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Abstract
In the 1960s and 70s, biochemical and pharmacological evidence was pointing toward glutamate as a synaptic transmitter at 
a number of distinct receptor classes, known as NMDA and non-NMDA receptors. The field, however, lacked a potent and 
highly selective antagonist to block these putative postsynaptic receptors. So, the discoveries in the early 1980s of d-AP5 as 
a selective NMDA receptor antagonist and of its ability to block synaptic events and plasticity were a major breakthrough 
leading to an explosion of knowledge about this receptor subtype. During the next 10 years, the role of NMDA receptors was 
established in synaptic transmission, long-term potentiation, learning and memory, epilepsy, pain, among others. Hints at 
pharmacological heterogeneity among NMDA receptors were followed by the cloning of separate subunits. The purpose of 
this review is to recognize the important contributions made in the 1980s by Graham L. Collingridge and other key scientists 
to the advances in our understanding of the functions of NMDA receptors throughout the central nervous system.
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Introduction

The 1980s proved to be a decade where N-methyl-d-aspar-
tate (NMDA) receptor-mediated neurotransmission became 
firmly established. Perhaps this is epitomized by the 1983 
paper published by Graham Collingridge and colleagues in 
the Journal of Physiology that changed our understanding of 
neuronal plasticity and, more widely, of the functional role 
of NMDA receptors in the central nervous system (CNS) 
[1]. With Steven Kehl and Hugh McLennan, they showed 
that a new selective NMDA receptor antagonist, 2-amino-
5-phosphonovalerate (APV), inhibited the induction of 
long-term potentiation (LTP) of the synaptic input to CA1 
neurones in hippocampal slices (Fig. 1a). Although cautious 

at the time, stating that ‘NMA receptors…may play a role in 
synaptic plasticity’, this observation, and the use of this new 
pharmacological tool are at the core of the now established 
role of NMDA receptors in excitatory neurotransmission, in 
many forms of synaptic plasticity and hence in learning and 
memory. In this brief review, we will consider what led up 
to this important discovery, what other related events sur-
rounded it, and what directly followed from these studies 
with APV in the 1980s.

APV is now more commonly known as 2-amino-5-phos-
phonopentanoate (AP5). Although some studies state that 
either the racemic mixture, d,l-AP5, or the single active 
isomer, d-AP5, was used, it is unclear from some reports, 
however, which chemical entity was used. Thus, for sim-
plicity and because d-AP5 is the active moiety within the 
racemate, d-AP5 has been used throughout the main body 
of this review.

Background to 1980 Discoveries

In 1949, Hebb had proposed that changes in synaptic 
strengthening underlying learning required coincident pre- 
and post-synaptic activity [2] and, by the end of the 1960s, 
short lasting forms of synaptic plasticity were described in 
invertebrates and in the spinal cord. In their seminal review 
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of 1968, Kandel and Spencer stated that ‘In contrast to the 
extensive data on spinal synapses, data on cortical synaptic 
plasticity are meager and, specifically, post-tetanic poten-
tiation (PTP) has not yet been studied in detail comparable 
to that in the cord. This is unfortunate, since the complex 
morphology of cortical synapses may indicate a capability 
for unusual plastic alteration.’ Indeed, although long lasting 
depression [3] and facilitation [4] were already observed in 
hippocampal synapses there were very few other accounts 
of synaptic plasticity in the mammalian brain [5]. The phe-
nomenon of long-term potentiation (LTP) was first detailed 
by Bliss and Lomo [6] in the dentate gyrus in vivo. Soon, 
however, hippocampal slices [7] became the preferred prepa-
ration for studying LTP [8–10]. LTP was shown to require 
cooperativity between strong afferent input from many fibres 
and a resulting strong depolarization of the postsynaptic 
neurone [11, 12]. Such potentiation was input specific so 
that other afferent inputs were unaffected [9] or reduced, 
i.e. heterosynaptic depression [13]. By contrast, a low rate 

of stimulation could lead to a long-term depression of all 
inputs [12]. The nature of the chemical transmitters involved 
in such processes was largely conjectural.

In the late 1970s, the concept emerged of different sub-
types of glutamate receptor that mediate synaptic excitation 
in the central nervous system [14, 15]. Initial observations 
with several natural and recently synthesized acidic amino 
acids indicated that that N-methyl-d-aspartate (NMDA) was 
a considerably more potent excitant of central neurones than 
l-glutamate and l-aspartate [16, 17]. An early indication that 
there might be subtypes of receptors for these acidic acids 
was the finding that the ratios of potency between d,l-homo-
cysteate or l-aspartate and l-glutamate, and later between 
NMDA and kainate, varied between different neuronal popu-
lations [18–20]. These findings were part of the developing 
concept of subtypes of glutamate receptors. Studies with 
other structurally constrained glutamate analogues from 
natural resources, such as kainic, domoic and quisqualic 
acids, suggested potential diversity of receptors mediating 
synaptic excitation. This diversity was supported by the 
observation that Mg2+ reduced the effectiveness of NMDA 
to a greater extent than most other glutamate analogues [21]. 
Further development of this concept required discovery of 
suitable antagonists. Longer chain analogues of glutamate, 
namely α-amino-adipic and -suberic and diaminopimelic 
acids, were weak, selective antagonists of NMDA-induced 
excitation rather than that induced by quisqualate, kainate 
and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 
(AMPA) and reduced some synaptic events [22–27]. Thus 
the concept of NMDA and non-NMDA (later to be known as 
AMPA and kainate) receptors became accepted [28].

By the mid-1970 s, there were a number of papers report-
ing the presence, uptake and calcium-dependent release of 
l-glutamate and/or l-aspartate, which provided powerful 
evidence toward a transmitter role for these acidic amino 
acids [29] but the lack of selective, potent and established 
receptor antagonists slowed further progress in this field.

d‑AP5, NMDA and LTP

Hence, the description of 2-amino-phosphonovaleric acid 
[30] as a potent and selective NMDA receptor antagonist at 
synapses on spinal neurones was the breakthrough needed 
to allow a thorough investigation of the physiological role 
of NMDA receptors.

Collingridge, being a Bristol graduate with Jeff Watkins, 
a PhD student with John Davies and a postdoc with Hugh 
McLennan, was in a good position to examine the effects 
of this new pharmacological tool on hippocampal slices 
in vitro, a preparation being used for detailed electrophysiol-
ogy. Thus, Collingridge and collaborators first demonstrated 
that d-AP5, a gift from Jeff Watkins, was a more potent and 
selective NMDA receptor antagonist than previously used 
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Fig. 1   d-AP5, NMDA and NMDA receptor-dependent synaptic plas-
ticity in 1983. a Iontophoretic application of d-AP5 blocks induction 
of LTP, which can be readily induced after washout of the antagonist 
[1]. b Brief iontophoretic application of NMDA leads to a transient 
enhancement of field potential amplitude, which declines to baseline 
over time [1]. c Longer, bath application, of NMDA leads to a perma-
nent depression of synaptic transmission [49]
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compounds, the activity lying mainly in the d-isomer [31]. 
With his co-authors, he then went on to show that d-AP5 
reduced the synaptic potentiation in the CA1 region that fol-
lowed high frequency stimulation of the Schaffer collateral 
input (Fig. 1a) with minimal effect on synaptic potentials at 
low stimulation frequencies [1]. Thus, the role of NMDA 
receptors in the initiation of LTP following high frequency 
stimulation was established in this highly quoted paper 
(1830 citations; Web of Science; September 2018).

This basic observation, in hippocampal slices, of the role 
of NMDA receptors in synaptic plasticity was rapidly seized 
upon and replicated by other major researchers in LTP using 
different paradigms but with a common d-AP5-sensitive 
theme: Schaffer collateral/commissural pathways to CA1 
[32–35], perforant pathway to dentate gyrus in vivo [36, 
37]. However, LTP at some hippocampal synapses appeared 
not to be mediated by NMDA receptors. For example, only 
the commissural, and not the mossy fibre, input to CA3 was 
sensitive to d-AP5 [38].

The use of d-AP5 allowed the role of NMDA receptors 
in LTP to be extended to rat visual cortical slices, although 
in this tissue GABAergic inhibition appears to play a more 
important modulating role than in the hippocampus [39]. 
In parallel, Wolf Singer’s group showed that, at a critical 
period of development in the kitten visual cortex, d-AP5 
also prevented the normal developmental process of activ-
ity-dependent modifications, which results in orientation 
selectivity of neurones in the visual cortex [40, 41]. NMDA 
receptor antagonists prevent both the loss of inappropri-
ate synaptic connections and the strengthening of correct 
connections. Another form of learning during development 
mediated by NMDA receptors is imprinting in day-old 
chicks, a phenomenon in which both the learning itself and 
the subsequent increase in glutamate binding are sensitive 
to d-AP5 [42, 43].

Concurrent with these observations in mammals, the 
development of a retinotopic map in the tectum of frogs and 
goldfish was also reported to be impaired by d-AP5 [44–46]. 
Part of this re-wiring may require the growth of neurites 
and dendrites as well as cell survival processes that are also 
NMDA receptor-dependent [47, 48]. Interestingly both the 
ability to induce cortical LTP and the density of NMDA 
receptors appeared to peak during this critical period for 
development of cortical connections, stressing the impor-
tance of NMDA receptors in this form of plasticity [49].

Is NMDA Receptor Activation Sufficient for Inducing 
LTP?

The discovery that d-AP5 blocked induction of LTP sug-
gested that application of NMDA alone should be sufficient 
to induce plasticity. As shown in the original paper, brief 
exposure to NMDA results only in a transient enhancement 

of field potentials (Fig. 1b, [1]). In contrast, a longer applica-
tion of NMDA (Fig. 1c, [50]) or glutamate [50] resulted in 
a depression of synaptic transmission, later recognized as 
NMDA receptor-dependent chemical LTD [51]. Similarly, 
low frequency afferent stimulation, besides limiting the 
induction of LTP [52], can also induce a long-term depres-
sion of synaptic transmission [12], shown in the 1990s to be 
d-AP5-sensitive [53, 54].

The transient enhancement of the amplitude of the field 
potentials, seen following NMDA application (Fig. 1b), 
seemed similar to the initial decremental phase of LTP 
(Fig. 1a), termed short-term potentiation (STP); STP, just 
like LTP, was d-AP5-sensitive raising the question whether 
STP was essential to the establishment of LTP or whether 
it was a mechanistically distinct parallel event [1, 55, 56]. 
Eventually it was shown that NMDA receptors of differ-
ent subunit composition mediate induction of STP versus 
LTP [57] and that NMDA-induced enhancement of the field 
potential amplitude is distinct from STP, which is associ-
ated with a change in slope of field responses [58]. Gary 
Lynch’s group, did, however, show that successful induc-
tion of chemical LTP could be achieved when application of 
NMDA was followed by a brief application of d-AP5 [59], 
the antagonist possibly preventing the longer activation of 
NMDA receptors required for the induction of LTD, thus 
revealing the chemical LTP.

Why NMDA Receptors for LTP?

Understanding why NMDA receptors play a unique role in 
synaptic potentiation depended on two key observations.

The first relates to the explanation of (i) the strange cur-
rent–voltage curve of the NMDA receptor [60] and (ii) 
why Mg2+ ions inhibit responses to bath application of 
NMDA [21]. The discovery was that Mg2+ ions produce a 
voltage-dependent brake on channel conductance particu-
larly at hyperpolarised membrane potentials [61, 62]. The 
Schaffer collaterals release glutamate onto both NMDA 
and AMPA receptors, the latter dominating the synaptic 
potential because of the Mg2+ block of the NMDA recep-
tor. Removal of Mg2+ ions uncovered a slow NMDA com-
ponent of the EPSP [63]. The NMDA receptor component 
also rises more slowly than the AMPA receptor component, 
which decays quickly not giving sufficient time for the Mg2+ 
block to be fully removed. The depolarisation resulting from 
AMPA receptor activation is not an absolute requirement: 
with AMPA receptors blocked, a slow synaptic depolarisa-
tion mediated by NMDA receptors is uncovered [64–67]. 
Thus the depolarization that follows temporal (or spatial) 
summation during high frequency stimulation of excita-
tory synaptic inputs is required to relieve the Mg2+ ion 
block, which immediately increases the conductance of the 
NMDA receptor-coupled channel [68, 69]. This slow NMDA 
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receptor component can be observed during high frequency 
stimulation beneath the AMPA receptor-mediated synaptic 
potentials [70].

The second key observation is that NMDA receptors are 
readily permeable to calcium when the voltage-dependent 
Mg2+ ion block is relieved [71]. The resultant increase in 
intracellular calcium, which can be visualised in dendritic 
spines receiving NMDA receptor activation [72] is the main 
driving force for plasticity in LTP induction protocols [73, 
74]. Calcium activates a complex array of secondary intra-
cellular events, including up-regulation of AMPA receptors 
at the potentiated synapse [75–78] and activation of pro-
tein kinases [79–82], that act as molecular switches [83, 84] 
and that also regulate protein synthesis dependence of the 
late phases of LTP [85, 86]. Much of this, including recruit-
ment of glutamate receptors to dendritic spines, was debated 
early [87, 88] and detailed in subsequent decades [89–91]. 
Nevertheless, although the field was in general agreement 
about the central role of NMDA receptors in initiating LTP, 
there was little consensus about the mechanisms of LTP 
expression, which could be mediated by pre-synaptic and 
post-synaptic mechanisms alike [92]. The differences in 
the outcome of various NMDA receptor activation proto-
cols depends among others on the extent to which different 
intracellular messaging systems are engaged and the type 
of synaptic plasticity that is induced or maintained [93, 94].

A further factor to consider is the role of inhibitory syn-
apses, which are recruited when afferent pathways are stimu-
lated with a tetanic pattern, including Schaffer collateral-
commissural fibres into CA1. GABAergic hyperpolarisation 
helps maintain the Mg2+ brake on the NMDA receptor con-
ductance. Blocking GABA-A receptor-mediated inhibition 
reveals the NMDA receptor component at low and high 
frequencies of stimulation [68, 95] and facilitates LTP [96, 
97]. During high frequency bursts, postsynaptic GABAergic 
inhibition declines and hence allows calcium flux through 
NMDA receptor channels [98]. The more natural theta stim-
ulation allows very short trains of stimuli to induce LTP [99, 
100] in which postsynaptic GABAergic inhibition is less 
prominent, itself being regulated by presynaptic GABA-B 
receptor-mediated inhibition [93, 94].

Temporal summation or frequency dependence of the 
recruitment of NMDA receptors, the resultant dendritic 
depolarization and calcium entry are the driving forces of 
LTP [70, 101]. Thus, NMDA receptors function as coinci-
dence detectors that sense synchronised pre- and post-syn-
aptic activity and uniquely allow for the Hebbian principle 
of cooperativity, between strong afferent input and marked 
postsynaptic depolarization, which is required for synaptic 
strengthening [68, 69, 102, 103]. This aspect of coopera-
tivity can be side-stepped, as described above, by a small 
postsynaptic depolarization, reducing extracellular Mg2+ ion 
concentration or reducing post- or pre-synaptic GABAergic 

inhibition, when low frequency stimulation can induce LTP 
[68, 103–105].

Ubiquity of NMDA Receptors

As is apparent from the above sections, NMDA receptors 
are not unique to the Schaffer collateral synapse on the CA1 
hippocampal pyramidal neurones. The development of d-
AP5, as a potent and selective NMDA receptor antagonist, 
allowed the role of NMDA receptors to be more widely 
investigated.

Indeed reports of a transmitter role for NMDA receptors 
onto spinal neurones in vivo using weaker NMDA receptor 
antagonists (see above) preceded the hippocampal papers. 
Interestingly using d-AP5, a single stimulus of peripheral 
afferents, unlike the initial reports in the hippocampus [1], 
could evoke NMDA receptor-mediated synaptic potentials 
in spinal neurones [30, 106]. The causal features of this dif-
ference are likely to be the more depolarized state in vivo 
and the temporal and spatial summation that occurs follow-
ing stimulation of a mixed population of primary afferents 
and internuncial neurones in the spinal cord experiments. 
Frequency-dependent depolarization and potentiation, sensi-
tive to NMDA receptor antagonists such as d-AP5, are also 
seen in these spinal pathways [107, 108].

Throughout the 1980s, d-AP5 was used to demonstrate a 
transmitter role for NMDA receptors throughout the brain; 
substantia nigra [109], dentate gyrus [110], interpeduncular 
nucleus [111], cerebellar Purkinje cells [112], neocortical 
neurones [113], red nucleus [114] and ventro-basal thalamus 
[115] as well as in sympathetic ganglia [116].

Most of the above studies were performed on rats or other 
mammals, although NMDA receptor-mediated d-AP5-sen-
sitive synaptic excitation was earlier demonstrated in the 
spinal cord of amphibians [117–119] and of fish [120, 121] 
and in the retina of fish [122, 123]. Interestingly, superfu-
sion of the exposed spinal cord with NMDA is able to initi-
ate fictive locomotion in both frogs and lampreys, a pattern 
blocked by d-AP5 [118, 120].

Thus it became apparent in the 1980s that NMDA 
receptors were important mediators of synaptic transmis-
sion throughout the central nervous system of vertebrates, 
although the question of the natural transmitter was still 
unanswered. l-Aspartate and l-glutamate, although mimick-
ing the effects of NMDA, were considerably less potent than 
NMDA itself in most assays, despite biochemical evidence 
supporting a transmitter role for these two amino acids [29]. 
Two key observations in the 1980s supported l-glutamate 
as the candidate. Firstly, in the absence of amino acid trans-
port processes, l-glutamate became tenfold more potent 
than NMDA on dissociated neurones [124]. Secondly, in 
binding studies, l-glutamate was tenfold more potent than 
l-aspartate as an inhibitor of radioactive d-AP5 binding to 
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NMDA receptors in rat brain membranes [125] and had an 
indistinguishable autoradiographic distribution to d-AP5 in 
rat brain [126].

Epilepsy

Epilepsy results from changes in brain circuitry excitability 
that lead to bursts of cortical activity arising spontaneously 
or from otherwise subthreshold events. A prime example of 
such epileptogenesis is the phenomenon of kindling, a form 
of plasticity following repetitive brain stimulation that leads 
to epilepsy-like convulsions. Kindling has features in com-
mon with LTP [127, 128]. In particular, d-AP5 prevents the 
induction of the epileptiform activity, but also reduces the 
resultant seizure-like discharges, following kindling proto-
cols [129, 130].

However, the first real evidence of the role of NMDA 
receptors in epilepsy came from in vivo studies in Harry 
Bradford’s and Brian Meldrum’s laboratories. They showed 
that local administration of d-AP5 reduced seizures resulting 
from a cobalt-induced lesion [131] and both sound-induced 
seizures in DBA-2 mice and pentylenetetrazol-induced 
seizures in Swiss mice [132] as well as photic stimulated 
epilepsy in primates [133]. The striking correlation in 
potency between NMDA receptor antagonism in vitro and 
that against seizures of three competitive NMDA receptor 
antagonists substantiated the importance of NMDA recep-
tors as anticonvulsants [132].

This was followed by many publications showing that 
both induction and maintenance of many forms of epilep-
tiform activity in hippocampal slices [95, 134–137] and in 
cortical slices [138, 139] could be prevented by d-AP5. This 
included the blocking of ex vivo bursting epileptogenic foci 
in kainate-lesioned rat hippocampi [140] and in surgically 
removed human neocortex [141]. The bursting pattern of 
layer 4/5 neurones during slow wave sleep was also blocked 
by local ejection of d-AP5 [142].

The role of NMDA receptors in, and the use of NMDA 
receptor antagonists for, various forms of epilepsy is still a 
subject of therapeutic interest.

Pain

Another therapeutically important aspect of plasticity is the 
development of neuropathic and other chronic pain condi-
tions, for example phantom limb pain. Such maladapted 
plasticity may lead to hyperalgesia and allodynia, two symp-
toms that indicate nociceptive pathways have been abnor-
mally strengthened or new ones formed.

Because, as mentioned earlier, the polysynaptic excita-
tion of spinal neurones following afferent stimulation of 
hind limb nerves is mediated by NMDA receptors [22–24, 
30, 106], it was not surprising that NMDA and d-AP5, 

respectively, induced and reduced nociceptive responses 
following local application to the spinal cord [143–145].

Concerning plasticity, the phenomenon of ‘wind-up’ 
whereby repetitive nociceptor fibre stimulation leads to a 
potentiated response of spinal neurones [146] is thought to 
underlie central sensitization leading to hyperalgesia. This 
form of plasticity is prevented by d-AP5 following local spi-
nal application in vivo [107] and following bath application 
in vitro [147]. Unilateral foot paw tissue damage may result 
in secondary hyperalgesia in the contralateral limb, which 
can be prevented by spinal administration of d-AP5 [148]. 
Nevertheless weak bioavailability of d-AP5 has limited its 
use in vivo for researching the role of NMDA receptors in 
various pain states.

d‑AP5 and Memory

Because LTP is thought to be one of the mechanisms under-
lying learning and memory, it was not surprising that the 
effects of d-AP5 were assessed in learning paradigms rapidly 
following the description of its block of LTP [1]. Parallels 
had already been drawn between the rate of decline of LTP 
and of loss of memory in older rats (reviewed in [149]).

Because of the low bioavailability of competitive NMDA 
receptor antagonists in general, d-AP5 was injected into the 
cerebral ventricles (i.c.v.) in the early experiments of Rich-
ard Morris and collaborators. Treated and untreated rats, 
placed in a large pool of opaque water, were compared for 
their ability to learn the position of a hidden escape platform 
over a 5 day period, a task now known as the Morris Water 
Maze. The results were highly significant in that the d-AP5 
treated animals took much longer to learn the location of the 
platform, spending much less time than the controls in the 
correct quadrant of the pool [36]. d-AP5-treated animals did 
not show deficits in a visual discrimination test suggesting 
a role for NMDA receptors specifically in spatial learning, 
which is thought to be a hippocampus-based phenomenon. 
By changing the time of administration of d-AP5, they were 
able to show that, in parallel with LTP, NMDA receptors 
were required for the acquisition or encoding of memory but 
not for its storage or retrieval [150], see also [151].

Similarly, i.c.v. d-AP5 disrupted acquisition of short term 
memory (radial maze) and attenuated retention of long term 
memory (passive avoidance) provided the drug was injected 
before the learning phase [152] and prior administration of 
d-AP5 could result in memory decline in an operant learning 
paradigm [153]. Acquisition of odour discrimination was 
also prevented by d-AP5 but previously learned memories 
were not disrupted [154]. These data extended the concept 
of an NMDA receptor-mediated LTP-like plasticity require-
ment from the hippocampal-based spatial domain to other 
forms of learning and memory.
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Neurotoxicity and Neuroprotection

In contrast to its positive role in neuroplasticity, excess 
NMDA receptor activation can lead to d-AP5-sensitive 
neurodegeneration [155, 156]. This sensitivity to NMDA-
induced neurotoxicity varies between populations of neu-
rones, a finding likely related to the differences in NMDA 
receptor expression and/or calcium buffering [157]. Release 
of glutamate following excessive and/or prolonged stimula-
tion of neuronal pathways can also result in d-AP5-sensitive 
degeneration of targetted neurones [158] similar to that fol-
lowing epileptiform activity in hippocampal slices [159, 
160].

Brain ischaemia and hypoglycaemia lead to high extracel-
lular levels of glutamate [161–163]. Although competitive 
NMDA receptor antagonists have been shown to be effective 
in reducing neuronal cell loss following temporary carotid 
artery occlusion [164] and hypoglycaemia [165], the hope 
for them as clinical agents [166] has not yet been realized.

Beyond d‑AP5: Medicinal Chemistry Around 
the NMDA Receptor

Although the synthesis of NMDA was first reported in 1962 
[167], it wasn’t until much later that chemists developed 
more potent agonists by conformational restriction of either 
aspartate or glutamate (reviewed in [174]). Such agonists 
include α-tetrazolylglycine [168], the cyclobutane trans-
ACBD [169, 170] and the cyclopropanes d-CCG-II and 
l-CCG-IV [171–173].

Following the success of d-AP5 in forwarding our under-
standing of the role of NMDA receptors, medicinal chem-
ists in academia and industry continued to develop new 
compounds in order to increase potency and/or bioavail-
ability (reviewed in [174]). Increasing the affinity of d-AP5 
was achieved by conformational restriction for example by 
incorporating a double bond into the side chain (e.g. CGP 
37849 and its α-carboxyethyl ester CGP 39551, [175]), or 
incorporating the α-amino group and some of the side chain 
into a piperidine ring (e.g. CGS 19755, [176]). Like d-AP5, 
D-AP7, a longer chain analogue, was also found to be a 
competitive NMDA receptor antagonist and blocked LTP 
whereas d-AP4, D-AP6 and D-AP8 were essentially inac-
tive [32, 177, 178]. Conformational restriction of D-AP7 
led to the development of high affinity antagonists such as 
the piperazine derivatives d-CPP [179, 180] and d-CPPene 
[181], the decahydroisoquinoline LY274614 [182] and the 
phenylalanine SDZ EAB515 [183].

Several of these high affinity NMDA receptor antago-
nists were radiolabelled (e.g. [3H]AP5 [125], [3H]CPP [184], 
[3H]CGS19755 [185] and [3H]CGP 39653 [186]). They 
were used in binding assays and alongside [3H]glutamate 
[187, 188] and [3H]MK-801 [189] (a high affinity channel 

blocker) in autoradiography, to study the distribution of 
native NMDA receptors throughout different brain regions.

High affinity NMDA receptor antagonists were used 
in animal models of CNS disorders and were found to be 
anticonvulsant in models of epilepsy, neuroprotective in 
models of cerebral ischaemia and to be effective in models 
of chronic pain. Some, such as d-CPPene, also were taken 
into clinical trials for prevention of brain damage following 
stroke or head injury and for treatment resistant forms of 
epilepsy. Positive outcomes from such clinical trials, e.g. 
with d-CPPene and CGS19755, have been prevented by the 
occurrence of side effects, particularly of a psychogenic 
nature [190, 191] .

Coincidental but Related Pharmacological 
Discoveries of the 1980s

Interestingly, Collingridge and collaborators were not 
the only group studying LTP pharmacologically in 1983. 
Patrice Guyenet’s laboratory was independently showing 
that the effects of phencyclidine, ketamine and sigma opi-
ates blocked the long term potentiation of the population 
spike in CA1 region of the hippocampal slices [192, 193]. 
Equally independent was the observation that phencyclidine, 
ketamine and sigma opiates were selective NMDA recep-
tor antagonists on spinal neurones in vivo [194–196]. Thus, 
these two independent groups coincidentally provided extra 
support for the role of NMDA receptors in LTP [1].

Unlike competitive NMDA receptor antagonists, keta-
mine blocks within the receptor-coupled channel [197], 
pharmacologically mimicking the voltage-dependent block 
of Mg2+ ions but with slower kinetics. Although there are 
concerns related to the specificity of ketamine and phen-
cyclidine as NMDA receptor antagonists, particularly at 
higher concentrations [198], its rapid CNS bioavailability 
and reversibility following systemic administration makes 
low doses of ketamine particularly useful for studying the 
effects of NMDA receptors in vivo.

By the 1980s, many of the pharmacological and clini-
cal properties of ketamine were already established in the 
absence of knowledge of it as an NMDA receptor antago-
nist. Developed as an anaesthetic, it was known for its good 
analgesia and its safety but with recognized emergence phe-
nomena including hallucinations [199]. In the 1980s strik-
ing similarities between the actions of ketamine and d-AP5 
emerged. For example, ketamine’s effect on polysynaptic 
responses of spinal neurones [194, 195], on hippocampal 
LTP [192], on spinal ‘wind-up’ [108], on cortical synaptic 
transmission [200], on cortical epileptiform activity [201], 
on sound-induced seizures [202] and on ocular dominance 
in the visual cortex [203] echoed the effects of d-AP5 cited 
above.
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Another major aspect of the NMDA receptor’s phar-
macology was discovered in the 1980s. Philippe Ascher’s 
group showed that glycine, or a glycine-like substance such 
as d-serine, was a required co-agonist for NMDA receptor 
activation [204]. This glycine-site was not sensitive to the 
traditional inhibitory antagonist, strychnine. Instead, com-
pounds such as HA-966 and 7-chlorokynurenate were shown 
to be NMDA receptor antagonists acting via this glycine site 
(for example [205–208]).

It is beyond the scope of this review to describe all the 
contributions that using ketamine and other non-competitive 
NMDA antagonists including glycine-site antagonists have 
made to our understanding of the importance of NMDA 
receptors. Some of this literature, concerning the effects of 
ketamine in synaptic plasticity, neuroprotection, epilepsy, 
pain and behaviour, is cited in previous reviews [198, 209].

Fig. 2   Trends in pharma-
cological sciences: Special 
Report 1991. Cover page: This 
supplement was a compila-
tion of the articles published 
each month during 1990 on the 
theme: “The Pharmacology of 
Excitatory Amino Acids” edited 
by David Lodge, and Graham 
L. Collingridge with Alison 
Abbott of Elsevier. The supple-
ment was sponsored by Leslie 
L. Iversen of Merck & Sharp 
and Dohme Research Labora-
tories. The Glutamate Tree of 
Life is represented in the “Cover 
design by Nigel Hynes, based 
on an original idea of David 
Lodge”
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Heterogeneity Within NMDA Receptors

Also in the 1980s, the possibility of subtypes of the NMDA 
receptor was first raised. Differential sensitivity of brain 
regions to quinolinic acid, a weak naturally occurring 
NMDA receptor agonist [210–212] suggested NMDA1 and 
NMDA2 receptor subtypes. Similarly, regional differences in 
the sensitivity to glycine and to a variety of NMDA recep-
tor antagonists [213] and to differential stimulation of [3H]
MK-801 binding by l-glutamate in different brain regions 
[214, 215] and relative affinity of various competitive antag-
onists in autoradiography studies [216, 217] reinforced the 
idea of heterogeneity in NMDA receptor subtypes. Specific 
profiles were noted between the rat medial thalamus, the 
forebrain and the cerebellum [218].

Such suggestions pre-dated the cloning of NMDA recep-
tor subunits in the early 1990s, which confirmed this hetero-
geneity. The first cloned subunit [219] is now called GluN1 
and is the glycine-sensitive subunit. Cloning of the four glu-
tamate-sensitive subunits, GluN2A-D followed soon [220] 
and of two more glycine-sensitive GluN3 subunits followed 
later (reviewed in [221]). Defining the roles of the NMDA 
receptor subunits in aspects of plasticity has become a major 
interest of Collingridge and many others [57, 222–230].

Conclusions

The growing evidence of the role of glutamate and of 
NMDA receptors in particular, in synaptic transmission 
received a considerable boost in the 1980s. This was largely 
driven by the discovery of the highly selective NMDA recep-
tor antagonist, d-AP5, which enabled its use to establish a 
role for NMDA receptors in synaptic transmission and plas-
ticity [1, 30]. This review has focussed on some examples 
of the resulting explosion in knowledge, which were more 
thoroughly described in a 1991 Supplement of Trends in 
Pharmacological Sciences, which also included a poster 
depicting pharmacological tools that were available for tar-
geting of glutamate receptors, synaptic transmission and 
plasticity Figs. 2, 3.
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