylated goat anti-rabbit IgG and a streptavidin-peroxidase
complex (1:200; Vector, Burlingame, CA, USA) for 2 h at
25 °C. Sections were visualized by reaction with 3,3'-diam-
inobenzidine tetrachloride (Sigma) in 0.1 M Tris—HCI buffer
(pH 7.2) and mounted on gelatin-coated slides. Sections
were dehydrated and mounted with Canada balsam (Kanto
Chemical, Tokyo, Japan).

Data Analysis

Analysis of the hippocampal dentate gyrus for DCX was
performed using an image analysis system and Image]
software v. 1.50 (National Institutes of Health, Bethesda,
MD, USA). Data analysis was carried out under the same
conditions by two observers in blinded conditions for each
experiment, to ensure objectivity as described in a previ-
ous study [27]. Digital images of the whole dentate gyrus
were captured using a BX51 light microscope (Olympus,
Tokyo, Japan) equipped with a digital camera (DP72, Olym-
pus) connected to a computer. Images were calibrated into
an array of 512X 512 pixels corresponding to a tissue area
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of 1200 um X900 um (100 X primary magnification). Each
pixel resolution had 256 Gy levels and the intensity of DCX
immunoreactivity was evaluated by relative optical density
(ROD), which was obtained after transformation of the mean
gray level using the following formula: ROD =log(256/mean
gray level). The ROD of background staining was deter-
mined in unlabeled portions of the sections using Photoshop
CC 2018 software (Adobe Systems Inc., San Jose, CA, USA)
and this value was subtracted to correct for nonspecific stain-
ing using ImageJ v. 1.50 software. Data are expressed as a
percentage of the control group (which was set at 100%).
The Ki67- and pCREB-immunoreactive nuclei in the
whole dentate gyrus were counted using an analysis system
equipped with a computer-based CCD camera (OPTIMAS
software version 6.5; CyberMetrics® Corporation, Phoenix,
AZ, USA; magnification, 100x) as described in a previous
study [27]. The image was converted to a gray-scale image
and Ki67- and pCREB-immunoreactive nuclei were auto-
matically selected according to the intensity of the immu-
nohistochemical staining for Ki67 and pCREB, respectively.

Statistical Analysis

The data were expressed as the mean of the experiments
performed for each experimental investigation. In order to
determine the changes in cell number and ROD, mean differ-
ences among the groups were analyzed statistically by one-
way analyses of variance followed by Bonferroni’s post-hoc
test using GraphPad Prism 5.01 software (GraphPad Soft-
ware, Inc., La Jolla, CA, USA). The results were considered
to be statistically significant if p <0.05.

Results

Purification and Identification of Control-PGAM1
and Tat-PGAM1 Fusion Proteins

Human PGAMI1 genes were fused to Tat peptide expression
vectors to produce the Tat-PGAMI1 fusion proteins. Control-
PGAMI protein, without a Tat domain, was manufactured
(Fig. 1a). After the overexpression of the vectors, purified
control-PGAM1 and Tat-PGAMI1 fusion proteins were
obtained by Ni?*- — Ni**-nitrilotriacetic acid Sepharose
affinity column and PD-10 column chromatography. West-
ern blot analysis revealed polyhistidine bands for control-
PGAMI and Tat-PGAM1 (Fig. 1b).

Confirmation of Tat-PGAM1 Delivery
into the Hippocampus

To confirm the efficient delivery of control-PGAMI and Tat-
PGAM1 fusion proteins into the hippocampus, western blot
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Fig. 1 Purification and identification of control-PGAMI1 and Tat-
PGAMI1 fusion proteins and delivery of these proteins into mouse
hippocampus. a Overview of the control-PGAMI and Tat-PGAM1
fusion protein. b Expression and purification of the control-PGAM1
and Tat-PGAMI proteins, as assessed by western blot analyses for

analysis was conducted. Administration of Tat-PGAMI1 sig-
nificantly increased polyhistidine protein levels in hippocam-
pal homogenates. Administration of Tat peptide or control-
PGAMI resulted in similar polyhistidine protein levels to
those in the control group (Fig. 1c).
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polyhistidine. ¢ Western blot analysis of polyhistidine in hippocam-
pal homogenates of control, Tat peptide-, control-PGAM]1-, and Tat-
PGAM I -treated groups (n=>5 per group; °p < 0.05, vs. control group;
5% < 0.05, vs. Tat-peptide-treated group; °p < 0.05, vs. control-
PGAM1-treated group)

Effects of Tat-PGAM1 on Novel Object Recognition
Memory

Mice spent a similar amount of time exploring the two
identical objects in all groups during the training period.
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B3 Familiar object EZJ New object

Exploration time (sec)

Fig.2 Exploration time (n=10 per group) and discrimination index
(n=10 per group; *p < 0.05, vs. control group; % < 0.05, vs. Tat-
peptide-treated group; ‘p < 0.05, versus control-PGAMI-treated
group) of familiar versus novel objects during testing day of a novel
object recognition test in control, Tat peptide-, control-PGAMI-,

However, mice in all groups spent more time exploring
the new object than the familiar one during the testing
period. Mice in the Tat peptide-treated group spent simi-
lar time exploring the new and familiar objects, while the
Tat-PGAM1-treated group spent more time exploring the
new object than the familiar one. However, no statistically
significant difference was detected between the control
and Tat peptide-treated groups or between the control and
Tat-PGAM 1-treated groups. It is notable that the discrimi-
nation index was significantly lower in the Tat peptide-
treated group and higher in the Tat-PGAM1-treated group
than in the control or control-PGAM1-treated groups
(Fig. 2).

Effects of Tat-PGAM?1 on Cell Proliferation
in the Dentate Gyrus

In the control group, Ki67-positive proliferating cells were
mainly observed in the subgranular zone of the dentate
gyrus and the mean number of Ki67-positive nuclei was
12.32 (Fig. 3a, e). In the Tat peptide-treated group, few
Ki67-positive proliferating cells were found in the dentate
gyrus and the number of Ki67-positive nuclei was lower (by
53.41%) than that in the control group (Fig. 3b, e). In the
control-PGAM 1-treated group, Ki67-positive proliferating
cells were also mainly observed in the dentate gyrus and the
number of Ki67-positive nuclei was 11.06 (Fig. 3c, e). In
the Tat-PGAM1-treated group, Ki67-positive proliferating
cells were observed in the dentate gyrus and the number of
Ki67-positive nuclei was significantly higher (by 235.9%)
than that in the control group (Fig. 3d, e).
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and Tat-PGAMI1-treated mice. Data of the exploration time for each
object (same object, where one object was replaced by a new one
on the testing day) are presented as a percentage of total exploration
time. All data are shown as % exploration time + SEM
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Fig. 3 Immunohistochemistry for Ki67 in the dentate gyrus of a con-
trol, b Tat peptide-, ¢ control-PGAMI- and d Tat-PGAMI-treated
mice. Ki67-positive nuclei are mainly observed in the subgranular
zone of the dentate gyrus. Note that Ki67-positive nuclei are few in
Tat peptide-treated mice and are most abundant in the dentate gyrus
of Tat-PGAMI-treated mice. GCL granule cell layer, ML molecu-
lar layer, PL polymorphic layer. Scale bar=50 pm. e The number of
Ki67-positive nuclei in the dentate gyrus per section for each group
are also shown (n=>5 per group; *p < 0.05, versus control group; °p
< 0.05, versus Tat-peptide-treated group; °p < 0.05, versus control-
PGAMI-treated group). Data are presented as mean + SEM
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Fig.4 Immunohistochemistry for DCX in the dentate gyrus of a con-
trol, b Tat peptide-, ¢ control-PGAMI1- and d Tat-PGAM]-treated
mice. DCX-immunoreactive neuroblasts have cytoplasm located in
the subgranular zone and have dendrites extending into the molecu-
lar layer (ML) of the dentate gyrus. DCX-immunoreactive neuro-
blasts and their dendrites are poorly detected in the dentate gyrus of
Tat peptide-treated mice, but are most abundant in the dentate gyrus
of Tat-PGAMI-treated mice. GCL granule cell layer, PL polymor-
phic layer. Scale bar =50 um. e The relative optical densities (RODs)
expressed as a percentage of the value representing the DCX immu-
noreactivity in the dentate gyrus of the control group are also shown
(n=35 per group; *p < 0.05, vs. control group; > < 0.05, vs. Tat-
peptide-treated group; °p < 0.05, vs. control-PGAM -treated group).
Data are presented as mean + SEM

Effects of Tat-PGAM1 on Neuroblast Differentiation
in the Dentate Gyrus

In the control group, DCX-immunoreactive differentiated
neuroblasts were detected in the dentate gyrus. In this
group, DCX immunoreactivity was found in the cytoplasm
and dendrites, which extended into the molecular layer of
dentate gyrus (Fig. 4a). In the Tat peptide-treated group,
DCX immunoreactive differentiated neuroblasts were few
and their dendrites were poorly developed in the dentate
gyrus. DCX immunoreactivity was significantly lower, by
28.26%, than that in the control group (Fig. 4b, e). In the
control-PGAMI-treated group, DCX-immunoreactive dif-
ferentiated neuroblasts were observed to have a distribu-
tion pattern similar to that in the control group, and DCX
immunoreactivity was slightly higher than that in the con-
trol group (Fig. 4c, e). The DCX-immunoreactive differenti-
ated neuroblasts were more abundant in the dentate gyrus

Control Tat peptide
ML :
_GCL ; £
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& e

Tat-PGAM1

ROD (%) vs. Control group .

Fig. 5 Immunohistochemistry for pCREB in the dentate gyrus of a
control, b Tat peptide-, ¢ control-PGAMI1- and d Tat-PGAM1-treated
mice. pCREB-positive nuclei are mainly found in the subgranular
zone of the dentate gyrus. Note that pCREB-positive nuclei are few
in the dentate gyrus of Tat peptide-treated mice, while pCREB-posi-
tive nuclei are strong and most abundant in the dentate gyrus of Tat-
PGAMI-treated mice. GCL granule cell layer, ML molecular layer,
PL polymorphic layer. Scale bar=50 um. e The number of pCREB-
positive nuclei per section for each group are also shown (n=5 per
group; % < 0.05, versus control group; °p < 0.05, vs. Tat-peptide-
treated group; °p < 0.05, vs. control-PGAM 1 -treated group). Data are
presented as mean+ SEM

in the Tat-PGAMI1-treated group than in this region in the
control or control-PGAM 1-treated group. Further, in the
Tat-PGAM1-treated group, DCX immunoreactivity was
significantly higher, by 173.56%, than that in the control
group (Fig. 4d, e).

Effects of Tat-PGAM1 on the Phosphorylation
of CREB in the Dentate Gyrus

In the control group, pPCREB-positive nuclei were mainly
observed in the subgranular zone of the dentate gyrus and
the mean number of pCREB-positive nuclei was 46.70
(Fig. 5a, e). In the Tat peptide-treated group, few pCREB-
positive nuclei were found in the dentate gyrus and the
number of pCREB-positive nuclei was lower, by 54.05%,
than that in the control group (Fig. 5b, e). pCREB posi-
tive nuclei were detected in the dentate gyrus both in the
control and control-PGAM1-treated groups although the
number of pCREB-positive nuclei was slightly higher than
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that in the control group (Fig. 5c, ). pPCREB-positive nuclei
were more abundantly observed in the dentate gyrus in the
Tat-PGAM1-treated group than in this region in the con-
trol or control-PGAM1-treated group. Moreover, in the
Tat-PGAM1-treated group, the number of pCREB-positive
nuclei was significantly higher, by 154.7%, than in the con-
trol group (Fig. 5d, e).

Discussion

PGAM protein expression is up-regulated in various can-
cers such as colorectal cancer [8], lung cancer [9], breast
carcinoma [10], esophagus squamous cell carcinoma [11],
breast cancer, prostate cancer [38], oral squamous cellular
carcinoma [12], and glioma [13, 14]. In previous studies, we
demonstrated that pyridoxine promoted cell proliferation and
neuroblast differentiation in naive mice [26, 27]. Proteomic
approaches demonstrated that pyridoxine increased PGAM1
levels and we confirmed the increase in PGAM1 mRNA
levels in the hippocampus after pyridoxine treatment [27].
In the present study, we investigated the role of PGAMI in
cell proliferation and neuroblast differentiation in the mouse
dentate gyrus. The data suggest that cancer and hippocam-
pal neurogenesis share a similar microenvironment and
metabolic pathways. We examined the effects of PGAMI1
on novel object recognition memory, cell proliferation, and
neuroblast differentiation in the dentate gyrus.

To facilitate the delivery of PGAMI into neurons, we
generated a Tat-PGAM1 fusion protein attached to a poly-
histidine tag and we confirmed the successful expression of
Tat-PGAMI1 fusion by western blot, probing for polyhis-
tidine in the hippocampus. Administration of Tat-PGAM1
significantly increased the polyhistidine levels in the hip-
pocampus, while control-PGAMI treatment did not show
any significant changes in the levels of polyhistidine. This
result indicates that control-PGAM1 was not able to cross
the blood-brain barrier or cell membrane, while Tat-
PGAM1 fusion protein effectively crossed the blood—brain
barrier and cell membrane. Tat-fusion protein can be applied
to research on neurological disorders including Alzheimer’s
disease and cerebral ischemia [39-41].

It has been reported that HIV infection and its associated
Tat protein are one of the causative agents in HIV-associated
neurocognitive disorders [42, 43]. In addition, Tat peptide
has been linked to impaired neurogenesis and cognitive
deficits [44, 45]. In the present study, we also observed
significant reduction in novel object recognition as well as
cell proliferation and neuroblast differentiation in the den-
tate gyrus. Intrahippocampal administration of Tat protein
resulted in behavioral deficits in the Morris water maze and
novel object recognition tests in rats [46]. Tat-expressing
mouse brains showed significant reduction in the numbers

@ Springer

of neural stem cells and neuroblasts, and integration into
mature neurons. In addition, Tat-containing conditioned
media showed impairments in proliferation, migration,
and differentiation of neural precursor cells through Notch
signaling [45]. Administration of Tat-PGAMI1 increased the
amount of time spent exploring the new object, although
statistical significance was not detected. However, the DI
was significantly higher in the Tat-PGAM1-treated group
than in the control or control-PGAM1-treated groups. This
result suggests that administration of Tat-PGAM]1 improves
novel object recognition memory. To elucidate the effects of
Tat-PGAM1 on cell proliferation and neuroblast differentia-
tion in the dentate gyrus, we conducted immunohistochemi-
cal staining for Ki67 and DCX, respectively. Administra-
tion of Tat-PGAMI, but not control-PGAMI1, significantly
increased the number of proliferating cells and differenti-
ated neuroblasts in the dentate gyrus. This result suggests
that PGAMI1 facilitates glycolysis in order to promote cell
proliferation and neuroblast differentiation in the dentate
gyrus. This result was supported by previous studies that
showed that the targeting of PGAM1 with siRNA or its small
molecule inhibitor, PGMI-004A, induced cell death by up-
regulating the apoptotic pathway and down-regulating the
anti-apoptotic pathway [15], attenuated cancer cell prolif-
eration [17, 18], and reduced cell motility [25]. However, a
recent study demonstrated that knockdown of PGAMI1 only
partially reduced glycolysis [25]. Another possibility is that
PGAMI1 modulates actin filament assembly, cell motility,
and cell migration, as shown in cancer cells, through direct
interaction with a-smooth muscle actin ACTA2, independ-
ent of its metabolic activity [25].

CREB is one of the most important transcription fac-
tors mediating neural plasticity in the mammalian brain.
Depletion of CREB results in impaired axonal growth and
projections [47], while activation of CREB in cortical neu-
rons induces dendritic growth and arborization [48]. In
addition, CREB regulates the expression of glucose trans-
porter 3 (GLUT3) and pharmacological inhibition of gly-
colysis impairs neurite growth [49]. In previous studies,
we demonstrated that GLUT3 and glucose metabolism are
closely related to hippocampal neurogenesis in the gerbil
hippocampus after transient forebrain ischemia [50] as well
as postnatal development in mouse hippocampus [51]. Fur-
thermore, we previously demonstrated that administration
of pyridoxine significantly increased the number of pCREB-
immunoreactive nuclei in the high-fat diet-fed mice [52]. In
the present study, we have demonstrated that administration
of Tat-PGAM1 significantly increases the phosphorylation
of CREB in the dentate gyrus. Collectively, PGAM1 up-
regulates the phosphorylation of CREB and facilitates syn-
aptic plasticity, cell proliferation, and neuroblast differentia-
tion, as well as glucose metabolism, in the hippocampus. To
confirm the role of PGAM1 on hippocampal neurogenesis
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and cognitive functions, a knockout study for PGAM1 needs
to be planned as there are currently no knockout mice for
Pgaml.

In conclusion, the administration of Tat-PGAMI1 pro-
motes cell proliferation and neuroblast differentiation in
the dentate gyrus by up-regulating the phosphorylation of
CREB, and improves novel object recognition ability. Tat-
PGAMI1 may be useful for the treatment of neurological dis-
orders related to the hippocampus because of its potential to
promote regenerative processes.
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