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Abstract
Dysfunction of the glutamatergic system is believed to underlie many neurodevelopmental disorders including autism, Rett 
syndrome and schizophrenia. Metabotropic glutamate receptor (mGluR5) positive allosteric modulators (PAM) potentiate 
glutamatergic signaling, particularly indirectly via the NMDA receptor. Preclinical studies report mGluR5 PAMs can improve 
schizophrenia-relevant behaviours. Furthermore, adolescent administration has shown to prevent cognitive induced deficits 
in adult rodents. However, there is limited understanding of the short- and long-term neurochemical effects of mGluR5 
PAMs, which may underlie their therapeutic effects. We examined the effect of 7-day adolescent (PN28-34) treatment with 
the mGluR5 PAM, CDDPB (30 mg/kg), on glutamatergic receptor expression at adolescence (PN35) and adulthood (PN96). 
Immunoblot analysis revealed that 7-day adolescent CDPPB treatment increased protein expression of glutamatergic recep-
tors including the NMDA receptor subunits, NR1 and NR2A and the AMPA subunits (GluA1 and GluA2) in the adolescent 
hippocampus, changes that did not extend to adulthood. In contrast, there were no changes in the adolescent frontal cortex, 
however elevated mGluR5 protein expression was observed at adulthood following adolescent CDPPB treatment. The present 
study indicates adolescent CDPPB treatment may cause brain region dependent effects on the glutamatergic system, which 
do not persist into adulthood. These findings may have implications for the preclinical development of mGluR5 PAMs for 
the treatment of neurodevelopmental disorders.

Keywords  CDPPB · Metabotropic glutamate 5 receptor positive allosteric modulator · Frontal cortex · Hippocampus · 
Adolescence · NMDA

Introduction

Glutamate is the major excitatory neurotransmitter in the 
central nervous system, playing an important role in neu-
rodevelopment and cognitive processes [1, 2]. Dysfunction 

of the glutamatergic system, particularly in the frontal cortex 
and hippocampus, has been identified in a number of cogni-
tive and neurodevelopmental disorders such as schizophre-
nia, Rett syndrome and autism [3, 4]. Glutamate exerts its 
effects via two classes of receptors; ionotropic ligand-gated 
ion channels, including N-methyl-d-aspartate (NMDA), 
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 
(AMPA) and kainate and metabotropic G-protein-coupled 
receptors (mGluR) 1–8. mGluRs are categorised into 3 
groups based on their sequence homology, G-protein cou-
pling and pharmacology; Group 1 (mGluR1 and 5), Group 
2 (mGluR2-3) and Group 3 (mGluR4,6–8) which regulate 
the activity of ionotropic glutamate receptors. Therefore 
mGluRs have become highly attractive pharmacotherapeutic 
targets for modulating ionotropic receptors, in particular the 
NMDA receptor dysfunction, proposed to underlie cognitive 
deficits in a range of neurological disorders [5].
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Metabotropic glutamate receptor 5 (mGluR5) shares 
a physical and functional relationship with the NMDA 
receptor, via interactions with scaffolding proteins includ-
ing Homer, SH3 and multiple ankyrin repeated domains 
(SHANK), guanylate-kinase-associated protein (GKAP) and 
post-synaptic density 95 (PSD-95) [6]. Knockout or pharma-
cological blockade of mGluR5 in rodents has shown to cause 
heightened cognitive impairment, induced via NMDA recep-
tor antagonism [7–9]. Additionally, two endogenous regu-
lators of mGluR5, Norbin and Homer1b/c, which increase 
mGluR5-stimulated release of Ca2+ from intracellular stores, 
cell surface localisation and downstream signalling, play a 
role in synaptic plasticity and cognition [10]; Norbin and 
Homer1 KO mice display deficits in working and spatial 
memory [11–13], accompanied by increased behavioural 
sensitivity to NMDA receptor antagonism. Furthermore, 
agonist-induced activation of mGluR5 potentiates NMDA 
and AMPA receptor mediated currents [14–17], a process 
crucial for synaptic plasticity. These findings support the 
notion, that mGluR5 activation may represent a novel tar-
get to increase glutamatergic signalling and improve cogni-
tion. However, long-term treatment with agonists can lead 
to receptor desensitisation and seizures. Positive allosteric 
modulators (PAMs) may overcome this issue, as they rely 
on endogenous cycling of the neurotransmitter, glutamate. 
Similar to mGluR5 agonists, mGluR5 PAMs enhance 
long-term potentiation and long-term depression [18, 19], 
processes closely reliant on NMDA and AMPA receptor 
expression and activity. Furthermore, rodent studies have 
reported mGluR5 PAMs, including ADX-47273, CDPPB 
(3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide) and 
VU-analogues improve cognitive measures including spatial, 
working and/or declarative memory [18, 20–22].

Several studies investigating the therapeutic potential 
of mGluR5 PAMs have focused on administering these 
compounds at adult time points and have shown promising 
efficacy in the treatment of various behavioural deficits [6]. 
However, it is apparent that many of the proposed disorders 
where mGluR5 PAMs may be advantageous, are neurodevel-
opmental, where early intervention could be beneficial and 
possibly preventative. Kjaerby and colleagues reported sub-
chronic administration with the mGluR5 PAM, ADX-47273, 
at adolescence (PN25-32) was able to attenuate neonatal 
phencyclidine induced sensorimotor gating deficits [23]. 
In a similar model, Clifton and colleagues demonstrated 
that early adolescent intervention with the mGluR5 PAM, 
CDPPB, attenuated neonatal phencyclidine-induced social 
cognition deficits at adulthood [24].

mGluR5 PAMs have shown promising behavioural poten-
tial, yet little is known about their influence on neurochemi-
cal transmission, which may underlie their behavioural effi-
cacy. Acute CDPPB administration in adult rats increased 
synaptic expression and phosphorylation of the NMDA 

receptor (NR1 and NR2B subunits) and AMPA receptor 
(GluA1 subunit) in the frontal cortex and hippocampus, 
which was associated with improvements in recognition 
memory [22]. Similarly, Parmentier-Batteur and colleagues 
showed CDPPB treatment in adult rats caused brain region 
dependent effects on NMDA receptor expression and phos-
phorylation in the striatum and frontal cortex after 7 days 
of treatment [25]. Whether adolescent CDPPB treatment 
causes changes to neurochemistry, and whether these effects 
persist after treatment ends, is unknown. The present study 
aimed to investigate the effects of adolescent CDPPB treat-
ment on glutamatergic transmission in the frontal cortex and 
hippocampus, regions involved in cognitive behaviour and 
dysfunction, and determine whether any effects are long last-
ing into adulthood.

Methods

Animals and Drug Treatment

Pregnant Sprague–Dawley rats (gestational day 14) were 
obtained from the Animal Resources Centre (Perth, Aus-
tralia). Dams were housed individually, under constant tem-
perature control (20 °C) and 12:12 h light–dark cycle. Dams 
were provided food and water ad libitum. Following birth, 
pups were continually housed with their dam and littermates 
until postnatal day (PN) 21. At PN21, male offspring were 
separated from their dams/littermates and housed in random 
pairs of the same treatment group, with ad libitum access 
to food and water. On PN28, male rats received intraperi-
toneal (i.p) injections of CDPPB (30 mg/kg; 3 ml/kg) or 
vehicle (10:10:80 dimethyl sulfoxide, Tween 20, 0.9% NaCl) 
at a dose of 3 ul/g, once a day for 7 consecutive days from 
PN28-34, considered to represent adolescence [26]. This 
dose of CDPPB (30 mg/kg) has previously shown to enhance 
performance in spatial learning tasks [27] and ameliorate 
NMDA receptor antagonist-induced cognitive set-shifting 
deficits [28]. One cohort of animals was euthanised by car-
bon dioxide asphyxiation at PN35 (24 h after final injection) 
to examine the adolescent brains. The second cohort (adult) 
were continually pair housed and euthanised by carbon diox-
ide asphyxiation at PN98 (adulthood; 9 weeks after final 
treatment). The brains were immediately removed and the 
frontal cortex and hippocampus were dissected according to 
a standard rat brain atlas [29], before being frozen in liquid 
nitrogen and stored at − 80 °C.

Tissue preparation and Immunoblotting

Tissue samples (left and right hemispheres combined) 
were homogenised in 5 x (w/v) the volume of homog-
enisation buffer containing 0.1  M Tris–HCl, 2  mM 
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ethylenediaminetetraacetic acid, 10% glycerol, 1% sodium 
dodecyl sulfate (SDS), 100 mM iodoacetamide, 0.5 mM 
phenylmethylsulfonyl fluoride, Protease Inhibitor Cock-
tail (P8340; Sigma, Australia) and Phosphatase Inhibitor 
Cocktail 2 (Sigma, Australia). Total protein concentration 
was determined using a detergent compatible assay kit as 
per the manufacturer’s instructions (Bio-Rad, Australia). 
Protein (5 µg) was diluted in laemmli buffer (not contain-
ing reducing agents e.g. β-mercaptoethanol or dithiothrei-
tol) and separated by SDS–polyacrylamide gel electropho-
resis in 4–20% TGX™ precast gels (Bio-Rad, Australia). 
Proteins were transferred on polyvinylidene fluoride mem-
branes and blocked with either 5% bovine serum albu-
min or skim milk (w/v) for 1 h at room temperature. The 
membranes were incubated in primary antibodies at the 
following concentrations: anti-mGluR5 (1:5000; ab29170, 
Abcam); NMDA receptor subunits: anti-NR1 (1:5000; 
MAB363, Millipore), anti-NR2A (1:5000; MAB5530, 
Millipore) and anti-NR2B (1:5000; MAB5578, Millipore); 
AMPA receptor subunits: anti-GluA1 (1:10 000; ab31232, 
Abcam) and anti-GluA2 (1:10 000; ab133477, Abcam); 
anti-Neurochondrin (Norbin) (1:7500; ab130507, Abcam); 
anti-Homer1b/c (1:7500; ab211415, Abcam); PSD-95 
(1:10 000; MAB1598, Millipore); or GAPDH (1:50 000, 
OSG00032W, Osenses) at 4 °C overnight. Subsequently, 
membranes were incubated with anti-rabbit or -mouse 
peroxidase-conjugated secondary antibodies (1:5000; Mil-
lipore). Bands were visualised using Amersham enhanced 
chemiluminescence western blotting detection reagent 
(GE Healthcare, Australia) and exposed to Hyperfilm 
(GE Healthcare, Australia). Films were scanned using a 
GS-800 scanner (Bio-Rad) and the expected bands for 
each respective antibody was quantified by densitometry 
using Quantity One (Bio-Rad). Relative densitometry val-
ues were normalised to their respective GAPDH values 
and an internal control value (consisting of equal amounts 
of each sample, pooled together), to account for protein 
loading and gel–gel variability, respectively. Each sample 
was run in duplicate or triplicate.

Statistics

Statistical analyses were performed using SPSS Software 
(Version 21). Shapiro–Wilk tests were performed to iden-
tify distribution of data. Multivariate analysis of vari-
ance (MANOVA) were employed to identify differences 
between CDPPB and vehicle treated groups of the same 
brain-region and age. Data sets that were not normally dis-
tributed, as determined by Shapiro–Wilk scores (p < 0.05) 
or did not fit Levene’s test of equality were analysed by 
Mann-Whitney-U tests. The level of significance was set 
to p < 0.05.

Results

To investigate the effects of chronic adolescent CDPPB 
treatment on the glutamatergic system, western blots 
were employed to measure the relative protein levels 
of NMDA receptor subunits (NR1, NR2A and NR2B), 
AMPA receptor subunits (GluA1 and GluA2), PSD-95, 
dimeric mGluR5 and two key endogenous regulators of 
mGluR5, Norbin and Homer1b/c. In the adolescent and 
adult hippocampus and frontal cortex, all proteins were 
clearly identified at their expected molecular weights, as 
previously reported [30].

Chronic adolescent CDPPB treatment acutely 
increases hippocampal, but not frontal cortical, 
glutamatergic receptors

Analysis of the adolescent hippocampus revealed mGluR5 
protein expression was significantly up regulated fol-
lowing chronic adolescent CDPPB treatment (64%; 
F1,8=10.481, p = 0.018; Fig. 1). However, we observed no 
changes to the mGluR5 endogenous regulators, Norbin and 
Homer1b/c. Protein levels of the obligatory NR1 subunit 
and NR2A subunit, but not the NR2B subunit, were also 
increased (NR1: 17%; F1,9=14.519, p = 0.009; NR2A: 63%, 
F1,9=7.934, p = 0.030; NR2B: F1,9=2.310, p = 0.179). Ado-
lescent CDPPB treatment further increased both GluA1 
and GluA2 protein levels in the hippocampus (GluA1: 
157%; F1,8 = 13.597, p = 0.01; GluA2: 21%, F1,10 = 7.097, 
p < 0.037). Although there was a trend for PSD-95 protein 
expression to be increased in the hippocampus following 
adolescent CDPPB treatment, this did not reach statistical 
significance (46%; F1,10 = 4.371, p = 0.082). The measured 
glutamatergic proteins were not altered in the adolescent 
frontal cortex following chronic adolescent CDPPB treat-
ment (Fig. 2).

Chronic adolescent CDPPB treatment does not cause 
long‑term changes to hippocampal glutamatergic 
receptors but increases mGluR5 in the frontal cortex

Analysis of the adult hippocampus revealed GluA2 was sig-
nificantly decreased following adolescent CDPPB treatment 
(− 21%; F1,12 = 6.165, p = 0.030), with no other changes in 
the proteins measured (Fig. 3). In the adult frontal cortex, 
mGluR5 protein expression was significantly upregulated 
following adolescent CDPPB treatment (71%; F1,12 = 30.927, 
p < 0.001; Fig. 4). Protein levels of the mGluR5 endoge-
nous regulator, Norbin, were decreased in the frontal cortex 
although this did not reach statistical significance (− 19%; 
p = 0.054). We observed no changes to the other proteins 
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measured in the adult frontal cortex, following CDPPB 
treatment.

Discussion

mGluR5 PAMs have been proposed as a therapeutic strat-
egy for several neurodevelopmental and psychiatric disor-
ders, including autism, Rett syndrome and schizophrenia. 
Adolescent intervention with mGluR5 PAMs has shown to 
attenuate schizophrenia-like behaviours in rodent models 
[23, 24], however, little is known about the short- and long-
term neurochemical treatment effects during this time-point. 
We investigated the effects of adolescent CDPPB treatment 
on the glutamatergic system and determined whether these 
effects persist into adulthood. Our results indicate adolescent 
CDPPB treatment causes short-term up regulation of gluta-
matergic receptors in the hippocampus, but not the frontal 
cortex. These effects were not observed at adulthood, sug-
gesting adolescent CDPPB treatment causes acute and brain 
region-specific effects.

mGluR5 is a vital unit in the hub of post-synaptic glu-
tamatergic signalling, linking to the NMDA receptor via 
several scaffolding proteins, including Homer1. Stimula-
tion of mGluR5 with agonists or PAMs has been shown to 
increase the activation of NMDA receptors and increase 
hippocampal synaptic plasticity, which is thought to con-
tribute to the cognitive enhancing potential of mGluR5 
PAMs [18, 31]. In the present study, chronic adolescent 
CDPPB treatment caused an up regulation of mGluR5 
protein expression in the adolescent hippocampus. How-
ever, CDPPB treatment did not alter the expression of 
Homer1b/c or Norbin, two endogenous regulators of 
mGluR5 thought underlie mGluR5’s role in cognition. 
Nevertheless, we observed acute increases in expres-
sion of NR1 and NR2A as well as the AMPA GluA1 and 
GluA2 subunits. These findings are consistent with reports 
from Uslaner et al., [22] where an acute dose of CDPPB 
(30 mg/kg) in adult rats increased hippocampal NR1 and 
GluA1 expression and phosphorylation (Ser831). Addi-
tionally, these increases were associated with improved 
performance in novel object recognition tasks, suggesting 

Fig. 1   a Representative immunoblots of mGluR5 dimer, Norbin, 
Homer1b/c, NR1, NR2A, NR2B, GluA1, GluA2 and PSD-95 in 
the adolescent hippocampus following adolescent CDPPB treat-
ment. Representative GAPDH is shown for GluA1 blots only. 
Graphs illustrate the relative mean (+ SEM) protein expression of b 

dimeric mGluR5, c Norbin, d Homer1b/c, e NR1, f NR2A, g NR2B, 
h GluA1, i GluA2 and j PSD-95 in the adolescent hippocampus of 
vehicle (white bars) and CDPPB (black bars) treated rats (n = 5–6/per 
treatment group). *p < 0.05 vs. vehicle, **p < 0.01 vs. vehicle
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increases in NMDA and AMPA expression/activity may 
underlie CDPPB’s cognitive enhancing properties.

Whilst we observed changes in glutamatergic receptor 
expression in the hippocampus, we did not observe any 
changes to protein expression in the adolescent frontal cor-
tex between CDPPB treated and control animals. Parmen-
tier-Batteur and colleagues [25] observed increased NMDA 
receptor subunit phosphorylation and expression in the adult 
frontal cortex and striatum following acute CDPPB treat-
ment (30 mg/kg). However, following sub-chronic 7-day 
CDPPB treatment (30 mg/kg, daily), these changes were no 
longer present in the frontal cortex, which they suggest may 
indicate this region is vulnerable to mGluR5 desensitisa-
tion. Similarly, we did not observe changes to glutamatergic 
receptor expression in the adolescent frontal cortex follow-
ing 7-day CDPPB treatment, however changes were present 
in the hippocampus, supporting brain region-specific effects 
of CDPPB treatment. Further supporting these differential 
brain region effects, Uslaner et al. [22] showed that acute 
CDPPB treatment, at the same dose used in the present 
study, caused increased NMDA receptor subunit expression 

and phosphorylation in the hippocampus, but not the fron-
tal cortex. However, the authors illustrated the effects of 
CDPPB administration on protein expression in the frontal 
cortex were characterised by an inverted U-shaped dose-
dependent response, whereby a lower dose of 10 mg/kg 
CDPPB increased NMDA and AMPA receptor subunits and 
phosphorylation. Collectively, the present results support 
previous findings that CDPPB may cause brain region spe-
cific and dose dependent effects, with the frontal cortex more 
prone to desensitisation than the striatum and hippocampus.

Previous studies have demonstrated adolescent CDPPB 
treatment results in behavioural changes at adulthood. 
Clifton et al, reported chronic adolescent CDPPB treat-
ment (PN35-47; 10 mg/kg/day) was able to prevent neo-
natal PCP-induced social novel discrimination deficits 
at adulthood (13 weeks old) [24]. These results suggest 
chronic adolescent CDPPB treatment can cause long-term 
neurochemical changes, particularly to the NMDA recep-
tor, whereby pharmacological blockade induces social 
cognitive deficits. However, we did not observe changes 
to ionotropic glutamatergic receptor expression in the 

Fig. 2   a Representative immunoblots of mGluR5 dimer, Norbin, 
Homer1b/c, NR1, NR2A, NR2B, GluA1, GluA2 and PSD-95 in 
the adolescent frontal cortex following adolescent CDPPB treat-
ment. Representative GAPDH is shown for GluA1 blots only. 
Graphs illustrate the relative mean (+ SEM) protein expression of b 

dimeric mGluR5, c Norbin, d Homer1b/c, e NR1, f NR2A, g NR2B, 
h GluA1, i GluA2 and j PSD-95 in the adolescent frontal cortex of 
vehicle (white bars) and CDPPB (black bars) treated rats (n = 5–6/per 
treatment group)
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adult frontal cortex or hippocampus following adolescent 
CDPPB treatment. Although, despite the fact mGluR5 
levels were unchanged at adolescence, we observed a 
delayed increase of mGluR5 in the adult frontal cortex. 
It is unclear why mGluR5 displayed a delayed increase in 
protein expression, however increased cortical mGluR5 
expression has been associated with several mood disor-
ders, including depression and anxiety [32]. Furthermore, 
lentiviral overexpression of mGluR5 in the frontal cortex 
has shown to produce depressive-and anxiety-like behav-
iours [33]. Whilst it is not clear if the increased mGluR5 
expression observed at adulthood following CDPPB treat-
ment may be associated with depressive- or anxiety-like 
behaviour, future studies should examine other behav-
ioural parameters following adolescent CDPPB treatment. 
However, it must be acknowledged that naïve animals were 
used in this present study; it is possible that the use of a 
neurodevelopmental model schizophrenia, which already 
exhibits disturbed neurotransmission, could influence the 
effects of CDPPB on brain glutamatergic signalling. For 
example, mGluR5 activation was shown to exert an effect 

on the GABAergic and dopaminergic systems, which 
are important for cognitive function [34, 35]. A recently 
developed mGluR5 PAM, VU049551, was shown to have 
cognitive enhancing effects independent of NMDA recep-
tor activity; VU049551 demonstrated synaptic plasticity 
effects via the M1 muscarinic acetylcholine receptor [36], 
highlighting the role mGluR5 PAMs could play on other 
neurotransmitter systems, beyond glutamatergic receptors.

The present study shows that chronic adolescent CDPPB 
treatment upregulates the expression of several glutamater-
gic receptors in the hippocampus. These changes were not 
present at adulthood, suggesting adolescent CDPPB treat-
ment may not translate into long-term changes in glutamater-
gic signalling, at least using the treatment paradigm. Fur-
thermore, we speculate a lower dose may increase CDPPB’s 
capacity to modulate NMDA and AMPA receptor activity, 
particularly in the frontal cortex. Whilst behavioural stud-
ies suggest adolescent CDPPB treatment can have effects 
at adulthood, these effects may be mediated via other 
neurotransmitter systems, such as the muscarinic and/or 
GABAergic system. Further understanding the mechanisms 

Fig. 3   a Representative immunoblots of mGluR5 dimer, Norbin, 
Homer1b/c, NR1, NR2A, NR2B, GluA1, GluA2 and PSD-95 in the 
adult hippocampus following adolescent CDPPB treatment. Repre-
sentative GAPDH is shown for GluA1 blots only. Graphs illustrate 
the relative mean (+ SEM) protein expression of b dimeric mGluR5, 

c Norbin, d Homer1b/c, e NR1, f NR2A, g NR2B, h GluA1, i GluA2 
and j PSD-95 in the adult hippocampus of vehicle (white bars) and 
CDPPB (black bars) treated rats (n = 5–7/per treatment group). 
*p < 0.05 vs. vehicle
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underlying the effects of mGluR5 positive allosteric modula-
tion can improve drug design and therapeutic strategy.
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