
Vol.:(0123456789)1 3

Neurochemical Research (2018) 43:1841–1854 
https://doi.org/10.1007/s11064-018-2600-1

ORIGINAL PAPER

Exposure of Rat Neural Stem Cells to Ethanol Affects Cell Numbers 
and Alters Expression of 28 Proteins

Mohammed A. Kashem1 · Nilufa Sultana1 · Vladimir J. Balcar1

Received: 23 February 2018 / Revised: 17 July 2018 / Accepted: 20 July 2018 / Published online: 24 July 2018 
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
Developing brain cells express many proteins but little is known of how their protein composition responds to chronic 
exposure to alcohol and/or how such changes might relate to alcohol toxicity. We used cultures derived from embryonic rat 
brain (previously shown to contain mostly neural stem cells; rat NSC, rNSC), exposed them to ethanol (25–100 mM) for 
up to 96 h and studied how they reacted. Ethanol (50 and 100 mM) reduced cell numbers indicating either compromised 
cell proliferation, cytotoxicity or both. Increased lipid peroxidation was consistent with the presence of oxidative stress 
accompanying alcohol-induced cytotoxicity. Proteomics revealed 28 proteins as altered by ethanol (50 mM for 96 h). Some 
were constituents of cytoskeleton, others were involved in transcription/translation, signal transduction and oxidative stress. 
Nucleophosmin (NPM1) and dead-end protein homolog 1 (DND1) were further studied by immunological techniques in 
cultured neurons and astrocytes (derived from brain tissue at embryonic ages E15 and E20, respectively). In the case of 
DND1 (but not NPM1) ethanol induced similar pattern of changes in both types of cells. Given the critical role of the protein 
NPM1 in cell proliferation and differentiation, its reduced expression in the ethanol-exposed rNSC could, in part, explain the 
lower cells numbers. We conclude that chronic ethanol profoundly alters protein composition of rNSC to the extent that their 
functioning—including proliferation and survival—would be seriously compromised. Translated to humans, such changes 
could point the way towards mechanisms underlying the fetal alcohol spectrum disorder and/or alcoholism later in life.
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Introduction

Development and maturation of brain tissue includes both 
pre- and postnatal neurogenesis [1–3]. The rate of neurogen-
esis varies as a function of brain maturity [4] but may also 
be influenced by anxiety, depression as well as by drug and 
alcohol intake [5].

Neural stem cells (NSC) can generate neurons, astro-
cytes and oligodendrocytes in the central nervous sys-
tem (CNS; [6]). NSC first migrate to form specific brain 
regions while, later in the life, during the process of adult 
neurogenesis, may respond to functional demands or serve 

as a replacement for damaged cells. The normal cell gen-
eration may become compromised if the damage to the 
tissue is too great or the initial insult continues such as in 
an ongoing stress. The latter would include chronic drug 
use and alcoholism and, indeed, animal models have dem-
onstrated that alcohol is toxic to the neuron-generating 
regions in brain [7]. Even the blood ethanol levels not 
exceeding 330 mg/dl (app. 72 mM) have been shown to 
decrease neurogenesis in adolescent rats [8, 9]. In this 
context, it is of interest to note that blood alcohol level 
in Indian-American (indigenous) mothers who gave birth 
to offspring with fetal alcohol syndrome (fetal alcohol 
spectrum disorder; FASD) was reported at 80 mM [10]; 
it is known that 100 mM alcohol can significantly influ-
ence human neurogenesis [11]. In another study, moder-
ate doses of ethanol were shown to reduce the number of 
new neurons by two-thirds and significantly increased the 
rate of cell death in the dentate gyrus [9]. Administration 
of ethanol to 35–40 days old rats indicated that the neu-
rogenesis in the adolescent brain is particularly sensitive 
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to ethanol [12]. Moreover, prenatal exposure to ethanol 
may further compromise postnatal neurogenesis and this 
may have an additional impact on mental health later in 
life [13, 14].

Production of neurons proceeds in four stages; prolif-
eration of NSC, differentiation, migration and selective 
neuronal death/survival. Certain proportion of cells will 
succumb to programmed cell death (apoptosis); this is 
an integral part of the differentiation process and may 
accompany even the adult neurogenesis. Ethanol inter-
feres mainly at the stages one and four [15, 16]; it inhibits 
the NSC proliferation and increases the cell death. Longer 
exposures (a 4-day binge model) result in reduced cell pro-
liferation and impaired survival [8, 17]. Moreover, ethanol 
at 50 mM concentration can affect both the proliferation of 
NSC and gliogenesis (glial phenotype); ethanol can alter 
intrinsic cellular mechanisms of NSC, eventually impact-
ing on the structural and functional characteristics of both 
neurons and glial cells [18]. Such changes occur in pre-
frontal cortex, nucleus accumbens, and striatum [19, 20] 
thus potentially contributing to alcohol-induced functional 
deficits in those regions [21–23].

Protein composition is of key importance to the under-
standing of normal cellular functions and their changes in 
disease. The technique of proteomics can thus serve as a 
convenient indicator of the state of health of a biological 
system. Specifically, proteomic analyses of human brain 
tissue have identified changes in 238 proteins as associated 
with alcoholic disorders [24–31].

Proteomic analysis of human NSC detected thousands 
of proteins at the differentiation stage (review: [32]) but 
little is known of how this proteome is influenced by etha-
nol. The aim of the present study is to investigate in vitro 
changes in the proteome of rat embryonic neural stem 
cells (rNSC) following a chronic exposure to the concen-
trations of alcohol which could be encountered in vivo 
during heavy (or very heavy) drinking. Firstly, we looked 
at whether ethanol applied for 96 h at concentrations 25, 
50 and 100 mM can influence the numbers of cultured 
rNSC and whether such changes are accompanied by an 
increased lipid peroxidation indicating the presence of oxi-
dative stress. Secondly, we used a proteomic approach to 
study the protein composition of rNSC exposed to 50 mM 
ethanol for 96 h. Four of the proteins found to be signifi-
cantly changed (two increased and two decreased) by the 
exposure to ethanol were estimated by Western blotting 
to verify the validity of the proteomic analysis. Addition-
ally, two of the proteins strongly affected by the ethanol 
exposure (nucleophosmin; NPM1 and dead end homolog1; 
DND1; both classified as “nuclear proteins” and therefore 
deemed as potentially involved in the regulation of protein 
synthesis as well as cell proliferation and cell survival) 
were selected for further studies by both Western blotting 

and immunocytochemistry, using primary cultures of neu-
rons and astrocytes derived from rat brains.

The data we present may contribute to a better under-
standing of how heavy alcohol drinking (particularly during 
pregnancy) alters the brain structure and function.

Materials and Methods

Neural Stem Cell Culture

Neural stem cells (rNSC) were prepared from 14-day-old 
(E14) rat embryos as described earlier [15, 33]. Animal 
experimental procedures were approved by the The Univer-
sity of Sydney Animal Ethics Committee (AEC Protocol 
Number: 2013/5742). The telencephalon was separated and 
blood vessels and meningae were removed while the tissue 
was submerged in ice-cold Hank’s balanced salt solution 
(HBSS; Invitrogen, CA USA). After sectioning, the tissue 
was incubated with 0.05% trypsin solution for 30 min, tritu-
rated with a glass pipette and filtered through 70 µm nylon 
cell strainer (Falcon, USA). The resulting cell suspension 
was centrifuged (300 g for 5 min at 4 °C). The viability of 
the cells in the pellet was assessed by trypan blue (Invitro-
gen). The cells were seeded in complete neurobasal medium 
[(NBM, Invitrogen) + 2% B27 supplement (Invitrogen), 
+ 0.5 mM L-glutamine + 20 ng/mL recombinant human 
fibroblast growth factor 2 (FGF-2) + 20 ng/mL recombinant 
human epidermal growth factor (EGF, Life Tech)] at a den-
sity of 1 × 106 cells per mL in culture dishes coated with 
poly-L-ornithine (Sigma). The dishes were maintained for a 
week at 37 °C in a 5%  CO2 atmosphere. For differentiation, 
the cells were washed and cultured in differentiating media 
(all components of complete neurobasal media except FGF-2 
and EGF).

Neurons and Astrocytes

The brain tissue was obtained at the embryonic age (E) 
of either E15 (neurons) or E20 (astrocytes) and treated as 
above. Following recommendations by available culture pro-
tocols (e.g. https ://www.therm ofish er.com/au/en/home/refer 
ences /proto cols/cell-cultu re) the cells were cultured either 
in neurobasal medium (NBM, Invitrogen) + 2% B27 supple-
ment (Invitrogen), + 0.5 mM L-glutamine with antibiotics 
(neurons) or in serum/antibiotics containing DMEM/F-12 
(astrocytes) for 2 weeks at 37 °C in humidified 5%  CO2/95% 
air conditions. While most of the protocols usually recom-
mend brain tissue harvested at embryonic ages E17 or E18 
for the neuronal cultures and brains collected at later embry-
onic stages or from neonatal rats for the preparation of astro-
cytic cultures [34] we used E15 for the neuronal cultures (cf. 
also [35]) and E20 for the astrocytic culture with satisfactory 

https://www.thermofisher.com/au/en/home/references/protocols/cell-culture
https://www.thermofisher.com/au/en/home/references/protocols/cell-culture
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results, as indicated both by the appearance of the cells and 
expression of the characteristic markers (Figs. 3, 4).

Ethanol Treatment and Sample Collection

The cultured cells were exposed to ethanol (0, 25, 50 and 
100 mM) added directly to the differentiation neurobasal 
media. In order to reduce the loss of ethanol by evaporation 
[36], we used a closed system (closed 25 mL vessel) and 
changed the media every 24 h [36, 37]. The ethanol exposure 
lasted for up to 96 h. For proteomics, the cells were washed 
twice with ice-cold phosphate-buffered saline (PBS) and col-
lected in 200 µL solubilising buffer (7 M urea, 2 M thiourea, 
1% C7bZO and 40 mM Tris–HCl, pH 10.4; Sigma). After 
sonication (3 times for 5 s each) the samples were stored at 
-80 °C [38, 39].

Estimation of Cell Numbers 
and Immunofluorescence

Cells on coverslips were fixed with 4% paraformaldehyde 
for 15 min, followed by washing with PBS and exposure to 
0.3% Triton-X100 for 5 min. After washing with PBS, the 
cells were incubated (blocked) with 5% normal horse serum 
for 1 h, followed by anti-microtubule-associated-protein 2 
antibody (MAP2, mouse, 1:1000; Sigma) for 2 h. The cells 
were further incubated in mouse IgG FITC labelling reagent 
(1:1000, Invitrogen) for 45 min and subsequently washed 
with PBS. Following the application of DAPI (for 10 min) 
cells were observed under Leica SPE2 confocal microscope 
(Leica Microsystem). The images were captured and the 
cells with DAPI-labelled nuclei were counted (about 150 per 
image) using Image J software (manual option). Whole cov-
erslip contained, typically, 200 to 300 cells or fewer in etha-
nol treated cultures. (cf. legend of Fig. 1 for further details).

For immuno-histochemistry of neurons and astrocytes, 
the cells were fixed, treated with Triton X-100 and blocked 
with horse serum as described above (immunofluorescence) 
and incubated with a mixture of neuron- or astrocyte-specific 
marker antibodies. For neurons, anti-microtubule-associ-
ated-protein 2 (MAP2, mouse and rabbit, 1:1000; Sigma) 
was used as a marker while anti-glial fibrillary acidic pro-
tein (GFAP, mouse and rabbit, 1:1000; Sigma) was applied 
to label astrocytes. The cells were further incubated with 
anti-rabbit nucleophosmin (NPM1, 1:500; Santa Cruz Bio-
tech, Australia) or anti-mouse dead end protein homolog 
1 (DND1, 1:500; Santa Cruz Biotech, Australia) for 2 h. 
Anti- rabbit and/or anti-mouse secondary antibodies (always 
diluted at 1:1000) conjugated with CF-568 and/or CF488 
were applied for 45 min and then washed with PBS. The 
cells were observed under confocal microscope (Leica 
SPE2) and the intensity of the fluorescence was quantified 
by image J software [40, 41].

Lipid Peroxidation Assay

Cells were homogenised in 0.5 mL of 1% KCl solution and 
supernatant was collected after centrifugation at 16,000 g 
x 10 min at 4 °C. Aliquots of 0.25 mL of the homogen-
ates were mixed with double volume (0.50 mL) of 15% 
acetic acid containing thiobarbituric acid (0.5% [42]). The 
mixture was heated at 95 °C for 15 min and, after cooling, 
centrifuged at 5000 g x 5 min to remove any precipitated 
matter. The absorbance of the supernatant was measured at 
532 nm. The malondialdehyde concentration was calculated 
from the following formula: absorbance/1.56 × 105; (where 
1.56 × 105 M− 1cm− 1 is the malondialdehyde extinction 
coefficient).

Statistical Analyses and Presentation of Data

Statistical evaluation of differences between alcohol-free 
(controls) and alcohol-treated cells was done by one way 
ANOVA followed by post-hoc Tukey multiple comparisons 
where a significant effect was found. Both the statistics and 
the graphical representation of data (Figs. 1, 3, 4) was done 
using GrapPad Prism software version 7.02 except for Fig. 2 
where BioRad software was used. For details see the figure 
legends.

Proteomics

The cells (exposed to ethanol for 96 h; cf. the section on 
“Ethanol treatment and sample collection” above) were 
trypsinized, extracted with urea buffer (7 M urea, 2 M thio-
urea and 1% C7bZO and 40 mM tris-HCl) and the proteom-
ics performed as detailed earlier [30, 33, 38, 39, 43, 44]. 
The extracted samples were pelleted at 16,000 g for 20 min 
at 15 °C; the supernatant was reduced and alkylated with 
5 mM tributyl phosphine and 10 mM acrylamide monomer 
at room temperature for 2 h. The reaction was quenched by 
10 mM dithiothreitol (DTT). The citric acid was used to 
acidify the samples to approximately pH 5. The acetone-pre-
cipitated pellets were air dried and resuspended in 0.3 mL of 
buffer consisting of 7 M urea, 2 M thiourea and 1% C7bZO. 
The final extracts were stored at − 80 °C before isoelectric 
focusing.

The protein was quantif ied [45] using BSA 
(Sigma–Aldrich, Castle Hill, NSW, Australia) as a standard. 
Details of isoelectric focusing, electrophoresis and staining 
have been published [30, 33, 38, 39, 43, 44]. A total of 12 
gels (duplicates for each sample, n = 3) were scanned using 
a flatbed scanner (UMAX). The images were analysed by 
Phoretix 2D Expression software (Nonlinear). Averaged 
gels were created for each alcohol treated/control group and 
averaging parameters were set at 70%. Protein spots were 
evaluated as volumes (spot area × optical density) with the 
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image analysis software and compared between groups with 
statistical analysis (ANOVA, P < 0.05). The false discovery 
rate (FDR) was calculated as described by Storey [46]. The 
protein spots of interest were cut from the gel, de-stained 
using 25  mM  NH4HCO3/50% (v/v) acetonitrile (ACN) 
for 3 min × 15 min at 37 °C and digested with 12.5 ng/mL 
trypsin (Roche, sequencing grade), The peptides were puri-
fied using C-18 purification tips (Eppendorf). Matrix (5 mg/
mL solution of α-cyano-4-hydroxycinnamic acid in 70% 
(v/v) ACN/0.1% (v/v) TFA) mixed samples were analysed 
by Qstar XL Excll Hybride MS system (AB Applied Bio-
systems) in positive reflector mode, with delayed extraction.

The spectra from MALDI-TOF were searched against 
the Swissprot protein databases using the MASCOT search 
engine (http://www.matri xscie nce.com/). Positive protein 
identification was performed based on a MOWSE score 
(> 54, rattus database) with matched isoelectric pH (pI) and 
molecular weight (MW) values (estimated from 2D gels) 
and sequence coverage.

Western Blot Analysis

Western blot analysis was performed as described previ-
ously [29–31]. Proteins separated by SDS–PAGE were 
transferred to PVDF (polyvinylidene difluoride) membranes 
[30] blocked with 5% skim milk and incubated with pri-
mary antibodies [NPM, DND1, heat shock protein, hetero-
geneous nuclear ribonucleoproteins-C (hnRNP-C), enolase 
and synaptosome associated protein-29 (SNAP), all diluted 
at 1:500] solution. Secondary antibodies (anti-mouse and 
anti-rabbit IgG, Sigma, diluted at 1:1000) were added and 
the spots were visualized using an ECL (enhanced chemi-
luminescence) full spell system (GE Healthcare, Australia). 
The intensity of the spots was quantified by Biorad software 
(Bio-Rad, Sydney, Australia).

Results

Exposure (96  h) to the lowest ethanol concentration 
(25 mM) had no significant (P > 0.05) impact on either cell 
numbers or morphology but the higher concentrations (50 
or 100 mM) reduced cell growth (Fig. 1a). MAP-2 positive 
cells appeared to be reduced in numbers at 50 and 100 mM 
ethanol relative to control (Fig. 1a). The reduction in cell 
numbers was quantified by counting the cell nuclei stained 
by DAPI. DAPI-positive cells were reduced in numbers by 
38% and 52% (P < 0.05) at 50 and 100 mM ethanol relative 
to control (Fig. 1b).

Lipid peroxidation analysis (Fig. 1b) revealed that the 
exposure of the cells to ethanol induced oxidative stress 
compared to controls (at 50  mM about 1.6-fold and at 
100 mM about 2.1-fold).

In the proteomics, typical 2-DE gels displayed 550 spots 
(six gels from controls and six gels from ethanol-treated 
samples) and more than 92% of all spots were matched 
across the two groups. Analysis revealed that 40 protein 
spots were differentially expressed in ethanol-exposed cells 
relative to the ethanol-free controls (P < 0.05; ANOVA); 
17 protein spots (~ 43%) showing an increased expression 
while the remainder were decreased. From the differentially 
expressed protein spots, we have positively identified 28 
proteins using MALDI-TOF (Table 1) while the remain-
ing ones were not identifiable because of low expression 
of proteins. Functionally, the identified proteins could be 
classified as structural (two proteins, ~ 7%), intracellular 
metabolism (six proteins, ~ 21%), nuclear (seven proteins, 
~ 25%), related to oxidative stress (six proteins, ~ 21%), sig-
nal transduction (four proteins, ~ 14%) and no specific class 
(three proteins, ~ 11%). Among the identified proteins, nine 
were increased (including two out of six metabolic, three 
out of seven nuclear and three out of six oxidative stress-
related proteins) while the remaining ones were decreased 
(including both structural, four out of six metabolic, four out 
of seven nuclear, three out of six oxidative stress-related and 
all four signalling proteins).

Heat shock protein-70 (HSP-70), synaptosomal associ-
ated protein-29 (SNAP-29), enolase (α) and heterogeneous 
nuclear ribonucleoprotein C (hnRNP C) which were altered 
in ethanol-exposed rNSC (Table 1) were assessed by West-
ern blotting (Fig. 2; all primary antibodies were purchased 
from Santa Cruz Biotech, Australia). These analyses did not 
contradict the outcomes of the estimations obtained by the 
proteomic studies (Table 1) and were not pursued further. 
Nucleolar phosphoprotein (nucleophosmin, NPM1) and 
dead end homolog1 (DND1) which were selected for immu-
nocytochemical analyses in cultured neurons and astrocytes 
were also estimated by Western blotting in those prepara-
tions (Figs. 3, 4).

Immunofluorescence indicated somewhat higher expres-
sions of NPM1 at 25 mM ethanol, especially in neurons (cf. 
also Western blotting in Fig. 3d, f), but a lower expression in 
astrocytes exposed to 100 mM ethanol (Fig. 3e). The immu-
nofluorescence was detected particularly over the nuclear 
area though we also noticed the NPM1 staining in cyto-
solic area at the lowest concentration (25 mM) of ethanol 
(Fig. 3c).

In the case of DND1, immunocytochemical analysis 
revealed that the expression significantly increased both 
in neurons and astrocytes at 25, 50 and 100 mM ethanol 
(Fig. 4). Western blotting was consistent with the immu-
nocytochemistry, indicating that DND1 protein expression 
increased in both neurons and astrocytes at the higher (50 
and 100 mM) concentration of ethanol (Fig. 4).

http://www.matrixscience.com/
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Discussion

Inhibition of glutamate NMDA receptors [47] and/or activa-
tion of a subtype of GABA receptors [48–50] parallel imme-
diate effects of alcohol-drinking and probably account for 
much of the short-term response and consequences (acute 
alcohol intoxication followed by “morning after”) [51, 52]. 
In contrast to the receptor-mediated acute effects, longer 
exposures to ethanol may trigger additional mechanisms 
leading to profound (and probably irreversible) changes in 
the living cells and tissues. Apart from resulting in cytotox-
icity, chronic alcohol can specifically influence protein syn-
thesis and cell proliferation, particularly in the developing 
brain [53, 54]. The main finding of the present study is the 
major changes in the protein composition of cells cultured 

from developing rat brain following a four-day exposure 
to high concentrations of ethanol. In addition, we noted 
reduced cell numbers and found evidence for neurotoxic 
events in the alcohol-exposed cultures.

As we did not specifically investigate neural stem cell 
functions and properties; the “rNSC” culture represents, 
strictly speaking, merely a primary culture of fetal brain 
tissue harvested at certain stage of development. However, 
the methodology that we used is known to produce > 95% 
NSC [33] and the results in Fig. 1a are, therefore, consist-
ent with significant cytotoxic effects of alcohol on the fetal 
rat brain-derived stem cells. This is further underscored by 
the increased lipid peroxidation in the presence of alcohol 
(Fig. 1b). Lipid peroxidation has been used as a marker of 
oxidative stress associated with cytotoxicity in a range of 

Fig. 1  Immunofluorogenic visualization of rat neural stem cells 
treated with various concentration of alcohol at 96  h of incuba-
tion (a). a displays MAP-2 positive cells. b shows the numbers of 
DAPI stained nuclei and the extent of lipid peroxidation in the cells 
after 96 h of ethanol exposure. The scales are in arbitrary units and 

the columns are means ± SD (n = 3). The data were analysed by one 
way ANOVA followed by post-hoc Tukey multiple comparisons 
and found significantly different from control (0  mM ethanol) at 
*P < 0.05, **P < 0.01 and ***P < 0.001
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brain cells and tissues [55–57]. Therefore, the current data 
suggest that oxidative damage is a potentially significant 
component of the ethanol-related cytotoxicity leading to the 
loss of cells cultured from embryonic (E15) rat brain tissue.

The remainder of this section will try to evaluate possible 
consequences of the detected changes in protein composi-
tion following the alcohol exposure; given that ethanol inter-
feres with the NSC proliferation and increases the cell death 
[15, 16] the focus will be on proteins potentially involved 
in the cell proliferation/differentiation, oxidative stress and 
nucleus-associated mechanisms.

Cell Proliferation and Differentiation

Hepatoma-derived growth factor (HDGF) was significantly 
decreased in ethanol exposed cells (Table 1). HDGF has 
been linked to hepatocellular carcinoma (HCC) as a multi-
functional protein involved in cell proliferation, angiogenesis 
and anti-apoptosis mechanisms [58]. HDGF overexpression 
promotes the proliferation of HCC [59] and/or gliomas [60] 
while the reduction in HDGF expression inhibits the pro-
liferation of HCC cells. Knocking down of nuclear HDGF 
expression in the cells of human glioblastoma multiformis 
induces apoptosis [61]. By analogy, the decreased expression 
of HDGF in the ethanol-exposed rNSC could explain lower 
proliferation rates of brain cells early in the development.

Two isoforms of dihydropyrimidinase-related protein-2 
and 3 (DRP-2 and DRP-3) were reported to be lower in 
human alcoholic brain tissue [62]. The DRP family of 
proteins, also called the collapsin response mediator pro-
teins (CRMP), has been implicated in the development of 

the CNS particularly in axon guidance and cell migration. 
Lower DRP-2 could, therefore, disturb neural development 
and plasticity [63] and this is supported by reports of DRP-2 
being decreased in other conditions involving abnormal 
development such as schizophrenia and Down’s syndrome 
[64]. Alternatively, the decreased DRP-2 levels observed in 
the present study could be a result of proteolysis activated by 
cytosolic  Ca2+ increased by the ethanol-exposure ([65]; cf. 
also the effect of ethanol on  Ca2+-permeable NMDA recep-
tors [51]).

ADP-ribosylarginine hydrolase (ADPRH) removes mono-
ADP-ribose moieties from arginines in cellular proteins. 
Mutation in the ADPRH gene alters  G1 stage of the cell-
cycle and the reduced expression ADPRH (Table 1) could 
lead to altered  G1-S phase thus decreasing the cell prolifera-
tion [66] which could contribute to the lower cell numbers.

NPM1, a nucleolar and nucleoplasma-localized protein 
[67–69], may bind to unduplicated centrosomes thus alter-
ing Cyclin E/CDK2 activity which, in turn, regulates  G1/S 
transition [70]. NPM1 has been shown to foster survival of 
proliferating cells [71, 72], therefore the lower cell num-
bers in the present study may have been, in part, caused by 
the lower expression of NPM1 induced by ethanol and/or 
its metabolites (see also below in the section on “Nuclear 
Activities and Protein Synthesis”).

Changes in Oxidative Stress Defence Pathways

Ethanol may generate free radicals (review [65]) in vivo 
either through its metabolism (e.g. via the oxidation to 
aldehyde) or by interfering with radical scavenging systems. 

Fig. 2  Total protein was extracted from the neural stem cells from 
both control and 50 mM alcohol-exposed cells and western blotting 
was performed on selected proteins identified as altered by alcohol-

exposure by proteomics. MAP-2 was used as an internal control. 
Bands were digitized and evaluated by Bio-Rad software. b repre-
sents average values of two bands
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Indeed, long-term chronic ethanol induced lipid peroxidation 
and depleted GSH levels in human striatum [31]. Reduced 
expression of glutathione transferase (GST) in the present 
study is also reminiscent of results obtained in human post-
mortem brain tissue of heavy drinkers [24, 27, 29–31]. The 
ethanol-produced reactive oxygen species are eliminated by 
GST activity [73] and low expression of GST reduces the 
protection of neurons against oxidative insults.

The glycolytic enzyme α-enolase also acts as a neuro-
trophic factor [74], a heat-shock protein (HSP48) and a 
hypoxic stress protein (review: [75]). Glycolytic enzymes 
including α-enolase are enriched in apoptotic cells and 
α-enolase deficit (Table 1) could compromise the hypoxia 
tolerance (which may include nonglycolytic mechanisms 
[75, 76]).

Changes in SNARE complex have been associated with 
mental disease [77] and the major increase in the level 

SNAP-29 (also a part of the SNARE system) may indi-
cate activation of various intracellular mechanisms such as 
transport of proteins [78], which might have been activated 
as an adaptation to the effects of ethanol [79].

Heat shock protein 70 (hsp70) expression is regulated 
by environmental stresses including ethanol exposure [80, 
81]. Upregulations of hsp70 mRNA, hsp70 protein and 
heat shock factor-1 (HSF1) have all been reported in the 
liver of mice exposed to acute ethanol [79, 82]. Acute and 
chronic ethanol induces HSP genes such as hsp70, hsp90, 
and glucose-regulated protein 78 (GRP-78), via HSF-1 
activation in neuronal cells [83]. HSP contributes to cell 
survival via binding to other proteins thus preventing the 
protein misfolding [84, 85]. The observed increases in the 
HSP’s expression (Table 1) could reflect activation of such 
defence mechanisms.

Fig. 3  Immunocytochemical visualization of the expression of NPM1 
in neurons (a) and astrocytes (c) exposed to various concentrations 
of alcohol for 96  h. The green colour of the Fig.  3a is MAP-2 and 
red colour is NPM protein; in astrocytes (c), green is NPM and red 
is GFAP. Intensity of fluorescence was estimated for 9 or 10 cells by 
Image J software (e). The scales (e) are in arbitrary units and the col-
umns are means ± SD (n = 9–10). The data were analysed by one way 
ANOVA followed by post-hoc Tukey multiple comparisons; those 

significantly different from control (0  mM ethanol) are marked by 
asterisks as **P < 0.01 and ***P < 0.001. Total protein was extracted 
from cells exposed to 50 mM alcohol for 96 h and subjected to west-
ern blotting using an antibody against NPM1 protein (neurons: b, 
astrocytes: d). Bands were analysed by Bio-rad software; f shows 
average of the two bands shown in (b) and (d), normalized so as the 
control (0 mM ethanol) equals 100
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Nuclear Activities and Protein Synthesis

The heterogeneous nuclear protein (hnRNP) corresponds 
to a family of multifunctional RNA-binding nuclear pro-
teins (review: [86]). Two of these proteins, hnRNP H 
and hnRNP C were significantly reduced in the ethanol-
exposed rNSC (Table 1). The protein hnRNP H may be 
linked to human cancers while protein C of the hnRNP 
family is best known for its role in pre-mRNA alterna-
tive splicing [86]. Alternative splicing is of interest 
in alcoholism since the glutamate transporter EAAT1 
(GLAST), reported as severely affected by chronic drink-
ing (review: [87] but see [88, 89]), exists in many alternate 
splicing forms [90]. EAAT1 (GLAST) is a key protein 
in glutamatergic neurotransmission which is known to 
be perturbed by ethanol [48]; the conflicting data ([88, 
89] v. [91, 92]) could be explained by a changed pattern 
of its alternate splicing in ethanol-affected tissue. The 
protein hnRNP C has been linked to breast cancer [93] 
but, perhaps more importantly in the context of FASD, 

its abnormal expression has been associated with birth 
defects in mammals including humans [94, 95].

“Helicase” is a group of enzymes which can unwind 
double helices of nucleic acids [96]. Spliceosome RNA 
helicase Ddx39b is involved in the nuclear export of 
mRNA and its reduced expression in the ethanol-exposed 
rNSC (Table 1) could have a severe impact on the RNA 
translation [97].

The DND1 (increased by ethanol in both neurons and 
astrocytes, Fig. 4) can block microRNA-mediated gene 
suppression. DND1 plays a key role in the primordial germ 
cell (PGC) survival and migration [98] and its defects also 
cause sperm sterility, inducing testicular germ cell tumours 
in mice [99, 100]. DND1 inactivation in mice leads to steril-
ity at birth stage [101]. DND1 interacts with several mRNAs 
including mRNAs of both anti- and pro-apoptotic factors, 
BCLX and BAX, respectively. Transcripts of pluripotency 
factors, cell cycle regulators and apoptotic factors associated 
with DND1 have been previously identified using DND1 
recombinant study in human embryonic stem cells [100].

Fig. 4  Immunocytochemical visualization of the expression of DND1 
in neurons (a) and astrocytes (c) exposed to various concentrations 
of alcohol for 96  h. The green colour of the Fig.  4a is MAP2 and 
red colour is DND1 protein; in astrocytes, green is DND1 and red 
is GFAP. Intensity of fluorescence was estimated for 10 or 11 cells 
by Image J software (e). The scales (e) are in arbitrary units and the 
columns are means ± SD (n = 10–11). The data were analysed by one 
way ANOVA followed by post-hoc Tukey multiple comparisons; 

those significantly different from control (0 mM ethanol) are marked 
by asterisks as *P < 0.05, **P < 0.01 and ***P < 0.001. Total protein 
was extracted from cells exposed to 50 mM alcohol for 96 h and sub-
jected to western blotting using an antibody against DND1 protein 
(neurons: b, astrocytes: d). Bands were analysed by Bio-rad software; 
f shows average of the two bands shown in b and d, normalized so as 
the control (0 mM ethanol) equals 100
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Exposure to high concentrations of ethanol decreased 
NPM1 in rNSC and perturbed its expression in both neurons 
and astrocytes (Table 1; Fig. 3). This might in part explain 
the lower cell numbers of the ethanol-exposed cells (Fig. 1) 
since NPM1 is involved in DNA replication, recombination, 
transcription and repair [67, 102] as well as elsewhere [103, 
104]. This interpretation is also in agreement with reports 
that the knockout of NPM1 in mice leads to unrestricted 
centrosome duplication, genomic instability and impaired 
ribosome biogenesis [67, 105]. In addition, NPM-induced 
p21 expression activates gene transcription by de-repressing 
p300–CREBBP (CREB-binding protein; [106, 107] and 
can regulate p53-mediated apoptosis under the conditions 
of cellular stress [108]. Thus, the normal level of NPM1 
expression could very well be a critical factor in determining 
the healthy proliferation and differentiation (including the 
regulation of the normal rate of cell death) of the rNSC (cf. 
also above under “Cell Proliferation and Differentiation”).

Summary and Concluding Statements

The main finding of the study is the large extent of changes 
in the expression of proteins in cultured embryonic cells 
(including neural stem cells) exposed to alcohol. Altered 
expression of so many proteins that are crucial for the nor-
mal cell proliferation and survival, should it occur following 
a similar exposure to alcohol in vivo, would not be without 
profound consequences for brain development.

More specifically, the present study resulted in the first 
observation of changes in DND1 and NPM1 expressions 
linked to ethanol exposure. Given the roles of NPM1 in cell 
proliferation, the lower expression of NPM1 could, in part, 
account for the reduction in neural stem cell numbers fol-
lowing the exposure to ethanol; the changes in the NPM1 
expression may have a lesser impact on the cultured neurons 
and astrocytes, though, where NPM1 was actually increased 
at 25 mM ethanol and only moderately decreased at the 
highest (100 mM) ethanol concentration.

The present observations may help to identify novel 
mechanisms by which chronic alcohol exposures in utero 
exert their cytotoxic effects. It should be obvious that the 
existence of such mechanisms does not rule out the role of 
GABA(A) and/or NMDA receptors in the actions of alcohol 
including the neurotoxicity [48–52]. Ethanol would interact 
with the neurotransmitter receptors regardless of the length 
of the exposure and, as recent studies with the anaesthetics 
propofol, sevoflurane and ketamine suggest, such interac-
tions could be cytotoxic for brain stem cells [109–111]. Our 
data merely suggest that additional mechanisms involving 
many more protein species (particularly those 28 protein 
molecules identified by the present study) could contribute 
to the process.

The findings of the study are of particular significance 
for the understanding of mechanisms underlying alcohol-
ism-related conditions such as the foetal alcohol spectrum 
disorder, especially in relation to alcohol interference with 
the earliest stages of brain development. Given that neuro-
genesis may occur in adult brains, too, the present results 
could also be relevant for the understanding of changes in 
adult alcoholic brains.
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